
Johannes Mey1, René Schöne1, Uwe Aßmann1, Niklas Fors2, Görel Hedin2

1Technische Universität Dresden
2Lund University

Relational Reference Attribute Grammars

Dresden, January 21, 2021

From Model Refactoring to Relational RAGs

Reference Attribute Grammars with JastAdd
Johannes Mey, René Schöne, Uwe Aßmann, Niklas Fors, Görel Hedin
Dresden, January 21, 2021

2 / 19

Continuously Changing Models

Models:
— Analyze

Here: search for refactoring candidates
— Modify

Here: apply refactoring

Models at runtime:
— Analyze incrementally
— Modify continuously

Analyze

Modify

AnalyzeModify

Reference Attribute Grammars with JastAdd
Johannes Mey, René Schöne, Uwe Aßmann, Niklas Fors, Görel Hedin
Dresden, January 21, 2021

3 / 19

Continuously Changing Models

Models:
— Analyze

Here: search for refactoring candidates
— Modify

Here: apply refactoring

Models at runtime:
— Analyze incrementally
— Modify continuously

Analyze

Modify

Analyze

Modify

Reference Attribute Grammars with JastAdd
Johannes Mey, René Schöne, Uwe Aßmann, Niklas Fors, Görel Hedin
Dresden, January 21, 2021

3 / 19

Continuously Changing Models

Models:
— Analyze

Here: search for refactoring candidates
— Modify

Here: apply refactoring

Models at runtime:
— Analyze incrementally
— Modify continuously

Analyze

Modify

Analyze

Modify

Reference Attribute Grammars with JastAdd
Johannes Mey, René Schöne, Uwe Aßmann, Niklas Fors, Görel Hedin
Dresden, January 21, 2021

3 / 19

Continuously Changing Models

Models:
— Analyze

Here: search for refactoring candidates
— Modify

Here: apply refactoring

Models at runtime:
— Analyze incrementally
— Modify continuously

Analyze

Modify

Analyze

Modify

Reference Attribute Grammars with JastAdd
Johannes Mey, René Schöne, Uwe Aßmann, Niklas Fors, Görel Hedin
Dresden, January 21, 2021

3 / 19

Continuously Changing Models

Models:
— Analyze

Here: search for refactoring candidates
— Modify

Here: apply refactoring

Models at runtime:
— Analyze incrementally
— Modify continuously

Analyze

Modify

AnalyzeModify

Reference Attribute Grammars with JastAdd
Johannes Mey, René Schöne, Uwe Aßmann, Niklas Fors, Görel Hedin
Dresden, January 21, 2021

3 / 19

Reference Attribute Grammars as Models

Our approach:
Reference Attribute Grammars (RAGs)
— Structure: context-free grammar
— Analysis: attributes
— Refactoring: tree edits
— We use: JastAdd

RAGs for modelling offer:
— Shorthands for

navigation and computation on trees
— Efficiency through memoization
— Incremental evaluation

Analyze

Modify

RC

L

LL

L

Rou. Reg.

Sen.

L

Seg. Sw. Seg.

Seg.

Sem.Sem.

SwP.

Reference Attribute Grammars with JastAdd
Johannes Mey, René Schöne, Uwe Aßmann, Niklas Fors, Görel Hedin
Dresden, January 21, 2021

4 / 19

Reference Attribute Grammars as Models

Our approach:
Reference Attribute Grammars (RAGs)
— Structure: context-free grammar
— Analysis: attributes
— Refactoring: tree edits
— We use: JastAdd

RAGs for modelling offer:
— Shorthands for

navigation and computation on trees
— Efficiency through memoization
— Incremental evaluation

Analyze

Modify

RC

L

LL

L

Rou. Reg.

Sen.

L

Seg. Sw. Seg.

Seg.

Sem.Sem.

SwP.

