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About me
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      Language Engineer (Xtext, Xtend, EMF/Ecore, 

      Eclipse; mainly Automotive)

2017 - Dr.-Ing., TU Dresden
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Outline

          ShiftLeft in a nutshell1

2

3

          Getting technical

  Other things I want to talk about
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Application is THE Attack Surface
Application is THE Attack Surface
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ShiftLeft in a Nutshell
Code analysis solution that finds:
 Business logic flaws

(Auth bypasses, Insecure Direct Object References, etc.)
 Insider threats, rootkits & back-doors
 Data flows & critical leakages
 Vulnerabilities in your code & all its dependencies

1
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ShiftLeft in a Nutshell
Automation
 Code analysis at the speed of CI/CD
 Too late once your stuff is deployed

at the customer side

1
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ShiftLeft in a Nutshell
Results
Achieves highest Static Application 
Security Testing (SAST) score ever
on the OWASP Benchmark

The OWASP Benchmark for Security Automation
is a free and open test suite designed to evaluate the speed, 
coverage, and accuracy of automated software vulnerability 
detection tools and services.

Four possible test outcomes in the Benchmark:
 Tool correctly identifies a real vulnerability (True Positive)
 Tool fails to identify a real vulnerability (False Negative)
 Tool correctly ignores a false alarm (True Negative)
 Tool fails to ignore a false alarm (False Positive)

1



8Dr.Ing. Max Leuthäuser

ShiftLeft in a Nutshell

Developers
 seamlessly insert 

security into CI/CD (code 
analysis in minutes, not 
days)

 fix vulnerabilities faster 
(get detailed information 
such as line-of-code for 
each vulnerability)

AppSec
 protect every version of 

every release
 increase feature velocity 

w/o sacrificing security
 identify external data 

leakages

Code Auditors
 use Turing-complete 

language to query your 
application dataflows

 integrate custom security 
queries into CI/CD

 annotate on your own for 
customized code 
analysis

1
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Go Beyond ’grep‘ to Analyze Your Code

 mine the Code Property Graph using a formal graph traversal language

 apply the same query across all your code
(independent of programming languages)
Java, Scala, C, C++, C#, Go, Javascript, Python, LLVM

1
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- Goal: provide query language to describe patterns in code
- to identify bugs and vulnerabilities
- to help in deeply understanding large programs

- Think of it as an extensible Code Analysis Machine
- Programmable in JVM-based languages (e.g., Java/Scala/Kotlin)
- You can write scripts, language extensions and libraries on top of it

- Joern is Ocular’s open-source brother (for C/C++ only)
See: joern.io/docs

Ocular? Joern?

https://joern.io/docs/
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Ocular Example

Weak crypto:
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Ocular Example



13Dr.Ing. Max Leuthäuser

Ocular Example
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CVE-2016-6480 (Linux Kernel)

Race condition in the Linux Kernel in version 4.7 in
ioctl_send_fib in drivers/scsi/aacraid/commctrl.c

https://joern.io/docs/kernelexamples/

Real-world Example

https://joern.io/docs/kernelexamples/
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Let’s get technical

???

???

???

???

2
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Low-level Graph Representations of Programs
- Each graph provides a different perspective on the code
- Can we merge them?

Abstract Syntax Trees

Control 
flow 
graphs

Program dependence graphs

Dominator 
tree

2
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Combining Graphs with “Property Graphs”
- “A property graph is a directed edge-labeled, attributed multi-graph”
- Attributes allow data to be stored in nodes/edges
- Edge labels allow different types of relations to be present in one graph

2
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2
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Specification - Key Design Ideas

- Specification that works over programming languages
- Provide generic representation for core programming language concepts

