
1. Defensive Programming

2. Reviews

3. Tests

http://st.inf.tu-dresden.de/teaching/swt2

11. Validation

http://st.inf.tu-dresden.de/teaching/swt2

Softwaretechnologie 2 - Validation
Lehrstuhl Softwaretechnologie // Dr.-Ing. Sebastian Götz Folie 2

Obligatory Reading

 Balzert Kap. 1 (LE 2), Kap 2 (LE 4)

 Maciaszek Chap 6-8

Softwaretechnologie 2 - Validation
Lehrstuhl Softwaretechnologie // Dr.-Ing. Sebastian Götz Folie 3

Verification and Validation

Verification of correctness:

— Proof that the implementation conforms to the specification (correctness proof)

— Without specification no proof

— “building the product right”

— Formal verification: Mathematical proof

— Formal Method: a software development method that enables formal verification

Validation:

— Plausibility checks about correct behavior (defensive programming, such as reviewing, tests,
Code Coverage Analysis)

Test:

— Validation of runs of the system under test (SUT) under well-known conditions, with the goal
to find bugs

Defensive Programming:

— Programming such that less errors occur

Testing shows the presence of bugs, but never their absence (Dijkstra)

Softwaretechnologie 2 - Validation
Lehrstuhl Softwaretechnologie // Dr.-Ing. Sebastian Götz Folie 5

Quality Management (QM, Quality Assurance, QA)

Constructive quality assurance

Analytic quality assurance

Error finding

Test preparation, static and dynamic tests

Analysis Design
Implemen-
tation Test

Error avoidance Methods, Tools,
Best Practices

Softwaretechnologie 2 - Validation
Lehrstuhl Softwaretechnologie // Dr.-Ing. Sebastian Götz Folie 6

QM with Traceability between Tests, Requirements,
Design, and Code

Text
Editor

Input
Analysis

Require-
ments

database

Queries

Simulation

Quality
Status

Prototype Code
Generation

Document
Generation

Text-
Input

Reports

Dashboard

Documentation

Diagram-
Input

Consistency
Completeness

Correctness
Balancedness

Browser

Web
Editor

Diagram
Editor

Design

Traceability
(Verfolgbarkeit)

Metamodels Ontologies

Test
model

(Test base)
Code

Structuring

Softwaretechnologie 2 - Validation
Lehrstuhl Softwaretechnologie // Dr.-Ing. Sebastian Götz Folie 7

SuppositionReviewRandom sampleProof

Verification and Validation Techniques
Abstraction

F
o

rm
a

li
sa

ti
o

n

Quelle: Hesse, W.: Methoden und Werkzeuge zur Software-Entwicklung:
Einordnung und Überblick; Informatik-Fachberichte Bd. 43 Springer Verlag 1981

axiom.
Semantik
(HOARE)

Dynamic
logic

P
ro

g
ra

m
sy

n
th

e
sis In

te
ra

ctiv
e

V
e

rifica
tio

n
sy

ste
m

s

symbol.
Execution

Test case
Generators

Test-
Diff
tools

Test-
data-

Generators

Simulation

Stat. Fluss-
analyse

Dump

Verification

Test

Simulation

Inspection

Model
checking

Test-
Coverage tools

Abstract
interpretation

Tracer

Debugger

Code
inspection

Pair
Programing

Walk-
through

Review

Softwaretechnologie 2 - Validation
Lehrstuhl Softwaretechnologie // Dr.-Ing. Sebastian Götz Folie 8

11.1 Defensive Programming

Softwaretechnologie 2 - Validation
Lehrstuhl Softwaretechnologie // Dr.-Ing. Sebastian Götz Folie 9

11.1.1 Contract Checking with Layers Around
Procedures

Assertions in procedures can be used to specify tests (contract checks). Usually, these are layered around the
core functionality of the procedure

 Programming style of “analyse-and-stop”: analyze the arguments, the surrounding of the arguments, and stop
processing with exception if error occurs

 Some programming languages, e.g., Eiffel, provide contract checks in the language

Precondition checks (assumptions):

 Single parameter contract checks

 Polymorphism layer: analysis of finer types

 Null check, Exception value check

 Range checks on integer and real values

 State analysis: which state should we be in?

 Condition analysis: invariants fulfilled?