Reference Attribute Grammars with JastAdd
Johannes Mey, René Schöne, Uwe Aßmann, Niklas Fors, Görel Hedin
Dresden, January 21, 2021

4 / 19

Reference Attribute Grammars as Models

Our approach:
Reference Attribute Grammars (RAGs)
— Structure: context-free grammar
— Analysis: attributes
— Refactoring: tree edits
— We use: JastAdd

RAGs for modelling offer:
— Shorthands for

navigation and computation on trees
— Efficiency through memoization
— Incremental evaluation

Analyze

Modify

RC

L

LL

L

Rou. Reg.

Sen.

L

Seg. Sw. Seg.

Seg.

Sem.Sem.

SwP.

Reference Attribute Grammars with JastAdd
Johannes Mey, René Schöne, Uwe Aßmann, Niklas Fors, Görel Hedin
Dresden, January 21, 2021

4 / 19

Model-Grammar Mismatch

Relations are different:
— Inmodels:

– Containment relations form overlay tree
– Non-containment relations
– Bidirectional relations

— In grammars:
– Containment references: AST
– Non-containment references
– Bidirectional references

RC

L

LL

L

Rou. Reg.

Sen.

L

Seg. Sw. Seg.

Seg.

Sem.Sem.

SwP.

} Relational RAGs

Reference Attribute Grammars with JastAdd
Johannes Mey, René Schöne, Uwe Aßmann, Niklas Fors, Görel Hedin
Dresden, January 21, 2021

5 / 19

Models vs Relational RAGs

Reference Attribute Grammars with JastAdd
Johannes Mey, René Schöne, Uwe Aßmann, Niklas Fors, Görel Hedin
Dresden, January 21, 2021

6 / 19

Metamodels and Grammars

Abstract grammar (JastAdd syntax)
RailwayContainer ::= Route* Region*;
abstract RailwayElement ::= <Id:int>;
Region : RailwayElement ::= TrackElement* Sensor*;
Semaphore : RailwayElement ::= <Signal:Signal>;
Route : RailwayElement ::= <Active:boolean> SwitchPosition*;
SwitchPosition : RailwayElement ::= <Position:Position>;
Sensor : RailwayElement;
abstract TrackElement:RailwayElement;
Segment : TrackElement ::= <Length:int> Semaphore*;
Switch : TrackElement ::= <CurrentPosition:Position>;

How to capture non-containment relations?

Reference Attribute Grammars with JastAdd
Johannes Mey, René Schöne, Uwe Aßmann, Niklas Fors, Görel Hedin
Dresden, January 21, 2021

7 / 19

Metamodels and Grammars

Abstract grammar (JastAdd syntax)
RailwayContainer ::= Route* Region*;
abstract RailwayElement ::= <Id:int>;
Region : RailwayElement ::= TrackElement* Sensor*;
Semaphore : RailwayElement ::= <Signal:Signal>;
Route : RailwayElement ::= <Active:boolean> SwitchPosition*;
SwitchPosition : RailwayElement ::= <Position:Position>;
Sensor : RailwayElement;
abstract TrackElement:RailwayElement;
Segment : TrackElement ::= <Length:int> Semaphore*;
Switch : TrackElement ::= <CurrentPosition:Position>;

How to capture non-containment relations?

Reference Attribute Grammars with JastAdd
Johannes Mey, René Schöne, Uwe Aßmann, Niklas Fors, Görel Hedin
Dresden, January 21, 2021

7 / 19

Handling Non-containment Relations in RAGs

Approach 1: Name analysis
— Unique identifier Id for each object
— Non-containment relations as Id uses
— Resolve with name analysis attributes

Approach 2: Explicit intrinsic reference attributes
— Store references as (Java) object references
— Resolve during model loading

Problem: Bidirectional relations:
— Either use collection attributes to reverse references (slow!)
— Or two unidirectional relations (risk of inconsistency!)

