
Faculty of Computer Science Institute of Software and Multimedia Technology, Software Technology Group

WS2020/21 � Model-driven Software Development in Technical Spaces

Model-to-Text Transformations

Professor: Prof. Dr. Uwe Aÿmann

Tutor: Markus Hamann

1 Model-to-Text Transformation with Acceleo

After exploring ways to create and edit models in the last two exercises, we will now
look at ways to process our models. The purpose of this exercise is to understand how to
realize a Model-to-Text (M2T) transformation. Model-to-Text transformations are often
used to generate code fragments of di�erent programming languages. Other usages are
the generation of documentation or the transfer of models into another technical space
(like the XML or grammar space)
This exercise focuses on template-based code generation utilizing Acceleo1 [1] to gen-

erate Java source code from our Statechart models, de�ned in the previous exercises.

1.1 Acceleo

� Install Acceleo 3.7 from the Eclipse Marketplace.
� Open a eclipse workspace with your statechart metamodel projects (Metamodel,
Edit, and Editor) or import them in a new workspace. Run the Metamodel Project
as an Eclipse Application to register your metamodel in Eclipse. In the new Eclipse
instance you can start using Acceleo.

� Create a new Acceleo Project like it is described in this tutorial2. The same tutorial
also explains how to write an Acceleo template that can be used to transform models
into code. Use your Statechart Metamodel from Exercise 1 for the project creation.

1https://www.eclipse.org/acceleo/
2https://wiki.eclipse.org/Acceleo/Getting_Started

1



1.2 Statechart-to-Java Transformation

Write an Acceleo template to generate Java code from your Statechart models. You can,
for example, use the models created in Exercise 1 or 3.
Please follow these hints.

� Use the State Design Pattern with inner classes to translate your statecharts into
java code.

� You do not need to translate the guard or action of a Transition to valid java code.
You can just use them like they are in the statechart models or ignore them. The
same goes for the Activities in a State.

If you wish a review of your solution, please hand in the Acceleo project as a *.zip �le
on the day before the next exercise (E-Mail: Markus.Hamann1@tu-dresden.de). If you
did not hand in your metamodel after Exercise 1, you need to hand it in too. As always,
on the day of the next exercise, an example solution will be published.

1.3 (Optional) A Code/Documentation Generator Based on Your Project

Like in the last exercise, we want to encourage you to create your own model-driven
toolchain. If you created a metamodel from one of your projects, try to create a Model
to Text generator for it.

1.4 Additional Information

� Acceleo,1 is a pragmatic implementation of the Object Management Group (OMG)
MOF Model-to-Text Language (MTL) standard.

� Acceleo Getting Started,2 is a basic tutorial on the use of Acceleo.

References

[1] Jonathan Musset, Étienne Juliot, Stéphane Lacrampe, William Piers, Cédric Brun,
Laurent Goubet, Yvan Lussaud, and Freddy Allilaire. Acceleo user guide. Acceleo, 2,
2006.

2


	Model-to-Text Transformation with Acceleo
	Acceleo
	Statechart-to-Java Transformation
	(Optional) A Code/Documentation Generator Based on Your Project
	Additional Information


