
Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Software as a Business

31. From Values to Features to Components

Maintaining and Measuring a Product Family of Canvases for the MVFS

Selecting features by Lean (Canvas) Modeling -
Grading and Metrics on Canvases

Prof. Dr. Uwe Aßmann
Technische Universität Dresden

Software Engineering Group

http://st.inf.tu-dresden.de

Version 20-0.13, 09.01.21

1) 3 Worlds to bridge

2) Value Engineering with canvases

1) Canvases as collaborative tools

2) Lean modeling with canvas trees

3) Grading and metrics on canvases

4) The canvas cactus as megamodel

5) The canvas product family

3) From Values to Features

4) From Features to Solutions

5) Multi-Product Feature Models and SPL

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

2 Software as a Business

Literature

► [CM03] Sitt Sen Chok, Kim Marriott. Automatic Generation of Intelligent Diagram Editors. ACM
Transactions on Computer-Human Interaction, Vol. 10, No. 3, September 2003, Pages 244–276.

■ This paper introduces (Constraint Multiset Attributed Grammars, CMAG) that describe structure
and constraints of hierarchic artefacts

■ https://www.researchgate.net/profile/Kim_Marriott2/publication/
220286256_Automatic_generation_of_intelligent_diagram_editors/links/
02bfe511a59b70f9ec000000/Automatic-generation-of-intelligent-diagram-editors.pdf

► CMAG are generalized to Constraint Part Attributed Grammars (CPAG) by adding collection-constructors
such as tuples, sets, lists grouped by and-ior-xor constructors.

► Bernd Meyer, Kim Marriott, Adrian Bickerstaffe, Lars Knipping. Intelligent diagramming in the electronic
online classroom. Human System Interactions, 2009. HSI '09.

■ DOI: 10.1109/HSI.2009.5090975

■ https://www.researchgate.net/publication/224517241_Intelligent_diagramming_in_the_electroni
c_online_classroom

► Hans de Bruin and Hans van Vliet. Quality-driven software architecture composition. Journal of Systems
and Software, 66(3):269--284, 2003. From features to solutions.

■ https://doi.org/10.1016/S0164-1212(02)00079-1

► Jaime Chavarriaga, Carlos Noguera, Rubby Casallas, and Viviane Jonckers. Managing Trade-offs
among Architectural Tactics using Feature Models and Feature-Solution Graphs. IEEE.
doi:10.1109/ColumbianCC.2015.7333406

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

3 Software as a Business

Shortcomings of Lean Startup from the
Viewpoint of Software Product-Line Engineering

No support for consistent modeling of product lines
(no support for feature modeling and feature variation)

No support for staged
feature configuration
with suppliers

No support for grading and
metrics

No support for canvas
modeling
(composition and
engineering)

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

4 Software as a Business

Objectives

► Know how to compute the cost of an MVFS and MVP

► Know how to use grammars to structure value trees, feature trees, and product
component trees

► Know how to bridge the worlds of values, features, and product components

► Know how to prepare scaling with a multi-product feature model

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Software as a Business

31.1 From Values to Features to Solutions

• Three worlds have to be combined:

• Values and value propositions of the customer

• Features of the product or service

• Solutions to implement the product

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

6 Software as a Business

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

7 Software as a Business

3 Worlds to Bridge

Values
(Pain/Gain) Features SolutionsAdvantages

Value Proposition is
A and B and C

Key partners

Channels are News,
Press, Web

Cost structure is

100€, 2 per day

Feature
Trees

Component
Trees

Canvas Trees

Feature-Solution
Mapping

Value-Feature
Mapping

Coffee
machine

and

Switch

xor

Heating Mug

xor

Auto-Off

Manual
Glas

Thermo

Heating
plate

0..1

<<implies>>

<<excludes>>

or

Top
Heater

Brew Coffee

and

Switching
Power

xor

Keep warm
Store

Coffee

xor

Auto-
Switching Off

Manual
Switching Off

Store in
visible Glas

Store in
Thermo

Heating with
plate

0..1

<<implies>>

<<excludes>>

or

Heat from
Top

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Software as a Business

31.2 World 1: Value Engineering with Canvas Trees
as Lightweight Collaboration Tools

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

9 Software as a Business

► A canvas is a collaborative frontend for a model, in which sticky notes demarcate the
formal content from the informal text.

► A lean (formal) model is a partial, semi-conceptualized model, an active document with
informal and conceptualized content, fulfilling some constraints of a set of constraints C.

