
Johannes Mey1, René Schöne1, Uwe Aßmann1, Niklas Fors2, Görel Hedin2

1Technische Universität Dresden
2Lund University

Reference Attribute Grammars with JastAdd

Dresden, January 14, 2021

Attribute Grammars (AGs)

Attributes
— compute derived properties of nodes in abstract syntax tree
— proposed by Donald Knuth in 1968
— references (RAGs) simplify navigation in attribute definitions

Today’s Focus: JastAdd RAG system

Example Attribute Grammar Compiler Flow

Source code

Abstract Syntax Tree

parsed into

Decorated AST

decorated Target code
(IR, …)

generates

Derived properties (attributes) are
attached to tree nodes.

For example, can be used for
computing static semantics, such as,
name bindings, type checking, etc

Reference Attribute Grammars with JastAdd
Johannes Mey, René Schöne, Uwe Aßmann, Niklas Fors, Görel Hedin
Dresden, January 14, 2021

2 / 25

JastAdd Applications
ExtendJ

— Java 8 compiler with many extensions

0

1

2

3

4

5

6

7

0 10 20 30 40 50 60 70 80 90

junit

jsilver

clojure

lucene
javac

jython

jastaddj

tim
e

(s
)

kSLOC

jastaddj-7

javac-7

— performance compared to OpenJDK

Reference Attribute Grammars with JastAdd
Johannes Mey, René Schöne, Uwe Aßmann, Niklas Fors, Görel Hedin
Dresden, January 14, 2021

3 / 25

JastAdd Applications
JModelica

— open source modelica compiler
— maintained and used by company

Modelon

Graphical User Interface
for Visualization of Results

102

Figure 7.12 Multiple figure example.JModelica User Guide, jmodelica.org

Reference Attribute Grammars with JastAdd
Johannes Mey, René Schöne, Uwe Aßmann, Niklas Fors, Görel Hedin
Dresden, January 14, 2021

4 / 25

https://jmodelica.org/

Refactoring and JastAdd

Previous work by Max Schäfer
— papers at ECOOP, OOPSLA, ICSE, . . .
— dissertation
— JastAdd refactoring tool JRRT

https://code.google.com/archive/p/jrrt/

Correct Refactoring of Concurrent Java Code

Max Schäfer1, Julian Dolby2, Manu Sridharan2,
Emina Torlak2, and Frank Tip2

1 Oxford University Computing Laboratory, UK
max.schaefer@comlab.ox.ac.uk

2 IBM T.J. Watson Research Center
{dolby,msridhar,etorlak,ftip}@us.ibm.com

Abstract. Automated refactorings as implemented in modern IDEs for
Java usually make no special provisions for concurrent code. Thus, refac-
tored programs may exhibit unexpected new concurrent behaviors. We an-
alyze the types of such behavioral changes caused by current refactoring
engines anddevelop techniques tomake thembehavior-preserving, ranging
from simple techniques to deal with concurrency-related language
constructs to a framework that computes and tracks synchronization de-
pendencies.Bybasingourdevelopmentdirectly on theJavaMemoryModel,
we can state and prove precise correctness results about refactoring con-
current programs. We show that a broad range of refactorings are not in-
fluenced by concurrency at all, whereas other important refactorings can
be made behavior-preserving for correctly synchronized programs byusing
our framework. Experience with a prototype implementation shows that
our techniques are easy to implement and require only minimal changes to
existing refactoring engines.

1 Introduction

Ever since its inception, Java has offered strong support for writing concurrent
code, and with the increasing prevalence of multicore processors in recent years,
concurrent programming has become crucial to exploiting these architectures. It
may, then, come as a surprise that many of the most frequently used refactorings
as implemented in modern Java IDEs are not concurrency-aware. When applied
to concurrent programs, even refactorings that work reliably for sequential code
may introduce concurrency bugs in the form of unexpected new behaviors, race
conditions, deadlocks, or livelocks.

For sequential programs, the refactoring community has generally downplayed
the importance of ensuring that refactoring engines handle all corner cases cor-
rectly [11], instead encouraging developers to use regression tests to ensure that
refactorings do not change program behavior. But this approach is likely to be
much less effective in a concurrent setting: concurrency bugs like race conditions
may only occur on particular hardware or with a very rare thread schedule, making
it much more difficult to gain confidence in a refactoring via regression testing.