Reference Attribute Grammars with JastAdd
Johannes Mey, René Schöne, Uwe Aßmann, Niklas Fors, Görel Hedin
Dresden, January 21, 2021

8 / 19

Non-Containment Relations in Detail

Non-Containment References

:
— In RAGs: typed reference nodes: R

Cardinality

:

— 1 : 1

— 1 : {0..1}

— 1 : N

— In RAGs: optional O and list nodes: L

Bidirectional References

:
— In RAGs:

One direction in grammar,
the other in grammar or attribute

RailwayContainer

L

LL

L

Route Region

Sensor

L

Segment Switch Segment Segment

SemaphoreSemaphore

SwitchPosition

L

L L

L

L

L

O O

R

R

R

R

R
R

R
R R

R

L

LL

L

L

L

L

L

O O

R

R
R

R
R R

L L

L
R

R

R
R

Reference Attribute Grammars with JastAdd
Johannes Mey, René Schöne, Uwe Aßmann, Niklas Fors, Görel Hedin
Dresden, January 21, 2021

9 / 19

Non-Containment Relations in Detail

Non-Containment References:
— In RAGs: typed reference nodes: R

Cardinality:
— 1 : 1

— 1 : {0..1}

— 1 : N

— In RAGs: optional O and list nodes: L

Bidirectional References

:
— In RAGs:

One direction in grammar,
the other in grammar or attribute

RailwayContainer

L

LL

L

Route Region

Sensor

L

Segment Switch Segment Segment

SemaphoreSemaphore

SwitchPosition

L

L L

L

L

L

O O

R

R

R

R

R
R

R
R R

R

L

LL

L

L

L

L

L

O O

R

R
R

R
R R

L L

L
R

R

R
R

Reference Attribute Grammars with JastAdd
Johannes Mey, René Schöne, Uwe Aßmann, Niklas Fors, Görel Hedin
Dresden, January 21, 2021

9 / 19

Non-Containment Relations in Detail

Non-Containment References:
— In RAGs: typed reference nodes: R

Cardinality:
— 1 : 1

— 1 : {0..1}

— 1 : N

— In RAGs: optional O and list nodes: L

Bidirectional References:
— In RAGs:

One direction in grammar,
the other in grammar or attribute

RailwayContainer

L

LL

L

Route Region

Sensor

L

Segment Switch Segment Segment

SemaphoreSemaphore

SwitchPosition

L

L L

L

L

L

O O

R

R

R

R

R
R

R
R R

R

L

LL

L

L

L

L

L

O O

R

R
R

R
R R

L L

L
R

R

R
R

Reference Attribute Grammars with JastAdd
Johannes Mey, René Schöne, Uwe Aßmann, Niklas Fors, Görel Hedin
Dresden, January 21, 2021

9 / 19

Solution: Relational RAGs

Abstract grammar
RailwayContainer ::= Route* Region*;
abstract RailwayElement ::= <Id:int>;
Region : RailwayElement ::= TrackElement* Sensor*;
Semaphore : RailwayElement ::= <Signal:Signal>;
Route : RailwayElement ::= <Active:boolean>

SwitchPosition*;
SwitchPosition : RailwayElement ::= <Position:Position>;
Sensor : RailwayElement;
abstract TrackElement:RailwayElement;
Segment : TrackElement ::= <Length:int> Semaphore*;
Switch : TrackElement ::= <CurrentPosition:Position>;

Extending RAGs with relations
rel Route.requires* -> Sensor;
rel Route.entry? -> Semaphore;
rel Route.exit? -> Semaphore;
rel SwitchPosition.target <-> Switch.positions*;
rel Sensor.monitors* <-> TrackElement.monitoredBy*;
rel TrackElement.connectsTo* -> TrackElement;

Reference Attribute Grammars with JastAdd
Johannes Mey, René Schöne, Uwe Aßmann, Niklas Fors, Görel Hedin
Dresden, January 21, 2021

10 / 19

Solution: Relational RAGs

Abstract grammar
RailwayContainer ::= Route* Region*;
abstract RailwayElement ::= <Id:int>;
Region : RailwayElement ::= TrackElement* Sensor*;
Semaphore : RailwayElement ::= <Signal:Signal>;
Route : RailwayElement ::= <Active:boolean>

