
Faculty of Computer Science Institute of Software and Multimedia Technology, Software Technology Group

WS2020/21 � Model-driven Software Development in Technical Spaces

Model-to-Model Transformation

Professor: Prof. Dr. Uwe Aÿmann

Tutor: Markus Hamann

1 Model-to-Model Transformation with Epsilon

This exercise provides a tutorial on model-to-model transformations. These transfor-
mations, as the name suggests, transform models to other models of the same or dif-
ferent metamodels. In this exercise, we will focus on model-to-model transformations
using the Epsilon1 language family [1], particularly the Epsilon Transformation Lan-

guage (ETL) [2], to transform our Statechart models into Petri Net models.

1.1 Petri Net Metamodel

To transfer our statechart models to petri net models we need a Petri Net Metamodel.
The �rst task of this exercise is to de�ne an EMF metamodel for simple Elementary Perti

Nets2 like it was done in Exercise 1.

Our petri nets are de�ned as the following:

Each Petri Net has a name to identify it. It has multiple Places, which each place can
have up to one Token. Another element of the petri net is the Transition, symbolizing
passages between places. Both places and transitions are de�ned by their id. Places and
transitions are connected via directed Arcs. There are Incoming Arcs, connecting a place
with a transition, and Outgoing Arcs connecting a Transition with a Place.

1https://www.eclipse.org/epsilon/
2http://st.inf.tu-dresden.de/�les/teaching/ws18/swt2/slides/02-st2-colored-petri-nets.pdf

1



1.2 Epsilon Transformation Language

Epsilon is a language family that can be used for many di�erent types of model processing.
The Epsilon Generation Language (EGL), for example, is a model-to-text alternative for
Acceleo (see Exercise 4). In this exercise, we will focus on the Epsilon Transformation

Language (ETL), which we will use to transform our Statechart models into simple Petri
Net models.
At �rst, you will prepare an Epsilon ETL environment:

� Install Epsilon 2.2 from the Eclipse Marketplace

� Open a eclipse workspace with your statechart metamodel projects, and petri
net metamodel projects (Metamodel, Edit, and Editor) or import them in a new
workspace. Run the Metamodel Project as an Eclipse Application to register both
metamodels in Eclipse. In the new Eclipse instance you can start using Epsilon.

� Epsilon does not need speci�c projects to work. Create a new general project in
your workspace and create a new *.etl �le in it.

� You can now declare your model-to-model transformation rules in this *.etl �le.
To familiarize yourself with ETL, you can use this documentation34 and examples5.

� To run the transformation, right-click on the *.etl �le and choose Run As -> Run

Con�guration. In the next window create a new ETL Transformation con�guration,
select your *.etl �le under Source, and add both your source statechart model
and your target petri net model (for the beginning just create an empty one) under
Models (as EMF Models) (Hint: deselect Read on Load for the target model). Now
you can always Run the con�guration and start the transformation.

1.3 Statechart-to-PetriNet Transformation

At last, declare the transformation rules in the *.etl �le to transform your statechart
models to petri net models. Test your ETL transformation on several statechart models
from previous exercises.
Please note the following hints:

� At the start, you can ignore the guard, and actions of Transitions as well as Activ-
ities.

� If this transformation is working, try to add transformation rules for the guard and
action of Transitions.

If you wish a review of your solution, please hand in the *.etl �le and your Petri Net
metamodel till the day before the next exercise (E-Mail: Markus.Hamann1@tu-dresden.de).
If you did not hand in your metamodel after Exercise 1, you need to hand it in too. As
always, on the day of the next exercise, an example solution will be published.

3https://www.eclipse.org/epsilon/doc/etl/
4https://www.eclipse.org/epsilon/doc/eol/
5https://www.eclipse.org/epsilon/examples/#epsilon-transformation-language

2



1.4 (Optional) A Model Transformator Based on Your Project

Like in the last exercise, we want to encourage you to create your own model-driven
toolchain. If you created a metamodel from one of your projects, try to create a Trans-
formator to other model types (for example UML) for it.

References

[1] Dimitrios Kolovos, Louis Rose, Richard Paige, and A Garc�a-Dom�nguez. The epsilon
book. Structure, 178:1�10, 2010.

[2] Dimitrios S Kolovos, Richard F Paige, and Fiona AC Polack. The epsilon transfor-
mation language. ICMT, 8:46�60, 2008.

3


	Model-to-Model Transformation with Epsilon
	Petri Net Metamodel
	Epsilon Transformation Language
	Statechart-to-PetriNet Transformation
	(Optional) A Model Transformator Based on Your Project