 Cross-relation of parameters

 Object web checks (null checks in neighbors)

Invariant checks
— Form of data structures, i.e., different forms of graphs

Postcondition checks (guarantee)

Softwaretechnologie 2 - Validation
Lehrstuhl Softwaretechnologie // Dr.-Ing. Sebastian Götz Folie 10

Example: Contract Language in Eiffel

http://www.ecma-international.org/publications/standards/Ecma-367.htm

http://sourceforge.net/projects/tecomp/

http://www.ecma-international.org/publications/standards/Ecma-367.htm
http://sourceforge.net/projects/tecomp/

Softwaretechnologie 2 - Validation
Lehrstuhl Softwaretechnologie // Dr.-Ing. Sebastian Götz Folie 11

Invariant Checks: Ex.: Triangle Invariant

In a triangle, the sum of two sides must be larger than the third [Vigenschow]

In a triangle-manipulating program, this is an invariant:

public void paintTriangle(Triangle t) {

// preconditions

assertTrue(t != null);

assertTrue(t->s1 > 0 && t->s2 > 0 && t->s3 > 0);

// invariant check

assertTrue(isTriangle(t->s1, t->s2, t->s3));

// now paint.

....

// invariant check again

assertTrue(isTriangle(t->s1, t->s2, t->s3));

.. postconditions...

}

public boolean isTriangle(double s1, double s2, double s3){

return ((a+b > c) && (a+c > b) && b+c > a));

}

Softwaretechnologie 2 - Validation
Lehrstuhl Softwaretechnologie // Dr.-Ing. Sebastian Götz Folie 12

Invariant Checks: Ex.: Triangle Invariant

Contract check can be encapsulated into procedures in a contract layer

public void scale(Triangle t, double scaling) {

preconditionCheck(t);

// now scale.

t->s1*=scaling; t->s2*=scaling; t->s3*=scaling;

invariantCheck(t);

postconditionCheck(t);

}

public boolean preconditionCheck(Triangle t){

assertTrue(t != null);

assertTrue(t->s1 > 0 && t->s2 > 0 && t->s3 > 0);

}

public void invariantCheck(Triangle t) {

assertTrue(isTriangle(t->s1, t->s2, t->s3));

}

public boolean postconditionCheck(Triangle t){

assertTrue(t->s1 > t->LIMITLENGTH);

}

Softwaretechnologie 2 - Validation
Lehrstuhl Softwaretechnologie // Dr.-Ing. Sebastian Götz Folie 13

Implementation Pattern: Contract Wrapper Layers

Contract checks should be programmed in special check-procedures so that they can be
reused as contract wrapper layers

Advantage: entry layers can check contracts once, other internal layers need no longer
check

paint() move() scale()

paint() move() scale()

isTriangle() isRectangle() isFigure() Contract layer

Functional layer

(private)

Wrapper,

Entry layer

(public)

Softwaretechnologie 2 - Validation
Lehrstuhl Softwaretechnologie // Dr.-Ing. Sebastian Götz Folie 14

Inner Functional and Outer Wrapper Layer

// Inner (functional) layer without contract checks (fast)

public void scalePrivate(Triangle t, double scaling) {

// Precondition is assumed to be true

// now scale.

t->s1*=scaling; t->s2*=scaling; t->s3*=scaling;

// Invariant is assumed to be true

// Precondition is assumed to be true

}

// Outer wrapper layer with contract checks (slow)

public void scale(Triangle t, double scaling) {

preconditionCheck(t);

// now scale.

scalePrivate(t);

invariantCheck(t);

postconditionCheck(t);

}

Softwaretechnologie 2 - Validation
Lehrstuhl Softwaretechnologie // Dr.-Ing. Sebastian Götz Folie 15

Model-Based Contracts

A model-based contract is usually specified in OCL (object constraint language),
referring to an UML class diagram:

More in Chapter “Validation with OCL”

These contracts can be generated to contract code for methods (contract
instrumentation)

 Contract checker generation is task of Model-driven testing (MDT)

 More in special lecture

context Person.paySalary(String name)

pre P1: salary >= 0 &&

exists Company company: company.enrolled.name == name

post P2: salary = salary@pre + 100 &&

exists Company company:

company.enrolled.name == name &&

company.budget = company.budget@pre - 100

Softwaretechnologie 2 - Validation
Lehrstuhl Softwaretechnologie // Dr.-Ing. Sebastian Götz Folie 16