SwitchPosition*;
SwitchPosition : RailwayElement ::= <Position:Position>;
Sensor : RailwayElement;
abstract TrackElement:RailwayElement;
Segment : TrackElement ::= <Length:int> Semaphore*;
Switch : TrackElement ::= <CurrentPosition:Position>;

Extending RAGs with relations
rel Route.requires* -> Sensor;
rel Route.entry? -> Semaphore;
rel Route.exit? -> Semaphore;
rel SwitchPosition.target <-> Switch.positions*;
rel Sensor.monitors* <-> TrackElement.monitoredBy*;
rel TrackElement.connectsTo* -> TrackElement;

Reference Attribute Grammars with JastAdd
Johannes Mey, René Schöne, Uwe Aßmann, Niklas Fors, Görel Hedin
Dresden, January 21, 2021

10 / 19

Solution: Relational RAGs

Modifying relations
public java.util.List<TrackElement> Sensor.getMonitors() {
return Collections.unmodifiableList(get_impl_monitors());

}
public void Sensor.addMonitors(TrackElement o) {

ArrayList<TrackElement> list = get_impl_monitors();
ArrayList<Sensor> list2 = o.get_impl_monitoredBy();
list.add(o);
list2.add(this);
set_impl_monitors(list);
o.set_impl_monitoredBy(list2);

}
public void Sensor.removeMonitors(TrackElement o) {

ArrayList<TrackElement> list = get_impl_monitors();
if (list.remove(o)) {
ArrayList<Sensor> list2 = o.get_impl_monitoredBy();
list2.remove(this);
set_impl_monitors(list);
o.set_impl_monitoredBy(list2);

}
}

Reference Attribute Grammars with JastAdd
Johannes Mey, René Schöne, Uwe Aßmann, Niklas Fors, Görel Hedin
Dresden, January 21, 2021

11 / 19

Solution: The RelAST Preprocessor

Automatically generates
— Grammar with non-containment relations
— Accessor attributes
— Setter attributes

– Ensuring consistency for bidirectional relations
— Optionally

– Serialization and deserialization methods
– Parsing support for non-containment relations

Grammar.relast
Relast-
compiler

GenGrammar.ast

GenRelation.jadd
JastAdd

Attribute.jrag

ClassA.java

Reference Attribute Grammars with JastAdd
Johannes Mey, René Schöne, Uwe Aßmann, Niklas Fors, Görel Hedin
Dresden, January 21, 2021

12 / 19

Extension: Serialization and Deserialization

Problem:
— Intrinsic relations must be resolved during

parsing before the computed attributes are
evaluated

Solution: (De-)Serialization Component
— Generate (de-)serialization components that

handle this automatically
— Result: problem-specific JSON notation

Generated JSON
{
"type": "Switch",
"id": "15",
"children": {

"Id": 52,
"CurrentPosition": "STRAIGHT"

},
"relations": {

"connectsTo": ["201"],
"monitoredBy": ["18", "19", "20", "21",

"22", "23", "24", "25"],
"positions": ["14"]

}
}

Reference Attribute Grammars with JastAdd
Johannes Mey, René Schöne, Uwe Aßmann, Niklas Fors, Görel Hedin
Dresden, January 21, 2021

13 / 19

Extension: Ecore to Relational RAGs
Automatically!

JastAdd Grammar
RailwayContainer ::= Route* Region*;
abstract RailwayElement ::= <Id:int>;
Region : RailwayElement ::= TrackElement* Sensor*;
Semaphore : RailwayElement ::= <Signal:Signal>;
Route : RailwayElement ::= <Active:boolean>

SwitchPosition*;
SwitchPosition : RailwayElement ::= <Position:Position>;
Sensor : RailwayElement;
abstract TrackElement:RailwayElement;
Segment : TrackElement ::= <Length:int> Semaphore*;
Switch : TrackElement ::= <CurrentPosition:Position>;

