TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Prof. ABmann - Software as a Business

41. Data Integration of Tools by Role-Based
Composition of Materials

(RoleCore-Based Metamodel Composition on M2)
for Tool Interoperability on M1-Models and MO-Repositories

Satt [0 Ulie AT 1) Motivational Example

Mirko Seifert, Christian Wende, Thomas Kiihn Proactive vs. Retroactive Tool Integration
Technische Universitat Dresden 2) Rolesin Metaclasses

Institut flr Software- und Multimediatechnik 3) Role-based composition of metamodels
http://st.inf.tu-dresden.de 4) Role-Based Composition of

Version 19-1.2,27.01.20 Metamodels with RoleCore

5) Grounding
6) LanGems Composition Technique

Obligatory Literature

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

» Deep Rolling and RoleCore:

= Mirko Seifert, Christian Wende and Uwe AlSmann. Anticipating Unanticipated
Tool Interoperability using Role Models. In Proceedings of the 1st Workshop
on Model Driven Interoperability (MDI'2010) (co-located with MODELS
2010), 5th October 2010, Oslo, Norway

= https://github.com/DevBoost/EMFText-Zoo/tree/master/BreedingStation/R
oleCore

> Course “Design Patterns and Frai. ~we -k (n 5 & 458 0 1 (e modeling)

> http://www.langems.org

emftext

https://github.com/DevBoost/EMFText-Zoo/tree/master/BreedingStation/RoleCore
https://github.com/DevBoost/EMFText-Zoo/tree/master/BreedingStation/RoleCore

Literature on Roles

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

T. Reenskaug, P. Wold, O. A. Lehne. Working with objects. Manning. The OOram Method.
http://heim.ifi.uio.no/~trygver/documents/book11d.pdf

H. Allert, P. Dolog, W. Nejdl, W. Siberski, F. Steimann. Role-Oriented Models for Hypermedia
Construction - Conceptual Modelling for the Semantic Web. citeseer.org.

N. Guarino, M. Carrara, and P. Giaretta. An ontology of meta-level categories. In Proceedings of the
Fourth International Conference on Knowledge Representation and Reasoning, pages 270-280.
Morgan Kaufmann, San Mateo, 1994.

F. Steimann. On the representation of roles in object-oriented and conceptual modelling. Data and
Knowledge Engineering. 2000.

T. Reenskaug, P. Wold, O. A. Lehne. Working with objects. Manning.
http://heim.ifi.uio.no/~trygver/documents/book11d.pdf

D. Riehle, T. Gross. Role Model Based Framework Design and Integration. OOPSLA 1998.

U. ABmann, J. Henriksson, I. Savga, J. Johannes: Composition of Ontologies and Rule Sets.
REASONING WEB Summer School, LNCS 4126

Christian Wende. Language Family Engineering. PhD thesis, Technische Universitat Dresden, Fakultat

Informatik, March 2012, http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-88985.

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Prof. ABmann - Software as a Business

40.1 Different Factors Drive Business Models -
How to Vary a Business Model Canvas

[BMG p 142]

The Role-Based Architectural Language SMAGs

5

Model-Driven Software Development in Technical Spaces (MOST)

Prof. U. ABmann, TU Dresden
@ © Prof. U. ABmann

> Role-based Architectural language: Smart Apps (SMAPPs) and Smart Application Grids
(SMAGS) http://st.inf.tu-dresden.de/smags

= Development by Christian Piechnick

» C. Piechnick, S. Richly, S. Gotz, C. Wilke, U. ABmann. Using Role-Based Composition to
Support Unanticipated, Dynamic Adaptation - Smart Application Grids. Adaptive and
Self-adaptive Systems and Applications (Adaptive 2012)

http://st.inf.tu-dresden.de/smags

Works in the Last Years

Model-Driven Software Development in Technical Spaces (MOST)

Rollenbasierte Sprachkomposition
© Prof. U. ABmann

» Henrik Lochmann. HybridMDSD: Multi-Domain Engineering with Model-Driven
Software Development using Ontological Foundations. PhD thesis, Technische
Universitat Dresden, Fakultat Informatik, 2009,
http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-27380

> Mirko Seifert. Designing Round-Trip Systems by Model Partitioning and Change
Propagation. PhD thesis, Technische Universitat Dresden, Fakultat Informatik, June
2011, http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-71098

» Konrad Voigt. Structural Graph-based Metamodel Matching. PhD thesis, Technische
Universitat Dresden, Fakultat Informatik, November 2011,
http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-81671

» Jendrik Johannes. Component-Based Model-Driven Software Development. PhD thesis,
Technische Universitat Dresden, Fakultat Informatik, December 2010. http
://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-63986