While there has been some work on new refactorings designed specifically to
improve the concurrent behavior of existing code [7, 8, 23, 34], the correctness of

T. D’Hondt (Ed.): ECOOP 2010, LNCS 6183, pp. 225–249, 2010.
© Springer-Verlag Berlin Heidelberg 2010

[Schäfer et al., 2010]

Specifying and Implementing Refactorings

Max Schäfer Oege de Moor
Oxford University Computing Laboratory, UK

{max.schaefer, oege.de.moor}@comlab.ox.ac.uk

Abstract
Modern IDEs for object-oriented languages like Java pro-
vide support for a basic set of simple automated refactor-
ings whose behaviour is easy to describe intuitively. It is,
however, surprisingly difficult to specify their behaviour
in detail. In particular, the popular precondition-based ap-
proach tends to produce somewhat unwieldy descriptions
if advanced features of the object language are taken into
account. This has resulted in refactoring implementations
that are complex, hard to understand, and even harder to
maintain, yet these implementations themselves are the only
precise “specification” of many refactorings. We have in
past work advocated a different approach based on sev-
eral complementary notions of dependencies that guide the
implementation, and on the concept of microrefactorings
that structure it. We show in this work that these concepts
are powerful enough to provide high-level specifications of
many of the refactorings implemented in Eclipse. These
specifications are precise enough to serve as the basis of
a clean-room reimplementation of these refactorings that is
very compact, yet matches Eclipse’s for features and outper-
forms it in terms of correctness.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors

General Terms Languages

Keywords Refactoring, specification, language extensions

1. Introduction
A refactoring can only be useful if it is easy to understand
for the programmer, and if it encapsulates operations that
programmers find themselves doing over and over again.
Indeed, most basic refactorings available in modern IDEs are
easily explained in terms of one or two simple examples.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA/SPLASH’10, October 17–21, 2010, Reno/Tahoe, Nevada, USA.
Copyright c© 2010 ACM 978-1-4503-0203-6/10/10. . . $5.00

But describing a refactoring precisely is a perhaps unex-
pectedly difficult task. The complexities of real-world pro-
gramming languages conspire to make it a formidable task
to account for all corner cases and always produce output
programs that are both syntactically correct and semantically
equivalent to the input program.

Popular textbooks on refactorings [Fow00, Ker05] hence
tend to gloss over the finer details and advise the program-
mer to rely on frequent testing to ensure behaviour preserva-
tion. Even the more precise descriptions in Opdyke’s classic
work [Opd92] are only loosely based on a simplified subset
of C++ and make no attempt to account for all eventualities.

But it seems that the imprecision of these descriptions is
directly reflected in the sometimes very low standards of cor-
rectness [SEEV10] of popular refactoring implementations
like those of Eclipse and IntelliJ [Fou10, Jet10] even for lan-
guages like Java where automated refactoring tools enjoy
great popularity. These implementations are hard to under-
stand and even harder to maintain: for example, a seemingly
rather straightforward bug in Eclipse’s INLINE METHOD
refactoring has gone unfixed for almost five years. 1

Without precise descriptions, it is hard to answer even
very simple questions about refactorings. For example, the
first author recently found himself trying to judge which of
Eclipse’s built-in refactorings could potentially move a field
access out of a synchronized block, which is unsafe in the
face of concurrency. With existing specifications being too
general and vague and implementations being too compli-
cated and lowlevel, there is no good source for gaining the
sort of in-depth understanding of individual refactorings that
is needed to answer such questions.

This work takes a step towards remedying the situation
by providing highlevel specifications of common refactor-
ings that are brief and concise, yet aim to be precise enough
to cover all features of the Java 5 language. We further-
more present an implementation of these specifications as
part of a refactoring engine based on the JastAddJ Java com-
piler [EH07a] and evaluate its correctness using Eclipse’s
internal test suite.2

1 See https://bugs.eclipse.org/bugs/show_bug.cgi?id=112100.
2 The implementation, including its test suite, is available for download
from http://jastadd.org/refactoring-tools.

