
Faculty of Computer Science Institute of Software and Multimedia Technology, Software Technology Group

WS2020/21 � Model-driven Software Development in Technical Spaces

Role-based Programming with SCROLL

Professor: Prof. Dr. Uwe Aÿmann

Tutor: Markus Hamann

1 Role-based Programming with SCROLL

One of the fundamental concepts for separation of concerns in object-oriented systems
are roles. They extend the classical object model in a natural way. Roles can be related
to a context as �rst-class object at runtime. (For instance, the role-based language Ob-
jectTeams [1] introduces Teams, simple runtime contexts for roles, as �rst-class language
construct.) However, role-based separation of concerns at runtime level will fail at the
moment. Many of the suggested role-based programming languages have been abandoned
by their developers and do not provide a running compiler; others do not provide a run-
time system compatible to one of the major platforms.1 It is necessary to establish the
basic concepts of roles and contexts with an appropriate light-weight tooling, available
in a major programming platform so that role-based programming becomes available for
the masses. Such a light-weight approach is also bene�cial to support di�erent shades
of the meaning of roles and contexts [2], because it can be adapted easily by an expert
programmer or language engineer.
The SCala ROles Language (SCROLL)2 [3] is essentially a light-weight implementation

pattern for roles and context for dynamic and adaptive programming. The library allows
for augmenting an object's type at runtime with dynamic role types embedded in rei�ed
contexts, so-called compartments. They are related to a set of roles. Entering such a
context within a running system will activate its compartment and all its related roles
(if they are bound to player objects). Hence, a compartment is related to a subset of a
system, i.e., all its related roles, which can be switched on and o� by its activation or
deactivation.

1ObjectTeams forms a notable exception in both points.
2https://www.github.com/max-leuthaeuser/SCROLL

1

https://www.github.com/max-leuthaeuser/SCROLL


C
o
m
p
a
rt
m
en
ts

N
a
tu
ra
ls

Behavior

ServiceRole

move():Result

Navigation

NavigationRole

getTarget():Target

Sensor

ObservingRole

readSensor():Int

Actor

DrivableRole

getActor():Actor

Robot

name:String

Merge

Figure 1: Class Robot is constructed (dotted arrows) from di�erent compartments and
plays (solid arrows) the contained roles (from [3]).

2 Task 1: Role-based Robotics

This basic task focuses at the dynamic augmenting of player objects with roles i.e., adding
behavior. Figure 1 gives the basic structure. The robot gets constructed at runtime by
merging the corresponding roles.

1. Use the task template project:

1 git clone http://git-st.inf.tu-dresden.de/max-leuthaeuser/most-task-scroll-robot.git

2. The README �le provided there explains how to run and test your solution.

3. Use the following rules for the actual implementation of the role methods:

a) NavigationRole.getTarget():Target - return a Target with name "kitchen".

b) ObservingRole.readSensor():Int - always return 100.

c) DrivableRole.getActor():Actor - return an Actor with name "wheels".

d) ServiceRole.move():Result - return a Result containing the robots name,
its target, the current sensor value and its actor.

4. Implement this by adding the missing roles.

5. Test your solution:

1 sbt test

2



accounts

*

Person

name:String

Account

balance:Currency

Bank

TransactionRole

execute()

SavingsAccount

CheckingsAccount

Customer

addAccount(acc:Accountable)
listBalances()

Transaction

Source

withDraw(m:Currency)

Target

deposit(m:Currency)

Accountable

Decreasable

decrease(amount:Currency)

Increasable

increase(amount:Currency)

Figure 2: A Bank holds Customers and their speci�c Accounts. A Transaction allows
for transferring money between them.

3 Task 2: Role-based Banking Application

A bank (�gure 2) is a �nancial institution providing banking services to their customers,
who are only persons here for the sake of simplicity. Customers own several saving and
checking accounts, and perform transactions. Transactions encapsulate the process of
transferring money from exactly one source account to one target account. They are
initiated by a customer, however, managed and executed by the bank.

1. Use the task template project:

1 git clone http://git-st.inf.tu-dresden.de/max-leuthaeuser/most-task-scroll-bank.git

2. The README �le provided there explains how to run and test your solution.

3



C
o
m
p
a
rt
m
en
ts

N
a
tu
ra
ls

CompartmentA (with �at-roles)

RoleA

function()

RoleB

function()

RoleC

function()

PlayerA

function()

CompartmentB (with deep-roles)

RoleA

function()

RoleB

function()

RoleC

function()

PlayerB

function()

Figure 3: An example for the need of customizable role dispatch. It is ambiguous which
role is responsible for answering a call to function(). Flat-roles (roles can not
play roles themselves, left side) or deep-roles (right side) are semantically the
same and are introducing the same ambiguity here (from [3]).

3. Use the following rules for the actual implementation of the role methods:

a) Source.withDraw(m:Currency) - call the players behavior to decrease the
amount of money.

b) Target.deposit(m:Currency) - call the players behavior to increase the amount
of money.

c) Transaction.execute() - query for the corresponding Source and Target

role instances using SCROLLs one[Role]() query operation and withdraw/de-
posit the amount of money.

d) CheckingsAccount.decrease(m:Currency) - call the players behavior to de-
crease the amount of money.

e) SavingsAccount.increase(m:Currency) - call the players behavior to in-
crease the amount of money. Do not forget to apply a 10% transaction fee!

f) TransactionRole.execute() - call the players behaviors to execute the actual
transaction.

4. Implement this by adding the missing roles and compartments.

5. At this point your solution will still get stuck in an endless loop. Why is that the
case? Figure 3 might help. Provide a solution by adding an appropriate dispatch
description (see DispatchQuery).

6. Test your solution:

1 sbt test

4



4 Important Links

� SCROLL can be found here:
https://www.github.com/max-leuthaeuser/SCROLL

� SCROLL API documentation can be found here:
http://max-leuthaeuser.github.io/SCROLL

� The SCROLL Wiki contains more information about SCROLL internals:
https://github.com/max-leuthaeuser/SCROLL/wiki

� You may �nd the implementation hints for speci�c role features useful:
https://github.com/max-leuthaeuser/SCROLL/wiki/Role-Features-and-their-

Implementation-with-SCROLL

Literatur

[1] S. Herrmann. Programming with roles in ObjectTeams/Java. Technical report, AAAI
Fall Symposium, 2005.

[2] T. Kühn, M. Leuthäuser, S. Götz, C. Seidl, and U. Aÿmann. A metamodel family
for role-based modeling and programming languages. In B. Combemale, D. Pearce,
O. Barais, and J. Vinju, editors, Software Language Engineering, volume 8706 of
Lecture Notes in Computer Science, pages 141�160. Springer International Publishing,
2014.

[3] M. Leuthäuser and U. Aÿmann. Enabling view-based programming with scroll: Using
roles and dynamic dispatch for etablishing view-based programming. In Proceedings of
the 2015 Joint MORSE/VAO Workshop on Model-Driven Robot Software Engineering
and View-based Software-Engineering, MORSE/VAO '15, pages 25�33, New York,
NY, USA, 2015. ACM.

5

https://www.github.com/max-leuthaeuser/SCROLL
http://max-leuthaeuser.github.io/SCROLL
https://github.com/max-leuthaeuser/SCROLL/wiki
https://github.com/max-leuthaeuser/SCROLL/wiki/Role-Features-and-their-Implementation-with-SCROLL
https://github.com/max-leuthaeuser/SCROLL/wiki/Role-Features-and-their-Implementation-with-SCROLL

	Role-based Programming with SCROLL
	Task 1: Role-based Robotics
	Task 2: Role-based Banking Application
	Important Links