JastAdd Relations
rel Route.requires* -> Sensor;
rel Route.entry? -> Semaphore;
rel Route.exit? -> Semaphore;
rel SwitchPosition.target <-> Switch.positions*;
rel Sensor.monitors* <-> TrackElement.monitoredBy*;
rel TrackElement.connectsTo* -> TrackElement;

Reference Attribute Grammars with JastAdd
Johannes Mey, René Schöne, Uwe Aßmann, Niklas Fors, Görel Hedin
Dresden, January 21, 2021

14 / 19

Extension: Ecore to Relational RAGs
Relations in Ecore:

EClass
— becomes nonterminal

multiple inheritance

EAttribute
— become terminal

EReference
— becomes child

– if containment is true
— becomes relation

– if containment is true
various properties

https://download.eclipse.org/modeling/emf/emf/javadoc/2.9.0/org/eclipse/emf/ecore/package-summary.html

Reference Attribute Grammars with JastAdd
Johannes Mey, René Schöne, Uwe Aßmann, Niklas Fors, Görel Hedin
Dresden, January 21, 2021

15 / 19

https://download.eclipse.org/modeling/emf/emf/javadoc/2.9.0/org/eclipse/emf/ecore/package-summary.html

Refactoring with Relational RAGs

— results based on paper for
Software Language Engineering 2018
[Mey et al., 2018]

— extended journal version under review
— not about refactoring, but very related

Continuous Model Validation using Reference
Attribute Grammars

Johannes Mey
Technische Universität Dresden

Germany
johannes.mey@tu-dresden.de

René Schöne
Technische Universität Dresden

Germany
rene.schoene@tu-dresden.de

Görel Hedin
Lund University

Sweden
gorel.hedin@cs.lth.se

Emma Söderberg
Lund University

Sweden
emma.soderberg@cs.lth.se

Thomas Kühn
Technische Universität Dresden

Germany
thomas.kuehn3@tu-dresden.de

Niklas Fors
Lund University

Sweden
niklas.fors@cs.lth.se

Jesper Öqvist
Lund University

Sweden
jesper.oqvist@cs.lth.se

Uwe Aßmann
Technische Universität Dresden

Germany
uwe.assmann@tu-dresden.de

Abstract

Just like current software systems, models are characterised
by increasing complexity and rate of change. Yet, these mod-
els only become useful if they can be continuously evaluated
and validated. To achieve sufficiently low response times
for large models, incremental analysis is required. Reference
Attribute Grammars (RAGs) offer mechanisms to perform
an incremental analysis efficiently using dynamic depen-
dency tracking. However, not all features used in conceptual
modelling are directly available in RAGs. In particular, sup-
port for non-containment model relations is only available
through manual implementation. We present an approach
to directly model uni- and bidirectional non-containment
relations in RAGs and provide efficient means for navigating
and editing them. This approach is evaluated using a scalable
benchmark for incremental model editing and the JastAdd
RAG system. Our work demonstrates the suitability of RAGs
for validating complex and continuously changing models
of current software systems.

CCSConcepts •Theory of computation→Grammars

and context-free languages; • Software and its engineer-

ing→ System description languages; •Computingmethod-

ologies → Model verification and validation;

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

SLE ’18, November 5–6, 2018, Boston, MA, USA

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6029-6/18/11. . . $15.00
https://doi.org/10.1145/3276604.3276616

Keywords Incremental model evaluation, bidirectional re-
lations, References Attribute Grammars

ACM Reference Format:

JohannesMey, René Schöne, Görel Hedin, Emma Söderberg, Thomas
Kühn, Niklas Fors, Jesper Öqvist, and Uwe Aßmann. 2018. Con-
tinuous Model Validation using Reference Attribute Grammars.
In Proceedings of the 11th ACM SIGPLAN International Conference

on Software Language Engineering (SLE ’18), November 5–6, 2018,

Boston, MA, USA. ACM, New York, NY, USA, 13 pages. https://doi.
org/10.1145/3276604.3276616

1 Introduction

More and more software systems rely on models to easily
reference, refine, and validate aspects of a business domain in
a cost-effective way [32]. With current software systems in-
creasing in complexity and rate of change [28], these models
become more complex and change continuously, too. While
maintaining and refining complex models is possible with
state-of-the-art tools [22], their continuous evaluation and
validation still poses problems for large complex models.