■ A model fulfills all of the constraints in C and has a full set of StickyNotes.

► Lean modeling is an agile conceptualization process:
■ Canvas -> Lean Model -> fully conceptualized Model

Canvases as Lean Models

Lean Model
(semi-conceptualized, some constraints)Canvas Model

(all constraints)

Value Proposition is
A and B and C

Key partners

Ch
an

ne
ls

ar
e N

ew
s,

Pr
es

s,
W

eb

Cost structure is

100€, 2 per day

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

10 Software as a Business

A Canvas Trees (Nested Canvas)

► Def.: A canvas tree (nested canvas, deep canvas) is a whole-part tree with a tree of
subcanvases

■ Canvases and fields recursively alternate (intertwine)
■ Every canvas forms a tuple of fields
■ Sticky notes attach text to the fields, and are related to by AND, IOR, XOR
■ A subcanvas can be attached to a field
■ Constraints constrain the content of the canvas fields

► Subcanvases form children
■ Grammars of nested canvases are united (grammar composition)

► The fill order of the canvas defines a phase structure on the link tree
■ Metrics on advancement (hierarchical wavefront progress)

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

11 Software as a Business

What are the Relations between Sticky Notes?

► Often different colors express XOR business cases: What is the relationship between
green, red and pink sticky notes?

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

12 Software as a Business

Exp.: XOR Can Be Used to Split a Canvas

► The green business case is the most complete one

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

13 Software as a Business

Exp.: XOR Can Be Used to Split a Canvas

► The red business case is less complete

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

14 Software as a Business

Exp.: XOR Can Be Used to Split a Canvas

► The pink customer segment must be equipped with much more hypotheses

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

15 Software as a Business

It is important to classify Sticky Notes relations into the
constructors XOR (different color), IOR (striped) or AND (same color).

It is important to classify Sticky Notes relations into the
constructors XOR (different color), IOR (striped) or AND (same color).

Value
Proposition

BMC as Lean Canvas with XOR/IOR/AND
Constructors, with Sticky Notes as Leafs

XOR

Customer
Segments

XOR

AND

BMC

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

16 Software as a Business

Canvas Trees, with Sticky Notes as Leaves

https://jobs-to-be-done.com/the-jobs-to-be-done-canvas-f3f784ad6270

https://dschool.stanford.edu/wp-content/themes/dschool/method-cards/empathy-map.pdf

A lean canvas tree can extend over
several canvases.

A lean canvas tree can extend over
several canvases.

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

17 Software as a Business

► A canvas tree family is a set of parallelly edited nested canvas, which can be merged into
a lean model by unifying the fields

► Conceptualization Process:
■ CanvasTree -> Value Tree -> Lean Model -> fully conceptualized Model

Parallelly Edited Lean Models can be Merged to Get a
More Mature Lean Model

Lean Model
(semi-conceptualized)

Model

Value Proposition is
A and B and C

Key partners

Ch
an

ne
ls

ar
e N

ew
s,

Pr
es

s,
W

eb

Cost structure is

100€, 2 per day

BMC

VPC
JTBD

LC

VPC
JTBD

Canvas Trees Value Trees

Value
Proposition

XOR

Customer
Segments

XOR

AND

BMC

VPC

JTBD

Value
Proposition

XOR

Customer
Segments

XOR

AND

BMC

VPC

JTBD

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

18 Software as a Business

Merging of Canvas Trees, with Sticky Notes as Leaves

https://jobs-to-be-done.com/the-jobs-to-be-done-canvas-f3f784ad6270

https://dschool.stanford.edu/wp-content/themes/dschool/method-cards/empathy-map.pdf

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

19 Software as a Business

Merge Result of Two Canvas Trees (More Complete)

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

20 Software as a Business

The Nested BMC adds ReqEC and Feature Models as
Subcanvas

► Many subcanvases

Customer Double
Funnel Canvas

BMC

VPC

Customer Journey
Canvas (CJC)

Channel
Flipbook Canvas

Pain-Gain
Banana

Pain Canvas
Pain Killer Canvas

Pain Portfolio

Customer
BMCY

SPIN™ Canvas

Solution
Selling™

Canvas

Feature Model

Minimal Viable
Vision

Customer
Model

Customer
Jobs to be Done

Customer
Empathy Map

Minimal Viable
Product

Viral
Products

ReqEC
Function
modeling

Customer
modeling

Q: How Do We Arrive at a Feature Model that is NON-Lean (Complete)?