11.2 Validation with Inspection and
Reviews

Softwaretechnologie 2 - Validation
Lehrstuhl Softwaretechnologie // Dr.-Ing. Sebastian Götz Folie 17

Checklists

Project managers should put up a bunch of checklists for the most important tasks of
their project members and themselves

— [Pilots use checklists to start their airplanes]

Question lists are a specific form of checklists to help during brainstorming and quality
assurance

Examples:

— http://www.rspa.com/spi/chklst.html#Anchor-49575

http://www.rspa.com/spi/chklst.html#Anchor-49575

Softwaretechnologie 2 - Validation
Lehrstuhl Softwaretechnologie // Dr.-Ing. Sebastian Götz Folie 18

Internal Reviews

Inspection: A colleague reads the programmer’s code

— Inspection according to a predefined checklist

— Programmer explains the code:

— Check programming conventions, clarity of code, use of design patterns

— Detect problems, but don't solve them

— Often needs a moderator

Walkthrough: going through the code with a colleague; use test data to simulate it by hand

— A project leader should group her people to walkthrough or inspect in pairs

Review from another group

— More formal

— Review preparation: send all documents (code, requirement specification, design specification, test cases,
documentation) to the reviewers

— Explicit review meeting, duration: 30-90 minutes

— Protocol: Email or formal document to the reviewed group and the management

Participants, time, duration

Name, version, variant of code sources inspected

Review issue list

Actions determined

— Review followup – working on the issue list

— A review issue database is also nice (similar to a bug tracking or requirements management system)

Bug Tracking Database http://www.mantisbt.org/

Softwaretechnologie 2 - Validation
Lehrstuhl Softwaretechnologie // Dr.-Ing. Sebastian Götz Folie 19

Pair programming is permanent inspection

Pair Programming: Permanent inspection

Programming in pairs

 A programmer

 An inspector (reviewer)

Change roles after some time

Psychology: Not everybody likes to program in pairs

 Egoless programming is desired

Softwaretechnologie 2 - Validation
Lehrstuhl Softwaretechnologie // Dr.-Ing. Sebastian Götz Folie 20

Reviews contribute to quality

External Reviews

More formal:

—An unrelated colleague from another department, or an unrelated team reviews
the code

Review preparation phase

Special review meeting

 Prepare meeting by distributing all relevant documents

 A review leader (moderator) guides through the meeting

Formal protocol:

 Review form is often standardized for a company

Specifications can also be reviewed (requirements specs, design specs)

 Find out inconsistencies with source code

 Review issue list

Review follow-up

Softwaretechnologie 2 - Validation
Lehrstuhl Softwaretechnologie // Dr.-Ing. Sebastian Götz Folie 21

Audits

Most formal kind of external review

Professional auditors (quality assurance personnel) from QA departments, or even
external companies

—Producer may be absent, auditing can be done from documents alone

Audits take longer than reviews

—Planning phase

—Audits contain several reviews

Audits can also check the

— financial budgets: Auditors check how the money was spent (time sheets, travel,
labor cost, ...)

— planning

— conformance to law (compliance)

Softwaretechnologie 2 - Validation
Lehrstuhl Softwaretechnologie // Dr.-Ing. Sebastian Götz Folie 22

A General Heuristic: Tight Feedback Loops

Software processes are highly dynamic. It is hard to pre-plan them.

Install process guidelines that lead to tight feedback loops:

 Feedback early, often, frequently.

 Better early light feedback than late thorough feedback

For reviews, this means: review early, review often.

Softwaretechnologie 2 - Validation
Lehrstuhl Softwaretechnologie // Dr.-Ing. Sebastian Götz Folie 23

11.3. Validation with Tests

Softwaretechnologie 2 - Validation
Lehrstuhl Softwaretechnologie // Dr.-Ing. Sebastian Götz Folie 24

Static Test (Static Analysis)

► Static program analysis without executing the program

► Required: a tool for static analysis

Test Method (Analyse) Purpose

Symbolic Execution Execution with symbolic values

Traceability Tracing code to requirments by code-requirement-mappings

Abstract Interpretation Execution with equivalence classes

Data-flow analysis (Value flow
analysis)

Abstract Interpretation with focus on flow of data (values)

Control-flow analysis Abstract Interpretation with focus on flow of control
conditions

Metrics Counting methods for static features of programs

Softwaretechnologie 2 - Validation
Lehrstuhl Softwaretechnologie // Dr.-Ing. Sebastian Götz Folie 25

