
SECURE YOUR CODE AS FAST AS YOU RELEASE
How ShiftLeft is able to analyze a million lines of code in just under 15 minutes

Dresden, November 11, 2019
Dr.-Ing. Max Leuthäuser
max@shiftleft.io

2Dr.Ing. Max Leuthäuser

About me

2019 - Senior Software Developer, ShiftLeft GmbH (ShiftLeft.io)

2018 - Consultant, Software Developer,
 Language Engineer (Xtext, Xtend, EMF/Ecore,

 Eclipse; mainly Automotive)

2017 - Dr.-Ing., TU Dresden

3Dr.Ing. Max Leuthäuser

Outline

 ShiftLeft in a nutshell1

2

3

 Getting technical

 Other things I want to talk about

4Dr.Ing. Max Leuthäuser

Application is THE Attack Surface
Application is THE Attack Surface

5Dr.Ing. Max Leuthäuser

ShiftLeft in a Nutshell
Code analysis solution that finds:
 Business logic flaws

(Auth bypasses, Insecure Direct Object References, etc.)
 Insider threats, rootkits & back-doors
 Data flows & critical leakages
 Vulnerabilities in your code & all its dependencies

1

6Dr.Ing. Max Leuthäuser

ShiftLeft in a Nutshell
Automation
 Code analysis at the speed of CI/CD
 Too late once your stuff is deployed

at the customer side

1

7Dr.Ing. Max Leuthäuser

ShiftLeft in a Nutshell
Results
Achieves highest Static Application
Security Testing (SAST) score ever
on the OWASP Benchmark

The OWASP Benchmark for Security Automation
is a free and open test suite designed to evaluate the speed,
coverage, and accuracy of automated software vulnerability
detection tools and services.

Four possible test outcomes in the Benchmark:
 Tool correctly identifies a real vulnerability (True Positive)
 Tool fails to identify a real vulnerability (False Negative)
 Tool correctly ignores a false alarm (True Negative)
 Tool fails to ignore a false alarm (False Positive)

1

8Dr.Ing. Max Leuthäuser

ShiftLeft in a Nutshell

Developers
 seamlessly insert

security into CI/CD (code
analysis in minutes, not
days)

 fix vulnerabilities faster
(get detailed information
such as line-of-code for
each vulnerability)

AppSec
 protect every version of

every release
 increase feature velocity

w/o sacrificing security
 identify external data

leakages

Code Auditors
 use Turing-complete

language to query your
application dataflows

 integrate custom security
queries into CI/CD

 annotate on your own for
customized code
analysis

1

9Dr.Ing. Max Leuthäuser

Go Beyond ’grep‘ to Analyze Your Code

 mine the Code Property Graph using a formal graph traversal language

 apply the same query across all your code
(independent of programming languages)
Java, Scala, C, C++, C#, Go, Javascript, Python, LLVM

1

10Dr.Ing. Max Leuthäuser

- Goal: provide query language to describe patterns in code
- to identify bugs and vulnerabilities
- to help in deeply understanding large programs

- Think of it as an extensible Code Analysis Machine
- Programmable in JVM-based languages (e.g., Java/Scala/Kotlin)
- You can write scripts, language extensions and libraries on top of it

- Joern is Ocular’s open-source brother (for C/C++ only)
See: joern.io/docs

Ocular? Joern?

https://joern.io/docs/

11Dr.Ing. Max Leuthäuser

Ocular Example

Weak crypto:

12Dr.Ing. Max Leuthäuser

Ocular Example

13Dr.Ing. Max Leuthäuser

Ocular Example

14Dr.Ing. Max Leuthäuser

CVE-2016-6480 (Linux Kernel)

Race condition in the Linux Kernel in version 4.7 in
ioctl_send_fib in drivers/scsi/aacraid/commctrl.c

https://joern.io/docs/kernelexamples/

Real-world Example

https://joern.io/docs/kernelexamples/

15Dr.Ing. Max Leuthäuser

Let’s get technical

???

???

???

???

2

16Dr.Ing. Max Leuthäuser

Low-level Graph Representations of Programs
- Each graph provides a different perspective on the code
- Can we merge them?