To approach continuous evaluation, researchers recently
applied Reference Attribute Grammars (RAGs) [14] to encode
and validate models, e.g., [6–8], because RAG systems offer
mechanisms to perform an incremental analysis efficiently
using dynamic dependency tracking [35]. Although RAG sys-
tems can efficiently rewrite and re-evaluate complex, large
tree structures with derived information, including refer-
ences, there exists a fundamental semantic mismatch between
models, generally represented as graphs, and RAG trees.1

While conceptual models comprise classes with attributes
linked by inheritance, containment, and non-containment

1There is a striking similarity to the object-relational impedance mis-
match [18].

70

Reference Attribute Grammars with JastAdd
Johannes Mey, René Schöne, Uwe Aßmann, Niklas Fors, Görel Hedin
Dresden, January 21, 2021

16 / 19

Relational RAGs for (Runtime) Models: An Example Use Case

Running example: Modeling train tracks and routes.

Example model, from [Szárnyas et al., 2017]

Use Case:
— Modeling editor for rail networks
— Continuously find and repair faults

[Szárnyas et al., 2017] Szárnyas, G., Izsó, B., Ráth, I., and Varró, D. (2017).
The Train Benchmark: cross-technology performance evaluation of continuous model queries. Software & Systems Modeling, pages 1–29.

Reference Attribute Grammars with JastAdd
Johannes Mey, René Schöne, Uwe Aßmann, Niklas Fors, Görel Hedin
Dresden, January 21, 2021

17 / 19

Relational RAGs for (Runtime) Models: An Example Use Case

Running example: Modeling train tracks and routes.

Example model, from [Szárnyas et al., 2017]

Use Case:
— Modeling editor for rail networks
— Continuously find and repair faults

[Szárnyas et al., 2017] Szárnyas, G., Izsó, B., Ráth, I., and Varró, D. (2017).
The Train Benchmark: cross-technology performance evaluation of continuous model queries. Software & Systems Modeling, pages 1–29.

Reference Attribute Grammars with JastAdd
Johannes Mey, René Schöne, Uwe Aßmann, Niklas Fors, Görel Hedin
Dresden, January 21, 2021

17 / 19

Relational RAGs for (Runtime) Models: An Example Use Case

Running example: Modeling train tracks and routes.

Example model, from [Szárnyas et al., 2017]

Use Case:
— Modeling editor for rail networks
— Continuously find and repair faults

[Szárnyas et al., 2017] Szárnyas, G., Izsó, B., Ráth, I., and Varró, D. (2017).
The Train Benchmark: cross-technology performance evaluation of continuous model queries. Software & Systems Modeling, pages 1–29.

Reference Attribute Grammars with JastAdd
Johannes Mey, René Schöne, Uwe Aßmann, Niklas Fors, Görel Hedin
Dresden, January 21, 2021

17 / 19

Relational RAGs: An Evaluation

We investigated:
1. Usability and Conciseness

– Measure complexity reduction
2. Performance

– Compare the three approaches with model- and graph-based solutions

Use Case:
— Iterative model analysis and transformation with Train Benchmark [Szárnyas et al., 2017]
— Six model queries
— Fault injection and repair transformations for each

Continuous Model Validation using Reference

Attribute Grammars

Johannes Mey

Technische Universität Dresden
Germany

johannes.mey@tu-dresden.de
René Schöne

Technische Universität Dresden
Germany

rene.schoene@tu-dresden.de
Görel HedinLund UniversitySwedengorel.hedin@cs.lth.se

Emma Söderberg
Lund UniversitySweden

emma.soderberg@cs.lth.se
Thomas Kühn

Technische Universität Dresden
Germany

thomas.kuehn3@tu-dresden.de
Niklas ForsLund UniversitySwedenniklas.fors@cs.lth.se