286

[Schaefer and de Moor, 2010]

Refactoring Java Programs for Flexible Locking

Max Schäfer
Oxford University Computing Laboratory
max.schaefer@comlab.ox.ac.uk

Manu Sridharan Julian Dolby Frank Tip
IBM T.J. Watson Research Center

{msridhar,dolby,ftip}@us.ibm.com

ABSTRACT
Recent versions of the Java standard library offer flexible locking
constructs that go beyond the language’s built-in monitor locks in
terms of features, and that can be fine-tuned to suit specific appli-
cation scenarios. Under certain conditions, the use of these con-
structs can improve performance significantly, by reducing lock
contention. However, the code transformations needed to con-
vert between locking constructs are non-trivial, and great care
must be taken to update lock usage throughout the program consis-
tently. We present Relocker, an automated tool that assists program-
mers with refactoring synchronized blocks into ReentrantLocks
and ReadWriteLocks, to make exploring the performance tradeoffs
among these constructs easier. In experiments on a collection of
real-world Java applications, Relocker was able to refactor over 80%
of built-in monitors into ReentrantLocks. Additionally, in most
cases the tool could automatically infer the same ReadWriteLock
usage that programmers had previously introduced manually.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement

General Terms
Measurement, Performance

Keywords
Refactoring, monitors, read-write locks

1. INTRODUCTION
As multi-core processors are becoming pervasive, programs are

becoming more concurrent to take advantage of the available par-
allelism. However, increasing concurrency in a program is often
non-trivial, due to various potential scalability bottlenecks. One
common bottleneck is lock contention, where scalability is limited
by many threads waiting to acquire some common lock in order to
safely access shared memory.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’11, May 21–28, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0445-0/11/05 ...$10.00.

Various solutions exist for addressing lock contention, each with
benefits and drawbacks. Approaches that avoid locks altogether
include lock-free data structures (see, e.g., [17]) and transactional
memory (TM) [11]. However, writing correct lock-free data struc-
tures requires more expertise than can be expected from most pro-
grammers, and the semantics of TM may not be suitable in some
cases (e.g, if I/O needs to be performed). Making locking more
fine-grained can also increase concurrency, but potentially risks
introducing subtle race conditions. In the context of Java, the stan-
dard java.util.concurrent library (in the sequel abbreviated as
j.u.c) provides a number of data structures and locking constructs
that could also be helpful, with their own tradeoffs. With all these
options, there is a strong need for tool support to help programmers
experiment with different solutions to see what works best in a
particular situation.

In this paper, we focus on refactoring support for the advanced
locking constructs available in j.u.c [21]. The ReentrantLock
type enables many features unsupported by Java’s built-in locks,
such as non-block-structured lock operations, checking if a lock is
held (tryLock()), interrupting lock acquisition, and specifying fair-
ness behavior under contention. Additionally, the ReadWriteLock
type enables distinguished reader and writer locks, where multi-
ple threads holding the reader lock may execute concurrently. The
goal of our research is to provide refactoring tools that support the
transition from built-in locks to these advanced lock types.

Many difficulties arise when manually transforming a program to
use the locking constructs of j.u.c, motivating better tool support.
First, these constructs lack the concise and intuitive syntax of the
synchronized blocks associated with Java’s built-in monitor locks.
Instead, locks are modeled as objects, and lock operations as method
calls, and the burden is on the programmer to ensure that acquisition
and release of locks are properly matched. Second, the relative
performance of different lock types strongly depends on the number
of threads and their workload, and on the architecture and JVM
being used. As we shall show in Section 2, these performance
tradeoffs are often unclear, and may change as programs and JVMs
evolve. Therefore, programmers may need to switch back and forth
between different lock types to determine the best lock for the job.
Third, the transformation from one locking construct to another can
require tricky non-local reasoning about program behavior. All code
blocks using the same lock must be transformed together to ensure
behavior preservation, and discovering all such blocks can be non-
trivial. In some cases, the migration to advanced locks is impossible
when the program extends a framework that relies on a specific form
of synchronization. Introducing read-write locks requires careful
reasoning about where a read lock is safe to introduce, as incorrect
use of a read lock can lead to subtle race conditions.