Abstract Syntax Trees

Control
flow
graphs

Program dependence graphs

Dominator
tree

2

17Dr.Ing. Max Leuthäuser

Combining Graphs with “Property Graphs”
- “A property graph is a directed edge-labeled, attributed multi-graph”
- Attributes allow data to be stored in nodes/edges
- Edge labels allow different types of relations to be present in one graph

2

18Dr.Ing. Max Leuthäuser

2

19Dr.Ing. Max Leuthäuser

Specification - Key Design Ideas

- Specification that works over programming languages
- Provide generic representation for core programming language concepts

- Methods/Functions
- Types
- Namespaces
- Instructions
- Call sites

- Encode control flow structures only via a control flow graph
- Model only local program properties and leave global program

representations for later analysis stages

2

20Dr.Ing. Max Leuthäuser

OSS Specification github.com/ShiftLeftSecurity/codepropertygraph 2

21Dr.Ing. Max Leuthäuser

“Container” for Code over arbitrary
Instruction Sets
- Define only a common format for

representing code
- Allow arbitrary instruction set

(given by semantics) as a
parameter

- Represent all code using only
- call sites and method stubs
- call edges, and control flow edges
- data-flow semantics via data flow

edges

2

22Dr.Ing. Max Leuthäuser

jvm2cpgjvm2cpg

csharp2cpgcsharp2cpg

llvm2cpgllvm2cpg

...

go2cpggo2cpg

Local analysis
(language
dependent)

Analyzer
(non)-interactive

Analyzer
(non)-interactive Report

cpg.bin.zip

Shared operations and “linking” steps

cpg2scpgcpg2scpg

scpg.bin.zip

First level
(unlinked) CPG

Second level
(enhanced and linked) CPG

Second Stage: “linking” 2

23Dr.Ing. Max Leuthäuser

Base Layer of the Code Property Graph
- Production quality version of 2014 code property graph
- Language-independent intermediate representation of control-flow and data-

flow semantics
- Inter-procedural, flow-sensitive, context-sensitive, field-sensitive data-flow

tracker available that operates on this representation
- Heuristics and street smarts to terminate in < 10 minutes

2

24Dr.Ing. Max Leuthäuser

- Literature deals a lot with FPs due to model limitations
- In practice, most FPs result from context information, e.g.,

information about the business logic, that you cannot deduce from
the code alone:

- “This is an internal service that only our admin uses”
- “Without first convincing the authentication server, this code would never

be executed”
- “Due to $aliens, this integer is always 5 and thus cannot be negative”

- Ability to model the $aliens part is crucial to reduce false positives
- We do this mostly via passes that tag the graph

Outside Information, Business Logic, and
False Positive (FP) Reduction

2

25Dr.Ing. Max Leuthäuser

Base layer - low level local program
representations: syntax, control flow,
methods, types.

Vulnerabilities

Multiple domain-specific layers

Call graph, type hierarchy, data
flows, configurations, dependencies

Summary 2

26Dr.Ing. Max Leuthäuser

Scaling Static Analysis
- Summaries

- Scaling static analysis requires “summaries” of program behavior (in order to skip duplicate
calculation of facts, e.g., for library methods)

- Calculating summaries for data flow is common practice
- Upper layers of the CPG generalize the concept of a summary

- Parallelism
- Processors aren’t getting much faster, but you’re getting more and more cores.
- Literature has very little to say about multiple cores, let alone multiple cloud instances
- CPG passes are a design with parallelism in mind

2

27Dr.Ing. Max Leuthäuser

Designed for Distributed Computing
- Passes can be run in a sequence like the passes of a compiler
- The design also allows to run independent passes in parallel though!

2

28Dr.Ing. Max Leuthäuser

Ok ok… that was “interesting” ...

But what are you actually doing every
day?

33

29Dr.Ing. Max Leuthäuser

Technical Environment (Codescience Team)

Language:

IDE: mostly Intellij, some Vim, Sublime etc.

SCM: git

Reviews / PRs, etc.: GitHub

Buildtool: sbt

CI/CD: Jenkins, Grafana, Dockerhub, jFrog, Maven Central

Communication: Mail, Slack, Zoom

3

30Dr.Ing. Max Leuthäuser

Dev Process (Codescience Team) 3

Mostly sales-process-driven:

- Proof-of-Concept-oriented: potential new customers want to see our stuff
working in their environment.

- Once they paid: mostly maintenance mode. Bug-fixing, ad hoc new features.

31Dr.Ing. Max Leuthäuser

Master the Tooling

 SCM
 Your IDE

 Debugger
 Shortcuts
 Refactorings

 Console-based
stuff

 some scripting

3

32Dr.Ing. Max Leuthäuser

Other Lessons learned …

 It doesn’t have to be perfect — just “good enough”
 No-one knows everything
 You are responsible for your own learning path
 Don’t get overwhelmed
 Take a break

3

33Dr.Ing. Max Leuthäuser

Other Lessons learned …

 What’s the most important language in programming?
 Talking to humans is way more important than talking to machines
 Have a deep understanding of what you are building and why
 If code review in your team is a stressful experience you are doing it wrong
 Something will go wrong, be prepared
 Don’t be afraid to say “I don’t know”
 Learn in public

3

34Dr.Ing. Max Leuthäuser

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34