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

21 Software as a Business

3 Worlds to Bridge (In Model Tree Syntax)

Values
(Pain/Gain) Features Solutions

Value Proposition is
A and B and C

Key partners

Channels are News,
Press, Web

Cost structure is

100€, 2 per day

Feature
Trees

Component
Trees

Canvas Trees

Value-Feature
Mapping

Coffee
machine

and

Switch

xor

Heating Mug

xor

Auto-Off

Manual
Glas

Thermo

Heating
plate

0..1

<<implies>>

<<excludes>>

or

Top
Heater

Brew Coffee

and

Switching
Power

xor

Keep warm
Store

Coffee

xor

Auto-
Switching Off

Manual
Switching Off

Store in
visible Glas

Store in
Thermo

Heating with
plate

0..1

<<implies>>

<<excludes>>

or

Heat from
Top

Feature-Solution
Mapping

Value
Proposition

XOR

Customer
Segments

XOR

AND

BMC

Key
Resources

Pains

XOR

Customer
Jobs

XOR

VPC

Product
Features

Locate

XOR

Conclude

XOR

AND

JTBD

Define ...

Values
(Pain/Gain)

Canvas Trees

Modeling

Merging

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Software as a Business

31.2.1 Lean (Formal) Modeling with Lean Canvas
Trees and Canvas Cactus

Canvas trees are nested hierarchies.
How do we specify canvas trees?

Canvases are often incomplete.
How do we specify incomplete canvas trees?

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

23 Software as a Business

How Do We Describe Lean Canvas Trees (Canvas Models)?
(Why Grammars for Typing Canvases?)

Metamodels: Type graphs typing graphs

► Neighbors of nodes can be collections

► Partition constructor (over ALL neighbors)

► Simple recursion (by circular references)

► No complex tree structures

► Constraints

Grammars: Recursive typing rules typing
deep trees and graphs

► Attributes and attribution functions

► XOR constructor (over 2 or all neighbors)

► Complex recursion (left, right, alternating,
recursion schemes)

► Arbitrary number of Sticky Notes can be
modeled flexibly

► Name analysis looks up the meaning of
names by attribution functions

► Constraints

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

24 Software as a Business

Schemas for Flat Canvases as Grammars for Lean
Models

► A canvas is a structured questionnaire for
collaborative development. It can be
represented as a tree-shaped model with
constraints:

► Canvas structure:

■ Canvas left side vs. right side

■ Left part, right part, upper, lower part

■ Canvas fields with sticky text notes,
Canvas questions or answers

► Constraints:

■ Inter-field references with inter-field
constraints

■ Intra-field constraints

■ Canvas fill order (partial order) on the
tree nodes

■ Subcanvases

► Problem: Canvases are incomplete; grammars
describe complete sentences of a language

► Def.: A lean model of a metamodel or grammar is
an incomplete model that violates

► structural constraints, but can be
completed to a valid structure
(structural wellformedness)

► wellformedness constraints, but can be
completed to a valid wellformed model
(global wellformedness)

► A lean sentence of a grammar is a lean model of
the grammar.

► A lean tree of a tree grammar is a lean model of
the tree grammar.

► A part grammar is a tree grammar.

► A canvas tree is a lean tree of a part grammar.

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

25 Software as a Business

Overview of Tree Grammars

Sentence Part types Grammar type

Texts Ordering of things String Grammar

Trees Whole and ordered parts Tree Grammar, Regular Tree
Grammar (RTG)

Link Trees (XML, JSON, EMF) Whole and ordered parts
with references but not
sharing

Reference Tree Grammar

Attributed Link Trees With additional attribution
functions

Reference Attribute
Grammars (RAG)

Shared Trees (Dags) with
attributions

Whole-part trees with
shared parts

Multiset Grammars (MSG)

Shared Trees (Dags) with
attributions and constraints

Whole-part trees with links
and constraints

Constraint Multiset
(Attributed) Grammars
(CMAG)

Shared Trees (Dags) with
complex collection-
constructors and groupings

Whole-part trees, with
complex constructors with
links and constraints

Constraint Part (Attributed)
Grammar (CPAG)

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

26 Software as a Business

Constraint Multiset (Attribution) Grammars

► A schema for a canvas can be described by a or Constraint Multiset Attributed Grammar, CMAG) [Marriott] describing Whole-
and-Part relationships without or with sharing (whole-part structural constraints) in a simple part rule sublanguage

■ Rules are written by <Nonterminal> ::= <RightPart> .