Dynamic Test

► Dynamic program analysis by Test

[Liggesmeyer] http://de.wikipedia.org/wiki/Softwaretest

Test Method (Analyse) Purpose

Simulation Execution with concrete values on a simulator
(software in the loop, SIL)

Functional test Black-box test against interfaces

Structure-oriented test Coverage analysis of control flow paths
Coverage analysis of data flow

Other tests Fault injection, regression test

Softwaretechnologie 2 - Validation
Lehrstuhl Softwaretechnologie // Dr.-Ing. Sebastian Götz Folie 26

The Problems with Testing

Programmers program under time pressure (on-demand)

Programmers program on-demand, because programming is hard

 Domain problems

 Special cases are forgotten

 The effect of users is underestimated

 [The demo effect]

 A writer never finds his own bugs (Betriebsblindheit)

Tests have destructive, negative nature

 It is not easy to convince oneself to be negative!

 Quality assurance people can ensure this, ensuring a reasonable software
process

Softwaretechnologie 2 - Validation
Lehrstuhl Softwaretechnologie // Dr.-Ing. Sebastian Götz Folie 27

11.3.1 Test Processes

Softwaretechnologie 2 - Validation
Lehrstuhl Softwaretechnologie // Dr.-Ing. Sebastian Götz Folie 28

Test Management
Quelle: Müllerburg, M. u.a.(Hrsg.): Test, Analyse und Verifikation von Software; GMD-Bericht Nr. 260,
R. Oldenbourg Verlag 1996 S.115

T
e
s
to

rg
a
n
is

a
tio

n

T
e
s
td

o
c
u
m

e
n
ta

tio
n

Functional
requirements/

contracts

Program
(SUT)

Test case
design

Test data
generation

Test
execution

Test
analysis

Monitoring
(Debugging)

Threshold
specification

Test planing Test design,
test specfication

Test control

Plan

Softwaretechnologie 2 - Validation
Lehrstuhl Softwaretechnologie // Dr.-Ing. Sebastian Götz Folie 29

Standard Test Process as Right Wing of the V Model

Tests should be done bottom-up

Pre-Study

•Product concept catalogue (Lastenheft)

Requirements Analysis

•Software Requirement Specification (SRS)

Achitectural Design

•Architecture (Grobentwurf)

Detailed Design

•(Feinentwurf)

Implementation

Acceptance Test

Installation, Beta Test

System Test (in-house)

Component, Subsystem
Test

Contracts, Class Tests

System
test cases

Unit test
cases

Acceptance
test cases

Softwaretechnologie 2 - Validation
Lehrstuhl Softwaretechnologie // Dr.-Ing. Sebastian Götz Folie 30

The CleanRoom Method

The CleanRoom method divides the project members into programmers and testers.

Developer must deliver a result almost without bugs

 Testing forbidden!

Incremental process

Experience with Cleanroom Method

 Selby tested CleanRoom with 15 Student Teams, 10 Cleanroom/5 non-Cleanroom

 Cleanroom-Teams produce simpler code with more comments

 81% want to use it again

 All Cleanroom teams manage milestones, 3 of 5 non-Cleanroom teams not.

 But: programmers do not have the satisfaction to run their code themselves

Only the problems with formal specification

Softwaretechnologie 2 - Validation
Lehrstuhl Softwaretechnologie // Dr.-Ing. Sebastian Götz Folie 31

CleanRoom in the NASA

In 1987, the NASA developed a 40KLOC control program for satellites with Cleanroom

Distribution of project time:

 4% Training staff in Cleanroom,

 33% design

 18% Implementation (45% writing, 55% reviewing),

 27% Testing,

 22% Other things (e.g., meetings)

Increase in productivity 69%.

Reduction of error rate 45%.

Resource reduction 60-80%.

Developers, prohibited to test their code, read intensively. This catches many bugs (~30
bugs for 1KLOC).

Softwaretechnologie 2 - Validation
Lehrstuhl Softwaretechnologie // Dr.-Ing. Sebastian Götz Folie 32

Microsoft's Software Process “Synchronize and
Stabilize”

.. is a specific CleanRoom process:

Microsoft builds software until 12:00 (synchronization)

In the afternoon, test suites are run by the test teams, i.e., separation of programmer
and tester

Programmers get feedback the next day

[IBM tests in China]

Softwaretechnologie 2 - Validation
Lehrstuhl Softwaretechnologie // Dr.-Ing. Sebastian Götz Folie 33

Test-First Development (Test-DrivenDevelopment)

Iterate:

 First, fix the interface of a method

 Second, write a test case against the interface and run it

 Third, program method.

