
Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Software as a Business

31. Maintaining a Product Family of Canvases
Lean (Canvas) Modeling -
Grading and Metrics on Canvases

Prof. Dr. Uwe Aßmann
Technische Universität Dresden

Software Engineering Group

http://st.inf.tu-dresden.de

Version 19-0.4, 07.12.19

1) Canvases as collaborative tools

2) Lean modeling with canvases

3) Nested canvases

4) Grading and metrics on canvases

5) The canvas cactus as megamodel

6) The canvas product family

http://st.inf.tu-dresden.de/
http://st.inf.tu-dresden.de/
http://st.inf.tu-dresden.de/
http://st.inf.tu-dresden.de/
http://st.inf.tu-dresden.de/

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

2 Software as a Business

Literature

[CM03] Sitt Sen Chok, Kim Marriott. Automatic Generation of Intelligent Diagram Editors.
ACM Transactions on Computer-Human Interaction, Vol. 10, No. 3, September 2003,
Pages 244–276.

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Software as a Business

31.1 Canvases as Light-Weight Cooperation Tools

• We can vary a feature model with idea variation techniques.

• Thereby, feature models grow; and hopefully later more products grow your business.

• Here, we learn, how to link canvases to the growing feature models.

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

4 Software as a Business

Shortcomings of Lean Startup from the
Viewpoint of Software Product-Line Engineering

No support for consistent modeling of product lines
(no support for feature modeling and feature variation)

No support for staged
feature configuration
with suppliers

No support for grading and
metrics

No support for canvas
modeling
(composition and
engineering)

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

5 Software as a Business

► A canvas is a collaborative frontend for a model, in which sticky notes demarcate the
formal content from the informal text.

► A lean model is a semi-conceptualized model, an active document with informal and
conceptualized content, fulfilling some constraints of a set of constraints.

■ Models fulfill all of them.

► Lean modeling is an agile conceptualization process:
■ Canvas -> Lean Model -> fully conceptualized Model

5

Canvases as Lean Models

Lean Model
(semi-conceptualized, some constraints)Canvas Model

(all constraints)

Value Proposition is
A and B and C

Key partners

Ch
an

ne
ls

ar
e N

ew
s,

Pr
es

s,
W

eb

Cost structure is

100€, 2 per day

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Software as a Business

31.2. Lean Modeling with Canvases

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

7 Software as a Business

Schemas for Flat Canvases as Grammars

► A (flat) canvas is a structured questionnaire for collaborative development

► It can be represented as a tree-shaped model with constraints
■ Canvas structure:

. Canvas left side vs. right side

. Left part, right part, upper, lower part

. Canvas fields with sticky text notes, Canvas questions or answers
■ Inter-field references with inter-field constraints
■ Intra-field constraints
■ Canvas fill order (partial order) on the tree nodes
■ NO Subcanvases; Subcanvases are other trees that may be referenced

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

8 Software as a Business

Schemas for Flat Canvases as Grammars

► The canvas’ schema can be described by a grammar in a Part Grammar (Constraint Multiset
Grammar, CMG) describing Whole-and-Part relationships. Example invariants:

► forall stickynotes in CustomerRelations there is a stickynote in Channels;
► there must be a revenue;

► Why is the partial fill order a set of inter-field constraints?

► Alternative language for grammars and constraints: EBNF and OCL

// Example Grammar for BMC
Grammar Fields = { PartRules {
 Note ::= Question | Answer
 Root Field ::= StickyNote:Note *
}}
Grammar BusinessModelCanvas = { import Fields
 PartRules {
 Root BMC ::= { LeftPart ValueProposition:Field RightPart }
 LeftPart ::= { KeyPartners:Field KeyActivities:Field KeyResources:Field Costs:Field }
 RightPart ::= { CustomerRelations:Field Channels:Field CustomerSegments:Field Revenues:Field }
 } Invariants {
 Invariant { forall s:CustomerRelations.StickyNote* exists y:StickyNote, y in Channels.StickyNote*
 Invariant MUST exists r:StickyNote in Revenues.StickyNote* }
 }
}

// Example Grammar for BMC
Grammar Fields = { PartRules {
 Note ::= Question | Answer
 Root Field ::= StickyNote:Note *
}}
Grammar BusinessModelCanvas = { import Fields
 PartRules {
 Root BMC ::= { LeftPart ValueProposition:Field RightPart }
 LeftPart ::= { KeyPartners:Field KeyActivities:Field KeyResources:Field Costs:Field }
 RightPart ::= { CustomerRelations:Field Channels:Field CustomerSegments:Field Revenues:Field }
 } Invariants {
 Invariant { forall s:CustomerRelations.StickyNote* exists y:StickyNote, y in Channels.StickyNote*
 Invariant MUST exists r:StickyNote in Revenues.StickyNote* }
 }
}