■ And global constraints (invariants) describing wellformedness conditions for the hierarchic structure.

%% Example Part Grammar for BMC with several whole-part rules
%%%%%%%%%%%%%%%%%%%%%
Grammar Canvas = {
 PartRules {
 Root Canvas ::= Field+. %% Repetition 1..* times
 }
}
%% Grammar rules may use XOR, REPT, and other constructors
Grammar Fields = {
 PartRules {
 Root Field ::= Notes
 Field ::= Canvas. %% Field can be Notes XOR Canvas
 Notes ::= StickyNote:Note*. %% Repetition 0..* times (REPT)
 Note ::= Question.
 Note ::= Answer.
 Note ::= Comment. %% Note is Question XOR Answer note
 }
 Invariants {
 forall q:Question in Canvas: q has a:Answer %% all questions in fields must be answered
 }
}

%% Example Part Grammar for BMC with several whole-part rules
%%%%%%%%%%%%%%%%%%%%%
Grammar Canvas = {
 PartRules {
 Root Canvas ::= Field+. %% Repetition 1..* times
 }
}
%% Grammar rules may use XOR, REPT, and other constructors
Grammar Fields = {
 PartRules {
 Root Field ::= Notes
 Field ::= Canvas. %% Field can be Notes XOR Canvas
 Notes ::= StickyNote:Note*. %% Repetition 0..* times (REPT)
 Note ::= Question.
 Note ::= Answer.
 Note ::= Comment. %% Note is Question XOR Answer note
 }
 Invariants {
 forall q:Question in Canvas: q has a:Answer %% all questions in fields must be answered
 }
}

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

27 Software as a Business

Schemas for Canvases: Constraint Part Grammars

► We generalize CMAG to Constraint Part Attribution Grammar (CPAG) by generalizing the part rules:

■ Default constructor of a rule body is conjunction (AND), expressed by tuple notation and juxtaposition (.., ..)

■ Exclusive disjunction (XOR) is expressed by (..|..|..|..) alternative brackets

■ Inclusive disjunction (OR) is expressed by set notation { .., .. }

■ Several alternative rule bodies for one nonterminal are connected by inclusive disjunction (OR)

%% Example Part Grammar for BMC with several whole-part rules (no constraints yet)
%%%%%%%%%%%%%%%%%%%%%
Grammar Canvas = {
 PartRules {
 Root Canvas ::= Field+. %% Repetition 1..* times
 }
}
Grammar Fields = {
 PartRules {
 Root Field ::= { Notes Canvas }. %% Field can be Notes IOR Canvas
 Notes ::= StickyNote:Note*. %% Repetition 0..* times
 Note ::= (Question | Answer | Comment). %% Note is Question XOR Answer note
 }
}

%% Example Part Grammar for BMC with several whole-part rules (no constraints yet)
%%%%%%%%%%%%%%%%%%%%%
Grammar Canvas = {
 PartRules {
 Root Canvas ::= Field+. %% Repetition 1..* times
 }
}
Grammar Fields = {
 PartRules {
 Root Field ::= { Notes Canvas }. %% Field can be Notes IOR Canvas
 Notes ::= StickyNote:Note*. %% Repetition 0..* times
 Note ::= (Question | Answer | Comment). %% Note is Question XOR Answer note
 }
}

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

28 Software as a Business

Constraints for Canvases

► A schema for a canvas can be described by a Constraint Part Attribution Grammar (CPAG) has global constraints (invariants)
describing wellformedness conditions for the hierarchic structure. Examples in the constraint sublanguage:

■ forall stickynote in CustomerRelations: exists stickynote2 in Channels;
■ exist a revenue;
■ The partial fill order a set of inter-field constraints

%% Example Constraints in Part Grammar for BMC
%%%%%%%%%%%%%%%%%%%%%
Grammar Fields = {
 PartRules {
 Root Field ::= (Name:ID, { Notes Canvas }).%% Named Field can be Name AND (Notes OR Canvas)
 Notes ::= StickyNote:Note*. %% Repetition 0..* times
 Note ::= (Question | Answer | Comment). %% Note is Question XOR Answer XOR Comment
 }
 Invariants {
 forall f:Field exists y:StickyNote, y in f.Notes.
 MUST forall n:Name.ID == (Customer Relationships | ValueProposition | … | Costs).
 %% fields must be given 1 out of 9 standard names
 }
}