= Www.reuseware.org

» Birgit Grammel. Automatic Generation of Trace Links in Model-driven Software

Development. PhD thesis, Technische Universitat Dresden, Fakultat Informatik,
February 2014

http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-63986
http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-63986
http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-63986
http://www.reuseware.org/

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Prof. ABmann - Software as a Business

41.1. Language Composition

Language Composition

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

> We have learned in chapter “Metamodeling” that metamodels can be composed by a
merge operator
= Then metamodel-driven repositories can be generated
» So far, the integration was based on merge of metamodel packages, i.e., the metaclasses
stayed as they are during composition
> In this chapter, we will merge metaclasses during composition by role merge
= This achieves a much tighter integration of data for several tools (data sharing,
Datenteilung)

Hypothesis: Language integration works well for Role-based Metaclasses, in
particular for Material Metaclasses

Metamodel Mappings and the Composition of Languages

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

» Problem: Language mappings for transformation bridges should be modular
= But the composition of two languages (and two metamodels) is difficult

» Examples:
= Extension of a base language with a domain-specific extension

= Design of a language family of related languages
= Specification of a crosscut in the semantics

» Language Composition is traditionally done with declarative specifications
Base Extension

= Composition of Attribute grammars
. JastAdd, ELI, fnc-2, LISA, Silver
= Composition of Natural Semantics
- Typol, RML
= Composition of Logic Specifications
Datalog, OWL

The Problem of Language Composition

10

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

|deally, a language designer would like to build a language simply be reusing language
definition modules...

This approach is common to component-based programming where components can be
simply plug-ins.

This cannot be done now.

[Mernik, Wu, Bryant, 2004]

DSL development is hard.

[Mernik, Heering, Sloane, 2005]

Motivational Example for Data Sharing in Tool Integration

11

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

> Tools may rely on different DDL, which represent similar concepts

DDL: state machines

/Textual State Machine Editor\

DDL: visualization concepts

-

s Hellowarld statemachine 53 =g
1 HelloWorld {
2 initial state init;
3
4 state firstc {
5 do @ "greet™
& b
-
=1 final state end {
9 do @ "goodbye'
10 b
11
1z transitions {
13 init -> first when "step™:
14 first -»> end when "stcep':
15 H
16}

\Z /

DDL: graphs

;\/7

\

2D Shape Renderer

o —-O—@®

~

)

o

Graph Analysis Tool

~

)

11

Example - Language Concepts in Metamodels of the

Involved Tools

12

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

> Then, tools rely on different DDL metamodels with overlapping concepts
DDL.: visualization concepts

DDL: state machines

/ Textual State Machine Editor\

State
(Initial, Final)

Transition

-

2D Shape Renderer
Shape

(Circle, Rectangle,

Line)

Colour

~

)

AN

£

&

f\/ N
Node
Edge
Graph Analysis Tool)
DDL: graphs

12

How Can these TAM-Metamodels be Integrated?

13

Model-Driven Software Development in Technical Spaces (MOST)

» Scenario: Data Integration (Material Integration) of 3 tools, with overlapping Material

metamodels
Textual State Machine Editor 2D Shape Renderer Graph Analysis
Tool
ShapeEditor Renderer Analyzer

Tool Metamodel 1

Tool Metamodel 2

source —
State |< L Transition

>

Shape

Kind

Tool Metamodel 3

X,y,size : int L CIRCLE

@ © Prof. U. ABmann

target

Material Metamodel 1

\7_'

Color

RECTANGLE

Node |<—— Edge

Material Metamodel 2

Material Metamodel 3

How Can these Metamodels of Materials be Integrated?

14

Model-Driven Software Development in Technical Spaces (MOST)

» Scenario: Data Integration (Material Integration) of 3 tools

Textual State Machine Editor 2D Shape Graph Analysis
Renderer Tool
source — Shape Kind " from]
State g - Transition x,y,size : int al CIRCLE Node 2— Edge
target — RECTANGLE to

Material Metamodel 1

Color

Material Metamodel 2

Material Metamodel 3

@ © Prof. U. ABmann

Retroactive Tool Integration on Repositories by
Data Connection

15 Model-Driven Software Development in Technical Spaces (MOST)

» Often, tools, their metamodels, and the metamodel-driven repositories already exist

> Data connection via transformation converting data from one tool to another (data
exchange via transformation bridge, Datenverbindung) requires

» Metamodel mapping (language mapping): map the concepts of one DDL to the other

-
Textual State Machine Graph Analysis
Editor Tool
_
SM metamodel GRAPH metamodel
State ¢ = _ _ _| - _ 4 |} — — — — — — __ — — _——4Node {
name: String }
}
_—— Edge {
Transition { __ _| __ - _ = — — - — 7I° source: Node
irc?mé tState Transformation target: Node
©: state Repository 1 Biiteige Repository 2)

} :) \ 7
GRS, ATL, QVT, -

[a W
©
@ 1GG, ...