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

9 Software as a Business

VPC as Grammar with Constraints

► Invariants:
■ Forall gains there must be a gain creator
■ Forall pains there must be a pain killer
■ Forall pain killers there should be a service or product
■ Forall gain creators there should be a service or product

Grammar ValuePropositionCanvas = import Fields {
 PartRules {
 Root VPC ::= { LeftPart RightPart }
 LeftPart ::= { GainCreator:Field PainKiller:Field ProductsAndServices:Field }
 RightPart ::= { Gain:Field Pain:Field CustomerSituation:Field }
 } Invariants {
 Invariant forall s:Gain.StickyNote* exists y:StickyNote, y in GainCreator.StickyNote*
 Invariant forall s:Pain.StickyNote* exists y:StickyNote, y in PainKiller.StickyNote*
 Invariant forall s:PainKiller.StickyNote* exists y:StickyNote, y in ProductsAndServices.StickyNote*
 Invariant forall s:GainCreator.StickyNote* exists y:StickyNote, y in ProductsAndServices.StickyNote*
 }
}

Grammar ValuePropositionCanvas = import Fields {
 PartRules {
 Root VPC ::= { LeftPart RightPart }
 LeftPart ::= { GainCreator:Field PainKiller:Field ProductsAndServices:Field }
 RightPart ::= { Gain:Field Pain:Field CustomerSituation:Field }
 } Invariants {
 Invariant forall s:Gain.StickyNote* exists y:StickyNote, y in GainCreator.StickyNote*
 Invariant forall s:Pain.StickyNote* exists y:StickyNote, y in PainKiller.StickyNote*
 Invariant forall s:PainKiller.StickyNote* exists y:StickyNote, y in ProductsAndServices.StickyNote*
 Invariant forall s:GainCreator.StickyNote* exists y:StickyNote, y in ProductsAndServices.StickyNote*
 }
}

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

11 Software as a Business

Validating a Flat Canvas

► A flat canvas is called well-formed, if
■ All fields are being computed (filled)
■ All fields fulfill all constraints.

► Validation:
■ Parse the canvas with its sticky notes
■ Evaluate constraints in OCL
■ or with an Attributed Grammar
■ or with an Multiset Constraint Grammar

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

12 Software as a Business

► A lean model can be merged with another lean model

► A canvas twin is a parallelly edited canvas, which can be merged into a lean model by
unifying the fields

► Conceptualization Process:
■ CanvasTwin * -> Lean Model -> fully conceptualized Model
■ Assembling all constraints
■ Validating all constraints

12

Parallelly Edited Lean Models can be Merged

Lean Model
(semi-conceptualized)

Canvases Model

Value Proposition is
A and B and C

Key partners

Ch
an

ne
ls

ar
e N

ew
s,

Pr
es

s,
W

eb

Cost structure is

100€, 2 per day

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Software as a Business

31.3 Nested Canvases

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

14 Software as a Business

A Nested Canvas

► A nested canvas (deep canvas) is a link tree with different levels
■ Every canvas forms a sequence, graph or array of fields
■ Sticky notes attach text to the fields
■ Constraints constrain the content of the canvas fields

► Subcanvases form children
■ Grammars of nested canvases are united (grammar composition)

► The fill order of the canvas defines a phase structure on the link tree
■ Metrics on advancement (hierarchical wavefront progress)

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

15 Software as a Business

The Nested BMC (Deep BMC)

► Many subcanvases

BMC

VPC

Customer Journey
Canvas (CJC)

ReqEC

Channel
Flipbook Canvas

Pain Canvas
Pain Killer Canvas

Pain-Gain
Banana

Pain Portfolio Customer
Empathy Map

Customer
BMCY

Customer Double
Funnel Canvas

SPIN™ Canvas

Solution
Selling™

Canvas

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

16 Software as a Business

► A nested canvas twin is a parallelly edited nested canvas, which can be merged into a
lean model by unifying the fields

► Conceptualization Process:
■ NestedCanvasTwin * -> Lean Model -> fully conceptualized Model

16

Parallelly Edited Lean Models can be Merged to Get a
More Mature Model

Lean Model
(semi-conceptualized)

Model

Value Proposition is
A and B and C

Key partners

Ch
an

ne
ls

ar
e N

ew
s,

Pr
es

s,
W

eb

Cost structure is

100€, 2 per day

BMC

VPC
Customer

Empathy Map

BMC

VPC
Customer

Empathy Map

Nested Canvases

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - Software as a Business

31.4 Grading and Metrics on Canvases

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

18 Software as a Business

Assessment in Canvases and Nodetypes in Canvas
Trees

► StickyNote dimension: every node can have a sticky note (Answer to a canvas question)

► Commenting is done by spanning up a comment dimension in a canvas tree
■ Every node can get a comment

► Corresponding dimension: Every node (e.g., sticky note or comment) can invoke a
corresponding node in another field that has to be filled

■ When a sticky note invokes another sticky note
■ INVARIANT Exists s:StickyNote: corresponding(self, s)

► Grading is done by spanning up a grading dimension in a canvas tree
■ Every node can get a grade (green-yellow-red, 1-5, 1-10, 1-15)
■ The grading dimension defines grading functions for sticky notes in the

fields

► SWOT dimension: every node can get a SWOT grading node: “how
strong/weak/opportunity-like/trend-like is node?”