Jesper Öqvist
Lund UniversitySwedenjesper.oqvist@cs.lth.se

Uwe Aßmann
Technische Universität Dresden

Germany
uwe.assmann@tu-dresden.de

AbstractJust like current software systems, models are characterised

by increasing complexity and rate of change. Yet, these mod-

els only become useful if they can be continuously evaluated

and validated. To achieve sufficiently low response times

for large models, incremental analysis is required. Reference

Attribute Grammars (RAGs) offer mechanisms to perform

an incremental analysis efficiently using dynamic depen-

dency tracking. However, not all features used in conceptual

modelling are directly available in RAGs. In particular, sup-

port for non-containment model relations is only available

through manual implementation. We present an approach

to directly model uni- and bidirectional non-containment

relations in RAGs and provide efficient means for navigating

and editing them. This approach is evaluated using a scalable

benchmark for incremental model editing and the JastAdd

RAG system. Our work demonstrates the suitability of RAGs

for validating complex and continuously changing models

of current software systems.

CCSConcepts •Theory of computation→Grammars

and context-free languages; • Software and its engineer-

ing→ System description languages; •Computingmethod-

ologies→ Model verification and validation;

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

SLE ’18, November 5–6, 2018, Boston, MA, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6029-6/18/11. . . $15.00

https://doi.org/10.1145/3276604.3276616

Keywords Incremental model evaluation, bidirectional re-

lations, References Attribute Grammars

ACM Reference Format:

JohannesMey, René Schöne, Görel Hedin, Emma Söderberg, Thomas

Kühn, Niklas Fors, Jesper Öqvist, and Uwe Aßmann. 2018. Con-

tinuous Model Validation using Reference Attribute Grammars.

In Proceedings of the 11th ACM SIGPLAN International Conference

on Software Language Engineering (SLE ’18), November 5–6, 2018,

Boston, MA, USA. ACM, New York, NY, USA, 13 pages. https://doi.

org/10.1145/3276604.32766161 Introduction
More and more software systems rely on models to easily

reference, refine, and validate aspects of a business domain in

a cost-effective way [32]. With current software systems in-

creasing in complexity and rate of change [28], these models

become more complex and change continuously, too. While

maintaining and refining complex models is possible with

state-of-the-art tools [22], their continuous evaluation and

validation still poses problems for large complex models.

To approach continuous evaluation, researchers recently

applied Reference Attribute Grammars (RAGs) [14] to encode

and validate models, e.g., [6–8], because RAG systems offer

mechanisms to perform an incremental analysis efficiently

using dynamic dependency tracking [35]. Although RAG sys-

tems can efficiently rewrite and re-evaluate complex, large

tree structures with derived information, including refer-

ences, there exists a fundamental semantic mismatch between

models, generally represented as graphs, and RAG trees. 1

While conceptual models comprise classes with attributes

linked by inheritance, containment, and non-containment

1There is a striking similarity to the object-relational impedance mis-

match [18].

70

Continuous Model Validation using Reference

Attribute Grammars

Johannes Mey

Technische Universität Dresden
Germany

johannes.mey@tu-dresden.de
René Schöne

Technische Universität Dresden
Germany

rene.schoene@tu-dresden.de
Görel HedinLund UniversitySwedengorel.hedin@cs.lth.se

Emma Söderberg
Lund UniversitySweden

emma.soderberg@cs.lth.se
Thomas Kühn

Technische Universität Dresden
Germany

thomas.kuehn3@tu-dresden.de
Niklas ForsLund UniversitySwedenniklas.fors@cs.lth.se

Jesper Öqvist
Lund UniversitySwedenjesper.oqvist@cs.lth.se

Uwe Aßmann
Technische Universität Dresden

Germany
uwe.assmann@tu-dresden.de

AbstractJust like current software systems, models are characterised

by increasing complexity and rate of change. Yet, these mod-

els only become useful if they can be continuously evaluated

and validated. To achieve sufficiently low response times

for large models, incremental analysis is required. Reference

Attribute Grammars (RAGs) offer mechanisms to perform

an incremental analysis efficiently using dynamic depen-

dency tracking. However, not all features used in conceptual

modelling are directly available in RAGs. In particular, sup-

port for non-containment model relations is only available

through manual implementation. We present an approach

to directly model uni- and bidirectional non-containment

relations in RAGs and provide efficient means for navigating

and editing them. This approach is evaluated using a scalable

benchmark for incremental model editing and the JastAdd

RAG system. Our work demonstrates the suitability of RAGs

for validating complex and continuously changing models

of current software systems.