In this paper, we present Relocker, an automated refactoring tool

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE’11, May 21–28, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0445-0/11/05 ...$10.00

71

[Schafer et al., 2011]

Reference Attribute Grammars with JastAdd
Johannes Mey, René Schöne, Uwe Aßmann, Niklas Fors, Görel Hedin
Dresden, January 14, 2021

5 / 25

https://code.google.com/archive/p/jrrt/

JastAdd Exercise 1

Presentation
— a practical introduction to RAGs
— the JastAdd compiler and its infrastructure

Homework
— simple expression language
— construction of a small grammar
— writing some attributes

Reference Attribute Grammars with JastAdd
Johannes Mey, René Schöne, Uwe Aßmann, Niklas Fors, Görel Hedin
Dresden, January 14, 2021

6 / 25

Reference Attribute Grammars

An introduction to
— grammar specification
— syntax trees
— attribute specification

Disclaimer
— focus on the JastAdd understanding
— no parsing, only syntax trees

Reference Attribute Grammars with JastAdd
Johannes Mey, René Schöne, Uwe Aßmann, Niklas Fors, Görel Hedin
Dresden, January 14, 2021

7 / 25

Reference Attribute Grammars

An introduction to
— grammar specification
— syntax trees
— attribute specification

Disclaimer
— focus on the JastAdd understanding
— no parsing, only syntax trees

Reference Attribute Grammars with JastAdd
Johannes Mey, René Schöne, Uwe Aßmann, Niklas Fors, Görel Hedin
Dresden, January 14, 2021

7 / 25

JastAdd Grammar

Elements:
Nonterminals A B SomeName

Terminals/Tokens <X:int> <Y> (default type String)

Production rules:
Child nodes A ::= C First:B Second:B;

List/optional children B ::= C* [MyD:D];

Terminals C ::= <TerminalSymbol:String>;

Abstract nonterminals abstract E ::= <Name>;
Inheritance F : E ::= <Value:int>;

G : E ::= H <Value:float>;

Empty productions H ::= /* right side can be empty! */;
H; // also valid

Reference Attribute Grammars with JastAdd
Johannes Mey, René Schöne, Uwe Aßmann, Niklas Fors, Görel Hedin
Dresden, January 14, 2021

8 / 25

JastAdd Grammar

Generated interface for nonterminals:
regular nonterminal class A { /* */ }
abstract nonterminal abstract class E { /* */ }

Generated child accessors (within nonterminal class):

unnamed child public C getC() { /* */ }
named child public C getMyChild() { /* */ }
list children public C getC(int index) { /* */ }
optional child public boolean hasMyD() { /* */ }
terminal public String getTerminalSymbol() { /* */ }

Reference Attribute Grammars with JastAdd
Johannes Mey, René Schöne, Uwe Aßmann, Niklas Fors, Görel Hedin
Dresden, January 14, 2021

9 / 25

JastAdd Attributes

Attributes
— proposed by Donald Knuth [Knuth, 1968]
— computed properties of tree
— side-effect free
— declaration and definition
— different types with different information flow

Reference Attribute Grammars with JastAdd
Johannes Mey, René Schöne, Uwe Aßmann, Niklas Fors, Görel Hedin
Dresden, January 14, 2021

10 / 25

JastAdd Attributes
Synthesized Attributes

Information from the subtree: synthesized attributes
— Must be defined for declared type
— If type is abstract for all non-abstract sub-types
— Example:

syn boolean TrackElement.isSegment();

// attribute equations
eq Switch.isSegment() { return false; }
eq Segment.isSegment() { return true; }

RC

L

LL

L

Rou. Reg.

Sen.

L

Seg. Sw. Seg.

Seg.

Sem.Sem.

SwP.

syn

Reference Attribute Grammars with JastAdd
Johannes Mey, René Schöne, Uwe Aßmann, Niklas Fors, Görel Hedin
Dresden, January 14, 2021

11 / 25

JastAdd Attributes
Inherited Attributes

Information from parent: inherited attributes
— Must be defined on an ancestor
— Example:

inh Region Element.containingRegion();

// attribute equation
eq Region.getElement(int index).containingRegion() = this;

RC

L

LL

L

Rou. Reg.

Sen.

L

Seg. Sw. Seg.

Seg.

Sem.Sem.

SwP.

Reg.

Seg.

inh

Reference Attribute Grammars with JastAdd
Johannes Mey, René Schöne, Uwe Aßmann, Niklas Fors, Görel Hedin
Dresden, January 14, 2021

12 / 25

JastAdd Attributes
Inherited Attributes

Information from parent: inherited attributes
— Must be defined on an ancestor
— Example:

inh Region Element.containingRegion();

// attribute equation
eq Region.getElement(int index).containingRegion() = this;

RC

L

LL

L

Rou. Reg.