- Methods/Functions
- Types
- Namespaces
- Instructions
- Call sites

- Encode control flow structures only via a control flow graph
- Model only local program properties and leave global program 

representations for later analysis stages

2
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OSS Specification github.com/ShiftLeftSecurity/codepropertygraph 2
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“Container” for Code over arbitrary
Instruction Sets
- Define only a common format for 

representing code
- Allow arbitrary instruction set 

(given by semantics) as a 
parameter

- Represent all code using only
- call sites and method stubs
- call edges, and control flow edges
- data-flow semantics via data flow 

edges

2
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jvm2cpgjvm2cpg

csharp2cpgcsharp2cpg

llvm2cpgllvm2cpg

...

go2cpggo2cpg

Local analysis
(language
dependent)

Analyzer
(non)-interactive

Analyzer
(non)-interactive Report

cpg.bin.zip

Shared operations and “linking” steps

cpg2scpgcpg2scpg

scpg.bin.zip

First level
(unlinked) CPG

Second level
(enhanced and linked) CPG

Second Stage: “linking” 2
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Base Layer of the Code Property Graph
- Production quality version of 2014 code property graph 
- Language-independent intermediate representation of control-flow and data-

flow semantics
- Inter-procedural, flow-sensitive, context-sensitive, field-sensitive data-flow 

tracker available that operates on this representation
- Heuristics and street smarts to terminate in < 10 minutes

2
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- Literature deals a lot with FPs due to model limitations
- In practice, most FPs result from context information, e.g., 

information about the business logic, that you cannot deduce from 
the code alone:

- “This is an internal service that only our admin uses”
- “Without first convincing the authentication server, this code would never 

be executed”
- “Due to $aliens, this integer is always 5 and thus cannot be negative”

- Ability to model the $aliens part is crucial to reduce false positives
- We do this mostly via passes that tag the graph

Outside Information, Business Logic, and
False Positive (FP) Reduction

2
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Base layer - low level local program 
representations: syntax, control flow, 
methods, types.

Vulnerabilities

Multiple domain-specific layers

Call graph, type hierarchy, data 
flows, configurations, dependencies

Summary 2
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Scaling Static Analysis
- Summaries

- Scaling static analysis requires “summaries” of program behavior (in order to skip duplicate 
calculation of facts, e.g., for library methods)

- Calculating summaries for data flow is common practice
- Upper layers of the CPG generalize the concept of a summary

- Parallelism
- Processors aren’t getting much faster, but you’re getting more and more cores.
- Literature has very little to say about multiple cores, let alone multiple cloud instances
- CPG passes are a design with parallelism in mind

2



27Dr.Ing. Max Leuthäuser

Designed for Distributed Computing
- Passes can be run in a sequence like the passes of a compiler
- The design also allows to run independent passes in parallel though!

2
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Ok ok… that was “interesting” ...

But what are you actually doing every 
day?

33
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Technical Environment (Codescience Team)

Language: 

IDE: mostly Intellij, some Vim, Sublime etc.

SCM: git

Reviews / PRs, etc.: GitHub

Buildtool: sbt

CI/CD: Jenkins, Grafana, Dockerhub, jFrog, Maven Central

Communication: Mail, Slack, Zoom

3



30Dr.Ing. Max Leuthäuser

Dev Process (Codescience Team) 3

Mostly sales-process-driven:

- Proof-of-Concept-oriented: potential new customers want to see our stuff 
working in their environment.

- Once they paid: mostly maintenance mode. Bug-fixing, ad hoc new features.
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Master the Tooling

 SCM
 Your IDE

 Debugger
 Shortcuts
 Refactorings

 Console-based 
stuff

 some scripting

3
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Other Lessons learned …

 It doesn’t have to be perfect — just “good enough”
 No-one knows everything
 You are responsible for your own learning path
 Don’t get overwhelmed
 Take a break

3
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Other Lessons learned …

 What’s the most important language in programming?
 Talking to humans is way more important than talking to machines
 Have a deep understanding of what you are building and why
 If code review in your team is a stressful experience you are doing it wrong
 Something will go wrong, be prepared
 Don’t be afraid to say “I don’t know”
 Learn in public

3
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