■ BMC-SWOT grading matrix canvas uses the SWOT grading dimension
■ LeanCanvas-SWOT uses SWOT grading dimension for LeanCanvas

► Grading on nested canvases: Grading is like commenting, but attributing a grade to a
node. It defines the grading functions for all tree nodes of the nested canvas.

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

19 Software as a Business

Examples of Attributes (Variables) of a Canvas Field
(Node)

► Node.Questions: List(Question) // all questions of a field or note
► Node.SWOT: List(SWOT)

► Node.Comments: List(Comment) // all nodes in a canvas can be commented
■ NumberOf // all lists in nodes of a canvas can be counted

► Field.AllStickyNotes: List(StickyNotes)

► Field.MissingStickyNodes: List(empty Fields)

► Field.Grade: /* The average of all sticky note grades */
► StickyNote.Grade: /* the grading: e.g., red, yellow, green */
► StickyNode.SWOT.Strength.Grade: /* Grade of SWOT */
► StickyNode.SWOT.Weakness.Grade: /* Grade of SWOT */
► StickyNode.SWOT.Opportunity.Grade: /* Grade of SWOT */
► StickyNode.SWOT.Trend.Grade: /* Grade of SWOT */
► StickyNote.CorrespondingStickyNote: List(Ref StickyNote) /* corresponding sticky nodes

or holes */
► Canvas.Grade: /* The average of all sticky note grades of all nodes */

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

20 Software as a Business

Thresholds for Canvas Metrics

► Status of invariants is important for the maturity of the canvas

If a set of metric function on a nested canvas does not
fulfil its threshold, or if not all invariants are fulfilled,

we call the canvas orange.

If a set of metric function on a nested canvas does not
fulfil its threshold, or if not all invariants are fulfilled,

we call the canvas orange.

A green canvas fills all its variables
and fulfills all its invariants.

Only green canvases are models.

A green canvas fills all its variables
and fulfills all its invariants.

Only green canvases are models.

A red canvas does not fulfill all its MUST invariants.A red canvas does not fulfill all its MUST invariants.

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Software as a Business

31.5 The Canvas Cactus as Megamodel and
its Metrics

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

22 Software as a Business

The Evolving BMC-VPC Canvas Cactus (extended)

► Growing a tree with side edges (link tree - cactus) out of a first version
■ Assess with red-yellow-green; choose a current “greenest” “champion”

► Every step tests hypotheses about the customer

► Not too many canvases are kept active (small dashboard)

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

23 Software as a Business

The Megamodel of Evolving Canvases

► A megamodel describes a set of models

► Find new ideas with idea variation techniques

► A canvas cactus is a link tree of canvases, i.e., a link-tree-shaped megamodel of
canvases

► Canvas cactus evolution evolves the megamodel with agile modeling

► The megamodel of canvases in a cactus is a link tree and can be analysed by constrained
multiset grammar (CMG)

■ Metrics
■ Constraints

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

24 Software as a Business

Remember: Extended Feature Model (of Product Line)

► Variation adds 2 new products (Tea machine, coffee+pad-espresso machine)

► CoffeeMachine with enriched feature set

► Feature model may become too complex refactoring necessary→

Brew Coffee
(and Tea)

and

Switch

xor

Keep warm Store

xor

Auto-
Switching Off

Manual
Switching Off

Store in
visible Glas

Store in
Thermo

Heating with
plate

0..1

<<implies>> <<excludes>>

or

Top
Heating

Brew Tea

0..1

Store Water

0..1

Timer
Controllable

Water Stream

Brew Coffee and
Espresso

and

0..1

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

25 Software as a Business

The Product Line of Canvases

► Combined with a feature model, the green canvases document all products of your
product line

► A canvas family is a feature model linked with the corresponding canvases

Brew Coffee
(and Tea)

and

Switch

xor

Keep warm Store

xor

Auto-
Switching Off

Manual
Switching Off

Store in
visible Glas

Store in
Thermo

Heating with
plate

0..1

or

Top
Heating

Brew Tea

0..1

Store Water

0..1

Timer
Controllable

Water Stream

Brew Coffee and
Espresso

and

0..1

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

26 Software as a Business

The End

► More on modeling, lean modeling, and megamodeling in the course

► “Model-Driven Software Development in Technical Spaces (MOST)” in WS

► Explain the concept of a CMG. Why do we need a grammar to model Canvases?

► Explain why a canvas is an instance of a CMG.
■ Which role do invariants play?
■ Which role do filling functions play?
■ Can the user execute / simulate a filling function?