Sen.

L

Seg. Sw. Seg.

Seg.

Sem.Sem.

SwP.

Reg.

Seg.

inh

Reference Attribute Grammars with JastAdd
Johannes Mey, René Schöne, Uwe Aßmann, Niklas Fors, Görel Hedin
Dresden, January 14, 2021

12 / 25

JastAdd Attributes
Reference Attributes

Existing nodes as attribute values
— can be any type of attribute (syn, inh, coll)
— Example:

inh Region Element.containingRegion();

// attribute equation
eq Region.getElement(int index).containingRegion() = this;

RC

L

LL

L

Rou. Reg.

Sen.

L

Seg. Sw. Seg.

Seg.

Sem.Sem.

SwP.

Reg.

reference

Reference Attribute Grammars with JastAdd
Johannes Mey, René Schöne, Uwe Aßmann, Niklas Fors, Görel Hedin
Dresden, January 14, 2021

13 / 25

JastAdd Attributes
Collection Attributes

Collecting information: collection attributes
— Must be defined for declared type
— If type is abstract for all non-abstract sub-types
— Example:

coll Set<Element> Region.coolElements() [new HashSet];

// contribution to collection
Element contributes this

when isCool()
to Region.coolElements();

RC

L

LL

L

Rou. Reg.

Sen.

L

Seg. Sw. Seg.

Seg.

Sem.Sem.

SwP.

coll

Reference Attribute Grammars with JastAdd
Johannes Mey, René Schöne, Uwe Aßmann, Niklas Fors, Görel Hedin
Dresden, January 14, 2021

14 / 25

JastAdd Attributes
Nonterminal Attributes

Building new subtrees: nonterminal attributes
— Also: higher order attribute
— Subtrees must be new objects!
— Example:

// grammar excerpt
A ::= /* ... */;
B ::= <Name:String>;
// declaration
syn nta B A.getB();

// attribute equation
eq A.getB() {

B b = new B();
b.setName("Boaty McBoatface");
return b;

}

RC

L

LL

L

Rou. Reg.

Sen.

L

Seg. Sw. Seg.

Sem.Sem.

SwP.

nta

Reference Attribute Grammars with JastAdd
Johannes Mey, René Schöne, Uwe Aßmann, Niklas Fors, Görel Hedin
Dresden, January 14, 2021

15 / 25

JastAdd Attributes
Circular Attributes

Fix-Point Computation: circular attributes
— can call itself
— computed iteratively
— example:

syn Set<State> State.reachable() circular [new HashSet<State>()];

eq State.reachable() {
HashSet<State> result = new HashSet<State>();
for (State s : successors()) {

result.add(s);
result.addAll(s.reachable());

}
return result;

}

RC

L

LL

L

Rou. Reg.

Sen.

L

Seg. Sw. Seg.

Seg.

Sem.Sem.

SwP.

circular

Reference Attribute Grammars with JastAdd
Johannes Mey, René Schöne, Uwe Aßmann, Niklas Fors, Görel Hedin
Dresden, January 14, 2021

16 / 25

Attributes in JastAdd

synthesized: information from subtree

inherited: information from parents

reference: any kind of attribute can be reference; points to other nonterminal

collection: information from nodes of certain type

nonterminal: can be synthesized or inherited; compute new subtrees

circular: any kind of attribute can be circular; iterative fixpoint computation

Reference Attribute Grammars with JastAdd
Johannes Mey, René Schöne, Uwe Aßmann, Niklas Fors, Görel Hedin
Dresden, January 14, 2021

17 / 25

The JastAdd System

RAG to Java Code Generation
— nonterminals → classes
— attributes → methods
— additional magic

Grammar.ast JastAdd

Attribute.jrag

Aspect.jadd

ClassA.java javac Compiler.class

ParserGeneratorParser Spec.