Classic Proactive Material Integration by
Material Inheritance and Material Delegation

16

Model-Driven Software Development in Technical Spaces (MOST)

» Sometimes, metamodels and repositories are not fixed yet and can be integrated

» Use metamodel extension (integration) to make material from one tool accessible to another

State

name:String

Extension by inheritance (“white-box”): Submetaclasses are formed; language concepts
are integrated, but no extension of supermetaclasses possible

Extension by delegation (“black-box”): Language concepts stay separate, but are
connected; no real integration

I

Node

a) ,White-Box“ Inheritance b) ,,Black-Box“ Delegation
between metaclasses between metaclasses
from from
Transition State . Transition
f”fE”’ name:String e”fS”’
source 1& l source l
D Edge Node] Edge
target target

16

Role-based Material Integration by
Material Role-Play

17

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

» On role metamodels, Use metamodel extension (and integration) can be done by letting roles play

other roles
= Role-play makes material from one tool accessible to another. Result: deep roles (chains

and trees of roles)

= Extension by deep role-play (“deep-rolling”) is a subtechnology of extension by
delegation (“black-box”): Language role concepts stay separate, but are connected;

integration via role play of deep roles
» Grounding of roles to classes (“role mapping”) is done later

> Role types are service types; composition of service types

c) ,Role-Play“ between role metaclasses

from
State L
- Transition
L name:String J;’TT”’L
o)

source

Node Edge
target -

Proactive vs. Retroactive Tool Integration

18 Model-Driven Software Development in Technical Spaces (MOST)

Proactive (Material
Integration)

Technique Inheritance

Delegation
Appropriate Metamodels need °
Abstraction to be adapted
Tool Strong coupling Q
Independence

Shared Data Sharing among all integrated

tools

Tool Support for anticipated
Interaction Interaction only
Test effort

Inheritance: high
Delegation: bit lowe

Retroactive Deep Rolling
Integration with Data

Connection
Transformation Role binding
Metamodels Role metamodels
unaffected unaffected: class

metamodels affected

No coupling No coupling

Sharing among all
iIntegrated tools

Replicated Data,

Synchronization
needed Q

Transformations
hinder interactio

Support for anticipated
Interaction only

Hopefully none Hopefully low

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Prof. ABmann - Software as a Business

41.2 Roles in Models, Metamodels, and
Metalanguages

What are Role Metaclasses (on M2)? (Rpt.)

21 Model-Driven Software Development in Technical Spaces (MOST)

Role metaclasses are
— service types of natural metaclasses

— view types of natural metaclasses <<natural>>
- collaborative metaclasses <<metaclass>
State
4 N
<<natural>> Networking
<<metaclass>> _ J
Transition - ' ~N
InnerActions
4) _)
Networking s : ~N
\ . J Nesting
4 N _)
EventTriggers '
\§ : J
4 N
Actions
\. . J

@ © Prof. U. ABmann

Roles in the Metalanguage (Metametamodel) Role-EMOF

22

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

» Roles can be introduced as modeling concept in M3
> Role-EMOF is an extension of EMOF with roles:

EMOF+role-EMOF

*

Literal
literals *
—[> Type
Enum

type

enums
M 3 Role Model Role RoleFeature
roles *
* roleFeature 4
Primitive Type Attribute Reference |—
attributeType
role-EMOF binds
models * role Player ,jole vV
Role Model IQ Role RoleFeature <
roles * grounds

* roleFeature

“Deep-Role-EMOF”, a Metametamodel for Deep Role
Composition

23

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

> Flat roles do not play roles
> Deep roles are roles playing roles, i.e., can delegate work to other roles

> The Rolecore approach has a composition technique for composition of roles and classes,
specified by a role-composition metamodel, allows for deep roles

» Grounding of arole describes how to bind the role to a Java class

role-composition

groundings *
~ | RoleGrounding RoleFeatureGrounding I—
* featureGroundings
* bindings
M | Composition) RoleBinding RoleFeatureBinding
3 7 * featureBindings
role-EMOF () binds
models [|role \Qlayer [ole/
Role Model /4 = Role RoleFeature
roles * ¢ el 2 E st grounds

Example: The Material Metamodel of Tool ShapeRenderer
with Roles

24 Model-Driven Software Development in Technical Spaces (MOST)

> Roles of Material-metaclasses adhere to a compartment, an explicitly defined context
= A context is a specific concern (here: colors); a compartment a reified context

» Only one natural metaclass, many role metaclasses

<<compartment>> <<compartment>>
Domain Core (" <<role metaclass>>) Layout
Position
<<natural metaclass>>
Shape X,y :int
_ J/
<<role] 0.* (<<role (" <<role metaclass>>)
metaclass> > > metacla_1$s>> ColouredObject
Parent | | Child
color : RGB
<<compartment>>
. \. J
Hierarchy <<compartment>> Color