%% Example Constraints in Part Grammar for BMC
%%%%%%%%%%%%%%%%%%%%%
Grammar Fields = {
 PartRules {
 Root Field ::= (Name:ID, { Notes Canvas }).%% Named Field can be Name AND (Notes OR Canvas)
 Notes ::= StickyNote:Note*. %% Repetition 0..* times
 Note ::= (Question | Answer | Comment). %% Note is Question XOR Answer XOR Comment
 }
 Invariants {
 forall f:Field exists y:StickyNote, y in f.Notes.
 MUST forall n:Name.ID == (Customer Relationships | ValueProposition | … | Costs).
 %% fields must be given 1 out of 9 standard names
 }
}

Alternative language for
grammars and
constraints: EBNF, OCL,
ZINC

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

30 Software as a Business

VPC as Grammar with Constraints

► Invariants:
■ Forall gains there must be a gain creator
■ Forall pains there must be a pain killer
■ Forall pain killers there should be a service or product
■ Forall gain creators there should be a service or product

Grammar ValuePropositionCanvas = {
 import Fields
 PartRules {
 Root VPC ::= (LeftPart, RightPart).
 LeftPart ::= (GainCreator:Field, PainKiller:Field, ProductsAndServices:Field).
 RightPart ::= (Gain:Field, Pain:Field, CustomerSituation:Field).
 }
 Invariants {
 forall s:Gain.StickyNote*: exists y:StickyNote, y in GainCreator.StickyNote*.
 forall s:Pain.StickyNote*: exists y:StickyNote, y in PainKiller.StickyNote*.
 forall s:PainKiller.StickyNote*: exists y:StickyNote, y in ProductsAndServices.StickyNote*.
 forall s:GainCreator.StickyNote*: exists y:StickyNote, y in ProductsAndServices.StickyNote*.
 }
}

Grammar ValuePropositionCanvas = {
 import Fields
 PartRules {
 Root VPC ::= (LeftPart, RightPart).
 LeftPart ::= (GainCreator:Field, PainKiller:Field, ProductsAndServices:Field).
 RightPart ::= (Gain:Field, Pain:Field, CustomerSituation:Field).
 }
 Invariants {
 forall s:Gain.StickyNote*: exists y:StickyNote, y in GainCreator.StickyNote*.
 forall s:Pain.StickyNote*: exists y:StickyNote, y in PainKiller.StickyNote*.
 forall s:PainKiller.StickyNote*: exists y:StickyNote, y in ProductsAndServices.StickyNote*.
 forall s:GainCreator.StickyNote*: exists y:StickyNote, y in ProductsAndServices.StickyNote*.
 }
}

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

31 Software as a Business

Schemas for Flat Canvases as Grammars

► Part Grammars (Constraint Multiset Grammar, CMG) can be

■ Imported (IMPORT G)

■ Unioned: all rule bodies with common nonterminals are OR-composed; invariants are OR-composed

■ Specialized: supergrammars S can be unioned with specialization extensions E to subclasses SC:

■ SC = S + E

■ S += E

%% Example Grammar for BMC

Grammar BusinessModelCanvas = {
 import Canvas, Fields
 PartRules {
 Root BMC ::= (LeftPart, ValueProposition:Field, RightPart).
 LeftPart ::= (KeyPartners:Field, KeyActivities:Field, KeyResources:Field, Costs:Field).
 RightPart ::= (CustomerRelations:Field, Channels:Field, CustomerSegments:Field, Revenues:Field).
 }
 Invariants {
 forall s:CustomerRelations.StickyNote*: exists y:StickyNote, y in Channels.StickyNote*.
 MUST exists r:StickyNote in Revenues.StickyNote*.
 }
}

%% Example Grammar for BMC

Grammar BusinessModelCanvas = {
 import Canvas, Fields
 PartRules {
 Root BMC ::= (LeftPart, ValueProposition:Field, RightPart).
 LeftPart ::= (KeyPartners:Field, KeyActivities:Field, KeyResources:Field, Costs:Field).
 RightPart ::= (CustomerRelations:Field, Channels:Field, CustomerSegments:Field, Revenues:Field).
 }
 Invariants {
 forall s:CustomerRelations.StickyNote*: exists y:StickyNote, y in Channels.StickyNote*.
 MUST exists r:StickyNote in Revenues.StickyNote*.
 }
}

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Software as a Business

31.2.2 From Canvas Trees to Value Trees

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

33 Software as a Business

How to Derive Value Trees (from BMC and LC)