CCSConcepts •Theory of computation→Grammars

and context-free languages; • Software and its engineer-

ing→ System description languages; •Computingmethod-

ologies→ Model verification and validation;

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

SLE ’18, November 5–6, 2018, Boston, MA, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6029-6/18/11. . . $15.00

https://doi.org/10.1145/3276604.3276616

Keywords Incremental model evaluation, bidirectional re-

lations, References Attribute Grammars

ACM Reference Format:

JohannesMey, René Schöne, Görel Hedin, Emma Söderberg, Thomas

Kühn, Niklas Fors, Jesper Öqvist, and Uwe Aßmann. 2018. Con-

tinuous Model Validation using Reference Attribute Grammars.

In Proceedings of the 11th ACM SIGPLAN International Conference

on Software Language Engineering (SLE ’18), November 5–6, 2018,

Boston, MA, USA. ACM, New York, NY, USA, 13 pages. https://doi.

org/10.1145/3276604.32766161 Introduction
More and more software systems rely on models to easily

reference, refine, and validate aspects of a business domain in

a cost-effective way [32]. With current software systems in-

creasing in complexity and rate of change [28], these models

become more complex and change continuously, too. While

maintaining and refining complex models is possible with

state-of-the-art tools [22], their continuous evaluation and

validation still poses problems for large complex models.

To approach continuous evaluation, researchers recently

applied Reference Attribute Grammars (RAGs) [14] to encode

and validate models, e.g., [6–8], because RAG systems offer

mechanisms to perform an incremental analysis efficiently

using dynamic dependency tracking [35]. Although RAG sys-

tems can efficiently rewrite and re-evaluate complex, large

tree structures with derived information, including refer-

ences, there exists a fundamental semantic mismatch between

models, generally represented as graphs, and RAG trees. 1

While conceptual models comprise classes with attributes

linked by inheritance, containment, and non-containment

1There is a striking similarity to the object-relational impedance mis-

match [18].

70

[Szárnyas et al., 2017] Szárnyas, G., Izsó, B., Ráth, I., and Varró, D. (2017).
The Train Benchmark: cross-technology performance evaluation of continuous model queries. Software & Systems Modeling, pages 1-29.

Reference Attribute Grammars with JastAdd
Johannes Mey, René Schöne, Uwe Aßmann, Niklas Fors, Görel Hedin
Dresden, January 21, 2021

18 / 19

Questions?

Reference Attribute Grammars with JastAdd
Johannes Mey, René Schöne, Uwe Aßmann, Niklas Fors, Görel Hedin
Dresden, January 21, 2021

19 / 19

References I

Mey, J., Schöne, R., Hedin, G., Söderberg, E., Kühn, T., Fors, N., Öqvist, J., and Aßmann, U. (2018).
Continuous Model Validation Using Reference Attribute Grammars.
In Proceedings of the 11th ACM SIGPLAN International Conference on Software Language Engineering, SLE 2018, pages 70–82,
New York, NY, USA. ACM.
event-place: Boston, MA, USA.

Szárnyas, G., Izsó, B., Ráth, I., and Varró, D. (2017).
The Train Benchmark: cross-technology performance evaluation of continuous model queries.
Software & Systems Modeling, pages 1–29.

Reference Attribute Grammars with JastAdd
Johannes Mey, René Schöne, Uwe Aßmann, Niklas Fors, Görel Hedin
Dresden, January 21, 2021

1 / 1

	Relational RAGs
	Refactoring with Relational RAGs
	Appendix