Hypothesis: Language integration works well for Role-based Metaclasses, In
particular for Material Metaclasses

@ © Prof. U. ABmann

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Prof. ABmann - Software as a Business

41.3. Role-Based Language
Composition

Good News: Role-Based Collaboration of
Metaclasses and Their Hierarchies is Simple

26 Model-Driven Software Development in Technical Spaces (MOST)

» Given a metaclass hierarchy, metaclass roles can be added in new views

» Addition of new metaclasses (blue) easy, because of role extension

Metaclasses Metamodel Collaboration Metaclasses Package 2
Package 1
4) Element
TypeDecl | [}\ /V
/[Collector J LCoIIectabIe
Type System K\ /\ﬁDeclaration
) A/+ .
Expression
TypeChecker} { Checkable }4"/ ZF
_ J :
TypeDecl BinOp
| v\/

Good News: Role-Based Collaboration of Metaclass
Hierarchies with New Metaclass Collaborations is Simple

27 Model-Driven Software Development in Technical Spaces (MOST)

> Given a metaclass hierarchy, new metaclass collaborations can be added

Metaclasses Metamodel Collaboration Metaclasses Package 2
Package 1 Element
e
TypeDecl 1 (
/[Collector J L Collectable /V
P

}Wn

T/ \?_/J

Type System K 1 (
TypeChecker | | Checkable

Expression

- 4
A I . (4 N (\ ?
nalysis
State . Irﬁbﬁt:&;’;r | Evaluatable }“/ Z
L\ €rp Y)/ TypeDecl BinOp
: (N
Run-Time (
State " Interpreter Llnterpretable
l@, _ [J) L

b

TAM Metaphor in MDSD Tools on M2

is also Easily Extensible with New Tools

28 Model-Driven Software Development in Technical Spaces (MOST)

» Given a metaclass hierarchy, metaclass roles can be added in new tool-material
collaborations

Tool Metaclasses

Tool and Material
Collaboration

TypeDecl H Collectable
Collector

Material Metaclasses

Checkable

p
Type ._,_»[
Collector
-
Type
Checker
(4
Analysis —1y
_ NG
Run-Time C 0
—|
System b
© _ (.

ol

’\[{TypeChecke

Type

Element

it

Declaration

Expression

T

TypeDecl BinOp

e

Interpreter

| Abstract
Abstract Evaluatable H/ Domal/rus/

Real
Domains

Interpreter Interpretabl Jﬂ/

%

1

Superimposition of Material Natural Superclasses Changes
Many Subclasses

29 Model-Driven Software Development in Technical Spaces (MOST)

|dentity of all derived subclasses changes
® Declaration --> Declaration' under-a Statement
W Expression --> Expression' under-a Statement

Element Element
2> A
Statement
Declaration Expression Declaration' Expression'
A A A A
TypeDecl BinOp TypeDecl' BinOp'
L L

@ © Prof. U. ABmann

Tool Composition is Different than Material Composition

31

Model-Driven Software Development in Technical Spaces (MOST)

» Materials are passive, with CRUD-like interfaces: Role composition is easy

> Tools are not passive; they must be control-wired by calls or streaming

Textual State Machine Editor 2D Shape Renderer Graph Analysis
Tool
ComposedEditor | —
J I I
ShapeEditor Renderer Analyzer

Tool Metamodel 1

Tool Metamodel 2

source
State k

L Transition

Tool Metamodel 3

target

@ © Prof. U. ABmann

Material Metamodel 1

Node |<—— Edge

Shape Kind
X,y,size : int g CIRCLE
— RECTANGLE
Color

Material Metamodel 2

Material Metamodel 3

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Prof. ABmann - Software as a Business

41.4 DeepRolling: an Approach for Metamodel
Integration with Deep Role Metaclasses

e Rolecore is adomain-specific language (DSL), with a preprocessor generating Java (standard
language)

e Employs Role-Object Pattern for roles in the generated code
e Maximal runtime flexibility, but slow
e Developed by Christian Wende and Mirko Seifert

Example: ShapeRenderer's Metamodel with Deep Roles

33

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

» The DeepRolling approach integrates Material Metamodels with Role-Type Binding

= works on role metamodels (see DPF course)

= The Rolecore-DSL is a textual DSL for DeepRolling and the specification of Deep-Role-
EMOF based metamodels

> In Rolecore-DSL, the choice of natural metaclasses is being delayed
= We first specify all metamodels with deep roles
= Other materials' metamodels might provide the natural metaclasses
= Then, they can be played by the naturals of other materials

» Example: Role-metamode of SHAPERENDERER:

Domain Core I avout
é N
Position
[Shape]
L X,y :int
] O (. (ColouredObject)
Parent J :L Child
color : RGB
. . y,
Hierarchy Color

Example: Tool ShapeRenderer's Material Metamodel in
RoleCore, with Deep Roles and Enum Classes

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

> In the DeepRolling approach, some roles can be represented as enum classes if their
attributes have finite value ranges

» Then they will become natural classes in the implementation

Domain Core p N Layout

Position
[Shape] X,y . It
_ J

<<enum>>

0.*
[Parent] J Child] elor

J \ WHITE

BLACK
Hierarchy Color

RED

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

41.4.1 Proactive Material Integration with Deep Roles in
RoleCore

(A
N\
‘\v/’

DRESDEN

zzzzzzzzzzzz

uuuuuuuuu

Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. ABmann

Tool Integration using Deep-Role-Model Based Integration
of Material Metamodels on M2

36 Model-Driven Software Development in Technical Spaces (MOST)

» Specify M2-metamodels also with role metaclasses (abilities), not only classes
» Difference to classical role modeling:

= First specify everything as deep role

= Select those roles which should become enums

= Naturals are selected last

11 a0

State Machine Editor Graph Analysis Tool Notation
)
4 State N\ <<enum>>
Type —————
name : String \. PLAIN R
ole Enum
\ J }:TI{]-LILAL - Node \ Source rTgea
i lid : bool @———————=
fromT T to invali (o]0) target
} } _ J
Transition)

For Tool Integration, the DeepRolling Approach Uses
Role Bindings and Role Grounding

37 Model-Driven Software Development in Technical Spaces (MOST)

<<plays-a>>
> Role Bindings on the logical level D il .[:

= with relationship “plays-a”
= Connectroles and role players, producing deep roles
= Define how to obtain value of attribute or reference

= Allow to create views on other classes

<<plays-a>>
» Role Grounding on the physical level ® FD

— Defines which attributes/classes are represented physically
— Select natural metaclasses

- Ground to implementation by design patterns or other role-
implementations (see course Design Patterns and Frameworks)

» The decision (about which data is derived and which is not) is done at tool integration
time!

@ © Prof. U. ABmann

Metamodel Composition based on Deep Role-Type Binding

38 Model-Driven Software Development in Technical Spaces (MOST)
» Composition by deep role-type binding
» We defer the decision “what is a natural” (role grounding) to later
2D Shape Renderer Graph Analysis Tool _ _
Grounding Notation
(Shape A Kind PR,
— Name
X,Y,Size : Integer CIRCLE
label : String | RECTANGLE ~ N source ——— —
\ p, LINE Node <——| Edge Grounded Role
\ invalid : bool | €——
Color F 3 target
WHITE /
BLACK r \
RED name : type
\\ C —
— < 7 Grounded Attribute
/rextual State Machine Ed\ks\‘/
(State A from (Transition A
- et - : nhame
name : String condition : String —_
c \ J to \ J Grounded Reference
§ type StateType
> PLAIN
o INITIAL L :
= FINAL Binding Notation
ol —

Deep Rolling

39

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

Grounded Role Grounded Attribute

Grounded Reference

2D Shape Renderer Graph Analysis ToolShape
(Shape) Kind
X. Y. size: Integer CIRCLE
label: String kind | RECTANGLE
\ J LINE p . P,

t V colourf | Node source | Edge
Colour invalid:Bool
_ J/ —

WHITE larget 3

BLACK

RED

c
N
Textual State Machine Editor
4 . N ' N\
State from Transition
name: String. to condition: String.
StateType
YRE IPLAIN
INITIAL
FINAL
Grounding Notation Binding Notation
ame (]
name: Type name o>s
— ——
Role Binding

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Prof. ABmann - Software as a Business

41.5. Rolecore: a DSL for Metamodel Integration
with Deep Role Metaclasses

Grounding (Realization): Mapping Role
Metaclasses to Programming Languages

RoleCore DSL for Integration of Materials with DeepRolling

(EMFText-Based Language)

41 Model-Driven Software Development in Technical Spaces (MOST)

> Role binding (playing) and role grounding can be described by the RoleCore DSL.