Reference Attribute Grammars with JastAdd
Johannes Mey, René Schöne, Uwe Aßmann, Niklas Fors, Görel Hedin
Dresden, January 14, 2021

18 / 25

Other JastAdd Features

Attribute Evaluation
— caching of attribute values

– attribute values are memoized
– configurable on per-equation level

— incremental attribute evaluation
– dynamic attribute dependency graph

Aspect-Oriented Programming Features
— additional methods can be woven into classes
— methods and attributes can be refined

Other nice features
— debugging and tracing support

Reference Attribute Grammars with JastAdd
Johannes Mey, René Schöne, Uwe Aßmann, Niklas Fors, Görel Hedin
Dresden, January 14, 2021

19 / 25

Build Tools: JastAddGradle
Tool Support

JastAdd Gradle plugin

Reference Attribute Grammars with JastAdd
Johannes Mey, René Schöne, Uwe Aßmann, Niklas Fors, Görel Hedin
Dresden, January 14, 2021

20 / 25

Tracing API
Tool Support

Grafana visualization of events created by the JastAdd tracing API

Reference Attribute Grammars with JastAdd
Johannes Mey, René Schöne, Uwe Aßmann, Niklas Fors, Görel Hedin
Dresden, January 14, 2021

21 / 25

Documentation Generation: RAGdoc
Tool Support

RAGdoc documentation including links to source code

Reference Attribute Grammars with JastAdd
Johannes Mey, René Schöne, Uwe Aßmann, Niklas Fors, Görel Hedin
Dresden, January 14, 2021

22 / 25

Visualization and Debugging: DrAST
Tool Support

DrAST visualization with computed attributes

Reference Attribute Grammars with JastAdd
Johannes Mey, René Schöne, Uwe Aßmann, Niklas Fors, Görel Hedin
Dresden, January 14, 2021

23 / 25

JastAdd
Important Information
JastAdd
— Website with reference manual and bibliography www.jastadd.org
— Source code https://bitbucket.org/jastadd/jastadd2

Build tool support
— gradle/maven/. . . packages:

– org.jastadd:jastadd, org.jastadd:jastaddparser, org.jastadd:jastaddgradle
— gradle plugin: https://bitbucket.org/jastadd/jastaddgradle/

DrAST
— code and doc: https://bitbucket.org/jastadd/drast/

RagDoc
— code and doc: bitbucket.org/extendj/ragdoc-builder/ , bitbucket.org/extendj/ragdoc-view/

Reference Attribute Grammars with JastAdd
Johannes Mey, René Schöne, Uwe Aßmann, Niklas Fors, Görel Hedin
Dresden, January 14, 2021

24 / 25

www.jastadd.org
https://bitbucket.org/jastadd/jastadd2
https://bintray.com/bintray/jcenter/org.jastadd%3Ajastadd
https://bintray.com/bintray/jcenter/org.jastadd%3Ajastaddparser
https://bintray.com/bintray/jcenter/org.jastadd%3Ajastaddgradle
https://bitbucket.org/jastadd/jastaddgradle/
https://bitbucket.org/jastadd/drast/
https://bitbucket.org/extendj/ragdoc-builder/
https://bitbucket.org/extendj/ragdoc-view/

Questions so far?

Reference Attribute Grammars with JastAdd
Johannes Mey, René Schöne, Uwe Aßmann, Niklas Fors, Görel Hedin
Dresden, January 14, 2021

25 / 25

References I

Knuth, D. E. (1968).
Semantics of context-free languages.
Mathematical systems theory, 2(2):127–145.

Schaefer, M. and de Moor, O. (2010).
Specifying and implementing refactorings.
In Proceedings of the ACM International Conference on Object Oriented Programming Systems Languages and Applications,
OOPSLA ’10, pages 286–301. ACM.
event-place: Reno/Tahoe, Nevada, USA.

Schafer, M., Sridharan, M., Dolby, J., and Tip, F. (2011).
Refactoring java programs for flexible locking.
In 2011 33rd International Conference on Software Engineering (ICSE), pages 71–80.
ISSN: 0270-5257.

Schäfer, M., Dolby, J., Sridharan, M., Torlak, E., and Tip, F. (2010).
Correct refactoring of concurrent java code.
In D’Hondt, T., editor, ECOOP 2010 – Object-Oriented Programming, Lecture Notes in Computer Science, pages 225–249.
Springer.

Reference Attribute Grammars with JastAdd
Johannes Mey, René Schöne, Uwe Aßmann, Niklas Fors, Görel Hedin
Dresden, January 14, 2021

1 / 1

	Introduction and Motivation
	Reference Attribute Grammars
	The JastAdd System
	Appendix