 Fourth, Run test case. If test case works, add it to the current test suite

Add a test

Run tests
-> see failure

Write some
code

Run the tests -
> see all pass

Refactor

Softwaretechnologie 2 - Validation
Lehrstuhl Softwaretechnologie // Dr.-Ing. Sebastian Götz Folie 34

Test-First Development (Test-DrivenDevelopment)

Advantages

 Permanent regression test (test data integrated)

 Stable extension of the code: no big bang test, collection of test cases always running

 Functionality so far can always be demonstrated

TDD is like automating the reviewer: the test case plays the role of the criticizing
colleague!

Softwaretechnologie 2 - Validation
Lehrstuhl Softwaretechnologie // Dr.-Ing. Sebastian Götz Folie 35

11.3.2 In-Vitro-Test Runs with
Debuggers

Softwaretechnologie 2 - Validation
Lehrstuhl Softwaretechnologie // Dr.-Ing. Sebastian Götz Folie 36

Debugger (Entwanzer)

► A Debugger runs a program in-vitro and can stop it at any time

 Breakpoints: line numbers to stop the execution

 Watchpoints: Events changing the value of a variable

 State monitoring: Display of all values of variables, registers, stack, heap values

 State change: modify the values of the state

► Good debugger work with several threads so that race conditions in parallel
programs can be found

Softwaretechnologie 2 - Validation
Lehrstuhl Softwaretechnologie // Dr.-Ing. Sebastian Götz Folie 37

Dynamic Display Debugger (DDD)

► ddd is a visualization front-end
for other text-based debuggers

 C/C++: GDB, DBX, WDB

 Java: JDB

 Perl: Perl debugger

 bash: bashdb

 make: remake

 Python: pydb

► ddd visualizes data structures
in the heap

Softwaretechnologie 2 - Validation
Lehrstuhl Softwaretechnologie // Dr.-Ing. Sebastian Götz Folie 38

11.3.3 Regression Tests

Softwaretechnologie 2 - Validation
Lehrstuhl Softwaretechnologie // Dr.-Ing. Sebastian Götz Folie 39

Regression Tests as Diffs on Outputs of Subsequent
Versions

Regression tests are operators that check semantic identity between versions that have
similar input/output relation

Enhancement tests test enhanced functionality

Time

Regression Test Regression Test Enhancement Test

Input

Output

Softwaretechnologie 2 - Validation
Lehrstuhl Softwaretechnologie // Dr.-Ing. Sebastian Götz Folie 40

A Poor Man's Regression Testing Environment

The UNIX tool diff is able to textually compare files and directories (recursively)

diff

Store in subdir 1.1

subdir 0.9
Subdir 1.1

System under
test (SUT)

diff

subdir1.0
sut.output1

sut.output2

sut.output2

sut.output1

sut.output2

sut.output3

sut.output1

sut.output2

sut.output3

sut.output1

sut.output2

sut.output3

sut.input1

sut.input2

sut.input3

Softwaretechnologie 2 - Validation
Lehrstuhl Softwaretechnologie // Dr.-Ing. Sebastian Götz Folie 41

Diff Listings for Regression Tests

Diff shows lines that have been removed from first file (<) “went out” and added to the
second (>) “came in”

Diff invocations are wired together for test suites with shell scripts or makefiles

Colordiff uses colors

diff file~1.1 file~1.0

< if (threshold < 0.9) stopPowerPlant();

> if (threshold > 0.9) stopPowerPlant();

-- compares entire directory to subdirectory

1.0

diff -rq . 1.0

./subdir/f.c:

< if (threshold < 0.9) stopPowerPlant();

> if (threshold > 0.9) stopPowerPlant();

Softwaretechnologie 2 - Validation
Lehrstuhl Softwaretechnologie // Dr.-Ing. Sebastian Götz Folie 42

Coverage Patterns of Regression Tests

[Binder] distinguishes 5 coverage patterns for redoing regression tests:

1. Re-test all test data (exhaustive): that is the best

2. Re-test risky use cases

3. Re-test profile: profile code and re execute tests on most executed code

4. Re-test changed code (code that changed between versions)

5. Re-test changed code and all dependent code

Softwaretechnologie 2 - Validation
Lehrstuhl Softwaretechnologie // Dr.-Ing. Sebastian Götz Folie 43

Importance of Regression tests

Regression tests are the most important mechanism to ensure quality if a product
appears in subsequent versions

 Without regression test, no quality

Companies sell test data suites for regression tests

 Validation suites for compilers (e.g., Ada or XML)

 Validation suites for databases

 Test data generators that generate test data suites from grammars

 Test case generators

The more elaborated your regression test method is, the better your product will be

Without excellent regression test suite –
there is no product.