» RoleCore generates class models with appropriate role-play and grounding

integrate statemachine, 2dShapes, graph {
State plays Shape {

label: name

kind: if (player.type == PLAIN) return RECTANGLE
else return CIRCLE
colour: if (player.type == INITIAL) return WHITE

else return BLACK
}
Transition plays Shape ({
label: condition
kind: return LINE
colour: return BLACK
}
State plays Node ({}
Transition plays Edge {
source: from

target: to
}

ground State { name, type }

ground Transition { condition, from, to }

© Prof. U. ABmann

}

@ https://github.com/DevBoost/EMFText-Zoo/tree/master/BreedingStation/RoleCore

Role Binding
Specification

Link mapping
from one role to the
other

Grounding
Specification

Realisation of Role Binding and Grounding:
Design Pattern “Generative Role Object Pattern”

42

Model-Driven Software Development in Technical Spaces (MOST)

» Grounding is straightforward with many design patterns for role implementations

» The constructs of RoleCore can be easily expanded to design patterns (code generation), e.g., MultiBridge, Flat or

Deep Role-Object Pattern

» For the implementation of the role-based metamodel, G-R.O.P is generated

compilingtoa

design pattern

RoleType
roleFeature

[

RolePlayer
playerFeature

@ © Prof. U. ABmann

GenericRoleManagementInterface

hasRole(roleType)
getRole(roleType)

i

RoleTypelnterface

roleFeature

/\\

<<role>>
RoleTypelmpl

getRoleFeature () ({

return player.playerFeature () ;
}
setRoleFeature (value) {

player.playerFeature = roleFeature;

}

N\

,}dimension
variation“

* role
< <<core>>
> RolePlayer
player —

getPlayerFeature() {
return role.getRoleFeature () ;

. dimension
variation”
}

setPlayerFeature (value) {

role.setRoleFeature (value) ;

}

Role Binding Implementation with
Generative Role Object Pattern (GROP)

43

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

Role Binding Implementation

RolePlayer plays Role {
roleFeature: playerFeature}

7

roleFeature: Type

]

RolePlayer

playerFeature: Type

(&

=

GenericRoleManagementinterface

hasRoleType()
getRoleByType()

RoleTypelnterface

getRoleFeature()
setRoleFeature()

JAN
| |

RoleTypelmpl RolePlayer
role
getRoleFeature() getPlayerFeature()
setRoleFeature() pIaye7r setPlayerFeature()

getRoleFeature() {

return player.getPlayerFeature();}
setRoleFeature(value) {
player.setPlayerFeature(value); }

G

ounding Implementation

=

ground Role { roleFeature }

(Role

roleFeature: Type

J/

»

RoleTypelmpl
roleFeature: Type

getRoleFeature()
setRoleFeature()

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Prof. ABmann - Software as a Business

41.6. Role-Based
Language Composition with LanGems

FeatureMapper
Mapping Features to Models

Why Why are Roles Good in a Metamodel Mapping?

46 Model-Driven Software Development in Technical Spaces (MOST)

1) Role metaclasses compartmentalize metaclasses
= If mappings are defined on role metaclasses, they can be defined much more
fine-grainedly
= For role-based metamodels, language mappings can be much more precise!

2) Role-based metamodel packages are simpler to reuse
= Because their roles can be merged into metaclasses of other packages

= Dataintegration and sharing becomes simpler because data is composed from
“data components”

@ © Prof. U. ABmann

Feature-Driven Development of Language Families
PhD Christian Wende (2012)

47 Model-Driven Software Development in Technical Spaces (MOST)

Systematic variability management for language families with feature models
Language

families - -

Adaption

Problem Space Solution Space
D . Product Software functions Modelling- and
F@gcgézf;:;gﬁmz;?c:fss line (Features) Programming languages
Product families Foatures of
(product lines) Product Software variant Software variant
J

)

Role-Based Language Composition with LanGems Language

Components

48 Model-Driven Software Development in Technical Spaces (MOST)

RoleBinding:

» Employ EMOF packages as language
components

» One natural metaclass can play several roles

» A role metaclass can be played by different
natural metaclasses

» Interfaces of EMOF packages:

= Natural metaclasses looking for
played roles

= (Offered roles to be bound on
naturals

Christian Wende. Language Family Engineering.
PhD thesis, Technische Universitat Dresden,
_ Fakultat Informatik, March 2012.
§ www.qucosa.de
http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-
88985

© Prof. U. ABm

=

statechart comment
4+ Chart Commentable
Y State Comment

YTransition ReferencedArtifact |
getIdentifier()

composition chartWithComments {

State plays ReferencedArtifact (
// example OCL-RoleOpBinding
getIdentifier () : player.stateName;
)
}

Example: Statecharts and Forms

49

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

Abstract Syntax

Language Component: statechart

statechart
trigger
: Chart
(Trlgger W start 4gnd *
LgetTriggerName(): String = e/‘7'7 p—
|
/Activity = /V\
N
d
getActivityName(): String ° State : Transition
getTriggers(): List<Trigger> u
\evaluate(): Trigger exit | ehtry
Action .
action

concrete Syntax (offered by EMFText)

chart example
Init: init
End: finish cancel

{

state init {..}

from init to data
when login do {}

state data {..}

Semantics:

Operational Semantik written in
Java based on the interfaces of
abstract syntax

Example (2): Forms

50 Model-Driven Software Development in Technical Spaces (MOST)

Language Component: form concrete Syntax (with EMFText)
form [welcome]
Abstract Syntax - (Please enter your
login data.)-
{
form name
password
}
> Form buttons > login
A
fields > cancel
Field buttons
A 4
Button
Text || Selection Semantics:
Operational Semantics with Java
literals
= welcome X|

SelectionLiteral

Pleaze enter your login data,

name; I

paﬁwnm:l

lagin |

canicel |

@ © Prof. U. ABmann

Example (3) Composition of Statechart and Form

51

Model-Driven Software Development in Technical Spaces (MOST)

Language Composition: formFlow := form -->> statechart

form

fields

Field

Text Selection

literals

\ 4

Form

buttons

A

A

A

A

Button

SelectionLiteral

statechart

trigger

(Trigger

]

getTriggerName(): String
I

(Activity

~

getActivityName(): String
getTriggers(): List<Trigger>

kevalulate(): Trigger

do

starf e

Chart

nd

A 4

Element

AN

J

(2
1% formFlow.composer &a

-,

=

State

Transition

exit

entry

Action

ut

E‘;, Fesource Set

Language

@ © Prof. U. ABmann

Composition
Editor

<]

EI---@ EpIatfu::rm:.-’re5|:|urcefde.tudresder'|.Im.fnrm.-“mn::delffurmFIDw.mmpnser§

= Compaosition
El*'-}- Callaboration Binding fromactivities

.

“ Form -== Activity
: - getAdivityMame: plaver.heading
- evaluate: playver.open|)
-4 getTriggers: player.buttons
Button -= = Trigger
-4 getTriggerMame: player.buttonMame

- 4

EEI-"@ platfarm:fresource/de.tudresden.m.form/modelform.module

@ platfarm:fresource/de tudresden.m.statechart/maodel/statechart.madule

|]

Selectin:un| F‘arentl Li5t| Tree | Table | Tree with Columns

action

LanGems Module Composition Language

52

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

Types contribute the composition interface of

language modules
e Role Types: required interface
e Natural Types: provided interface

Language Composition is described by
superimposition of the collaborations of
several modules where RoleBinding
connects role player and role

Binding of RoleOperations in the context
of a role player (RoleOperationBindings)
contributes structual and semantic
adaptation of the role player w.r.t the
role contract

Christian Wende, TU

statechart |

Activity]_[Trigger

w |

Form Button

OCLExpression

Form plays Activity {
getActivityName(): player.getTitle();
executeActivity (): player.open();

b

Button plays Trigger {
getTriggerName(): player.getText();

OCLExpression plays Guard {
evaluate(Object context) : if (player.type = boolean)
then player.interpret(context)
else false;

Dresden

52

LanGems Composition System

53 Model-Driven Software Development in Technical Spaces (MOST)

Integrated Language

Component Model Composition Language Composition Technique
LanGems LanGems Generative Role Implementation
Specification Language Composition Language Pattern
A
A A
© << instance of >> << instance of >> << implements>>
Composition program /Gomposition ToSI\

LanGem | ' D ' D @

Specification << input of >> << executed by >> @

/

Christian Wende, TU Dresden

@ © Prof. U. ABmann

<< output >>

D[]

53

Case Study: Modularisation of OCL

56 Model-Driven Software Development in Technical Spaces (MOST)

OCL

e Complex language

e Applied at different abstraction layers and environments
e Several proposals for extension of OCL

Activities
e Separation of 13 language modules

e Each contributes specification of
abstract syntax, concrete syntax
and static semantics

e Language adaptation to use X X

OCL on different

metamodels
(Ecore, UML, MOF) [Logic | [numbers |

e Exemplary language extension
with temporal logic

| ClassifierContext

@ © Prof. U. ABmann

Christian Wende, TU Dresden

e ——— ——

Feature / Language
Component

Mandatory Component

Optional Component

Or-Selection Group
Dependency

56

Case Study Statecharts:
The Problem Space Perspective

57 Model-Driven Software Development in Technical Spaces (MOST)

Feature-Based Family Specification

language composition in the small [Statechart]
e Reduction of language complexity by
feature-based decomposition ./\\.
e Language extension by adding new . _
feat%reg Y | [State } [Transmon } [Action }
e Language adaptation by feature
exchange and alternative features
A
[Activities } [Guards } [SQL J
e Language integration by composition of ’
their features : a
language composition in the large XUL [OCL }
[Object Navigation }
[Type Context } [Collection } [Logic } [Math }
[Ecore } [UML l
de, TU Dresden 57

@ © Prof. U. ABmann

. AttributeContext
Evaluation AttributeContext
58 Model-Driven Software Development in Technical Spaces (MOST) ClassifierContext ’ PmE
Experienced Benefits ClassifierContext —{Packagecnntextﬂnle:)
I x|

e Self-contained comprehensible OperationContext

modules o rionContext

e Independent Development and pere P" k

Maintenance
e Explicit language component interfaces decouple language modules

e Adaptation of OCL by variation on language modules
e Extension of OCL by adding language modules

e Role-based modularisation and composition supports for concrete syntax and language
semantics
e Composition did not invalidate module syntax and semantics

e Composition provides means for semantic (and structural) adaptation

Problems & Open Issues
e Operator priorities needs to be considered during composition

e Context-free parsing required adjustment of token definitions among modules
e Dynamic Semantics not implemented yet

Christian Wende, TU Dresden 58

@ © Prof. U. ABmann

What Did We Learn?