Softwaretechnologie 2 - Validation
Lehrstuhl Softwaretechnologie // Dr.-Ing. Sebastian Götz Folie 44

GUI Regression Test with Capture/Replay Tools

A capture tool allows for recording user actions at a GUI

 Recording in macros or scripts

A replay tool reads the scripts and generates events that are fed into the system

 The replay tool can be started in batch, i.e., can be integrated into a regression test suite

 Hence, the GUI can be regression tested

Capture/replay tools can record the most important workflows how systems are used

 Opening documents, closing, saving

 Drag-and-drop situations

 Exception situations

 Even big office suites seem not to be tested with capture/replay tools

Examples:

 Mercury Interactive WinRunner www.mercuryinteractive.de

 Rational Robot www-306.ibm.com/software/rational

 Abbot - http://abbot.sourceforge.net/doc/overview.shtml

 Jellytools is a JUnit-derivative for test of Swing-GUI

 web2test from Leipzig http://www.saxxess.com/content/14615.htm

Softwaretechnologie 2 - Validation
Lehrstuhl Softwaretechnologie // Dr.-Ing. Sebastian Götz Folie 45

11.3.4 FIT Testing Framework

Softwaretechnologie 2 - Validation
Lehrstuhl Softwaretechnologie // Dr.-Ing. Sebastian Götz Folie 46

11.3.4 FIT Testing Framework

FIT is an acceptance and regression testing framework

A software testing tool designed for customers with limited IT knowledge

Test cases can be specified in tables

— Wiki

— Excel

— HTML

— DOC

— ….

Fit test tables are easy to be read and written by customer

Softwaretechnologie 2 - Validation
Lehrstuhl Softwaretechnologie // Dr.-Ing. Sebastian Götz Folie 47

FIT Testing Framework

Story-based tests

— Stored in test tables

Parse input and invoke methods
through reflection

FitRunner to start the test
(Command line)

Can be combined with GUI robots like
Abbot

Softwaretechnologie 2 - Validation
Lehrstuhl Softwaretechnologie // Dr.-Ing. Sebastian Götz Folie 48

Classification of Test Cases

Given a function f under test with y = f(x).

x and y can be values or object graphs [Rumpe04].

Possible patterns for test cases:

Equality tests x == y

Difference predicate: Predicate(x, f(x))

Feature tests: Predicate(f(x))

Equivalence class test: f(x) === e from equivalence class

Abstraction test: Abstraction(f(x)) = Abstraction(z) with a fix z

Identity test: f-1(f(x)) = x

Oracle function: f(x) = oracle(x)

Softwaretechnologie 2 - Validation
Lehrstuhl Softwaretechnologie // Dr.-Ing. Sebastian Götz Folie 49

Separation of Test Data and Test Cases

Instead of fixing the test data in a fixture, the test data can be separated from the
application.

Advantages:

 Test data can be specified symbolically, instead of using constructor expressions

 Test data can be persistent in files or in databases

 Test data can be shared with other products in the product line

Disadvantages:

 Database must be maintained together with code (versioning)

Example:

 Big compiler test suites (e.g., Ada)

 Database test suites

Softwaretechnologie 2 - Validation
Lehrstuhl Softwaretechnologie // Dr.-Ing. Sebastian Götz Folie 50

Stubs and Co

Stub: Empty implementations of the class-under-test (CUT) behind its interface

Dummy: Simple, restricted simulation of the interface functionality

Mock: Dummy that also checks the protocol of the class-under-test (to mock, „etwas
vortäuschen“)

— Often statecharts (Steuerungsmaschinen)

http://de.wikipedia.org/wiki/Mock-Objekt

Softwaretechnologie 2 - Validation
Lehrstuhl Softwaretechnologie // Dr.-Ing. Sebastian Götz Folie 51