59

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

» Deep Role Modelling allows for unanticipated material integration, but needs to be
applied at material design time

» Clean separation of required interface (to access tool-specific data) and realization of
this interface (to obtain data)

> Physical representation define at integration time by design patterns for role
implementation

> If ROP is used as a pattern in the code generator, a role-based access layering of the
repository results naturally.

The End

60

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

> Explain the difference of a role metaclass and a natural metaclass.
» Why is it beneficial to use roles on M2 as role metaclasses?
» Describe the differences in the development process of RoleCore and LanGems

> Why is it easy to extend role-based metamodels?

RO

Db.inf.tu-dresden.de/rosi

Software
Technology

ke Europa fordert Sachsen. SACHSEN
SEESF N = o Group
** : B - i Tr—
i Européischer Sozialfonds a =' -‘\V z
* | e Tnf'ormTafiqn Society
und Forschun echnologies i
g http://st.inf.tu-dresden.de/

DFG Deutsche
Forschungsgemeinschaft

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Prof. ABmann - Software as a Business

Appendix: Role Modeling

A Riddle..

62

Model-Driven Software Development in Technical Spaces (MOST)

© Prof. U. ABmann

1 O,
O

oo
£ A0
=]

Another Riddle..

63

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

Collaboration-Based Modeling

(Role Modeling) (Rpt.)

64

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

Roles are first-class modeling concepts in modern object-oriented languages

» Databases [Bachmann], Object-Role Modeling [Halpin]

» Factorization [Steimann]

» Research in Design Patterns [Reenskaug, Riehle/Gross]

:Person

/W[:Father)

<<plays-a>>

:Person (-Father)

(

:Child

<<plays-a>>

)\ :Person

(:Cﬂ)m

What are Roles? (Rpt.)

65 Model-Driven Software Development in Technical Spaces (MOST)

A role is a dynamic view onto an object

— Roles are played by the objects (the
object is the player of the role)

= Anpartial object

:Person

Roles are tied to collaborations -
— Do not exist standalone, depend on ‘Employes
a partner
N |
/
:Father
\ |
/
:Cyclist
\§

@ © Prof. U. ABmann

:Customer

:TaxPayer

:Swede

http://st.inf.tu-dresden.de/

What are Roles? (Rpt.)

66

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

Roles are services of an object in a context

Roles can be connected to each other

A role has an interface

Roles form role models, capturing an area of concern [Reenskaug]

Role models are collaborative aspects

:Person

:Employer

:Child

2 YSRRYSh

:CarDriver

N 2

:Person
4) 4
:Employee :Customer

1\ . J N\ .
/) 4

:Father . TaxPayer
N . J _ .
.) 4

:Cyclist :Swede
_ J _

N 2

What are Role Types? (Rpt.)

67

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

Role types (abilities) are

- service types

- dynamic types

— collaborative types
Roles are context-sensitive

Natural classes are context-free

<<natural>>

Problem:
- The word “role” is also used on the

class level, i.e., for a “role type”

Person

4) 4)
<<role>> <<role>>
Employee Customer

pI y N .)

. 4)
<<role>> <<role>>
Father TaxPayer

N | N)

/ 4)
<<role>> <<role>>
Cyclist Borrower

7 Y N wer)

Collaboration Schemas (Role-Type Model) (Rpt.)

68 Model-Driven Software Development in Technical Spaces (MOST)

Collaboration schema (role type model, ability model):
— Set of object collaborations abstracted by a set of role types
— A constraint specification for classes and object collaborations

Ex: A figure can play many roles in different collaboration schemas

GUI

Observer \
(FigureObserver))

Client
(FigureHierarchy)

@ © Prof. U, flasana

Successor
(FigureChain)

RootFigure

X3D

Figure
4)

[Figure h Child Parent
\(FigureHierarchy)/ \(Figurel—:ierarchy)/ (FigureHierarchy)
2N) 4 _)

Subject Client

FigureObserver Graphics
e) B
4) N)
Predecessor Subject

(FigureChain) (Int.Fig.Observer)
\ J - J

Server
(Graphics)

)

Observer
(Int.Fig.Observer)