Mock Object for (Uni-)Modal Classes

A mock object simulates a class-under-test, implementing the life-cycle protocol

If the CUT has an underlying state chart, the test driver should test all paths in the state chart

 The mock must check whether all state transitions are done right

 Test case tests:

 Path 1: parking->starting-> flying-
>landing->parking

 Path 2: parking->starting-> landing-
>parking (emergency path)

 Driver checks that after each method
that is called for a transition, the right
state is reached

 Mock object implements state
transitions

<<mock>>
plane

GO/rollout

WheelsOff/
takeOff()

Exception
/stop()

PermitToLand
/land()

halt
/halt()

parking

landing

flying

starting

Softwaretechnologie 2 - Validation
Lehrstuhl Softwaretechnologie // Dr.-Ing. Sebastian Götz Folie 52

Mock Object

plane

GO/rollout

WheelsOff/
takeOff()

Exception
/stop()

PermitToLand
/land()

halt
/halt()

parking

landing

flying

starting

public class PlaneMock extends MockObject {

int state;

public enum { parking, starting, flying, landing };

public PlaneMock() {

state = parking;

}

public class PlaneTestCase extends TestCase {

pMock = new PlaneMock();

public void setUp() { .. }

public void tearDown() { .. }

public void testPath1(){

pMock.rollout();

assertEquals(pMock.starting,pMock.getState());

pMock.takeOff();

assertEquals(pMock.flying,pMock.getState());

pMock.land();

assertEquals(pMock.landing,pMock.getState());

pMock.halt();

assertEquals(pMock.parking,pMock.getState());

public void testPath2() {..}

}

Softwaretechnologie 2 - Validation
Lehrstuhl Softwaretechnologie // Dr.-Ing. Sebastian Götz Folie 53

Framework EasyMock

http://de.wikipedia.org/wiki/Easymock

http://www.easymock.org

EasyMock automates the creation of mock objects by generating mock objects as proxy
objects

An easymock object is a proxy to an empty real object, with two modes:

— Recording mode: In this mode, the easymock learns how it should be used

— Replay mode: In this mode, it tests whether it has been used correctly

A strict easymock learns also the order of calls

http://de.wikipedia.org/wiki/Easymock
http://www.easymock.org

Softwaretechnologie 2 - Validation
Lehrstuhl Softwaretechnologie // Dr.-Ing. Sebastian Götz Folie 54

11.3.5 Acceptance Tests

Softwaretechnologie 2 - Validation
Lehrstuhl Softwaretechnologie // Dr.-Ing. Sebastian Götz Folie 55

Acceptance Test

Acceptance test cases are part of the SRS

 Are checked by the customer for fulfillment of the contract

 Without passing, no money!

Acceptance tests are system tests

 Run after system deployment

 Test entire system under load

 Test also non-functional qualities

After every evolution step, all acceptance test cases have to be repeated

Regression test:

 Should-Be-outputs are compared with actual outputs

 Consists of a set of test cases (a test suite)

Softwaretechnologie 2 - Validation
Lehrstuhl Softwaretechnologie // Dr.-Ing. Sebastian Götz Folie 56

Deriving Test Cases from Functional Specifications

Most often, acceptance tests are derived from use cases, function trees, or business
models

Every use case yields at least one acceptance test case

 For every test case, a test driver is written

Organisator

Team
member

Find out
about unused

rooms
Room

manager

Move
meeting

Plan
personal date

Organize
meeting

Softwaretechnologie 2 - Validation
Lehrstuhl Softwaretechnologie // Dr.-Ing. Sebastian Götz Folie 57

Tests and Tutorials

Some test cases can be written in a user-friendly style (tutorial test cases).

If they are enriched with explanations, tutorial threads result

Hence, sort out some test cases for tutorial test cases

[Java documentation]

Softwaretechnologie 2 - Validation
Lehrstuhl Softwaretechnologie // Dr.-Ing. Sebastian Götz Folie 58

What Have We Learned?

 Separation of reviewer and producer is important

 Defensive programming is good

 Test-first development produces stable products

 Without regression tests, no quality

 Mock classes simulate classes-under-test, realizing their life-cycle protocol

 Test tools, e.g., on the Eclipse platform, help to automate testing of applications, also
web applications

Softwaretechnologie 2 - Validation
Lehrstuhl Softwaretechnologie // Dr.-Ing. Sebastian Götz Folie 59

The End