Value
Tree

Automation of
Brewing Coffee

and

Fresh
Coffee

Warm Coffee
for long time

Heating

AND

Store Coffee

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

34 Software as a Business

How to Find Features from Values (via ReqEC)

Feature
Tree

Brew Coffee

and

Switching
Power

xor

Keep warm
Store

Coffee

xor

Auto-
Switching Off

Manual
Switching Off

Store in
visible Glas

Store in
Thermo

Heating with
plate

0..1

<<implies>>

<<excludes>>

or

Heat from
Top

1

2

3
4

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

35 Software as a Business

From VPC to ReqEC

► Remember Value Proposition Canvas

■ >ProductAndServiceFeatures

■ >Cain Creators

■ >Pain Killers

► Transfer left side fields to
Requirements Engineering Canvas
(ReqEC)

► Transfer field KeyFunctions to
Feature Model

Use Cases
(Value Propo.)

Components Domain ModelScope and
Context

ScenariosCrosscutting

Customer World

Business Rules
Stakeholders

Key Functions
(Features)

Functions

Feature model

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Software as a Business

31.2.2 Validation of Formal Canvas Trees

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

37 Software as a Business

Validating a Canvas

► Def.: A canvas is structurally complete, if all part rules are fulfilled.

► Def.: A canvas is called well-formed, if
■ All fields are being computed (filled)
■ All fields fulfill all constraints.

► Validation of wellformedness:
■ Parse the canvas with its sticky notes
■ Evaluate constraints in a constraint language

■ Constraint Part AG
■ OCL
■ Reference Attributed Grammar tool (www.jastadd.org)
■ or with an Multiset Constraint Grammar tool (Cider

http://users.monash.edu/~berndm/cider/

► Wellformedness is usually computed by using standard and user-defined attribution
functions

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

38 Software as a Business

Standard Attributions in CPG

► If a tree is typed by a CPG, it has standard functions (standard attributions) which can be
used by constraints:

► Node listing functions:

■ fun Root.downNodes(): All nodes reachable DOWN

■ fun Tree.nodes() == fun Root.downNodes(): All nodes in the tree

■ fun Tree.leafs(): all leaf nodes in the tree

■ For every nonterminal NT:
■ fun NT.nodes(): All nodes DOWN-reachable from NT

■ fun NT.children(): All nodes DOWN with distance 1

■ fun NT.sharedChildren(): All children shared by other parents

■ fun NT.nonsharedChildren(): All children not shared by other parents

► Edge listing functions:
■ fun Tree.links(): all links in the tree

■ fun NT.incomingLinks: all links pointing to nodes in NT.nodes()

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

39 Software as a Business

► A lean model can be merged with another lean model

► Conceptualization Process:
■ Canvas Tree * -> Value Tree -> Lean Model -> fully conceptualized Model
■ Assembling all constraints
■ Validating all constraints

39

Parallelly Edited Lean Models can be Merged

Lean Model (Value Tree)
(semi-conceptualized)

Value Trees

Model

Value Proposition is
A and B and C

Key partners

Ch
an

ne
ls

ar
e N

ew
s,

Pr
es

s,
W

eb

Cost structure is

100€, 2 per day

Automation of
Brewing Coffee

and

Fresh
Coffee

Warm Coffee
for long time

Heating

AND

Store Coffee

Automation of
Brewing Tee

and

Fresh
Tea

Warm Tea
for long time

Heating

AND

Store Tea

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Software as a Business

31.2.3 Grading and Metrics on Formal Canvases
Trees

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

41 Software as a Business

Assessment in Canvases and Nodetypes in Canvas
Trees

► StickyNote dimension: every field (tree node) can have a sticky note (Answer to a canvas
question)

► Commenting is done by spanning up a comment dimension in a canvas tree
■ Every tree node can get a comment

► Corresponding dimension: Every node (e.g., sticky note or comment) can invoke a
corresponding node in another field that has to be filled

■ When a sticky note invokes another sticky note
■ INVARIANT Exists s:StickyNote: corresponding(self, s)

► Grading is done by spanning up a grading dimension in a canvas tree
■ Every node can get a grade (green-yellow-red, 1-5, 1-10, 1-15)
■ The grading dimension defines grading functions for sticky notes in the fields

► SWOT dimension: every node can get a SWOT grading node: “how
strong/weak/opportunity-like/trend-like is node?”

■ BMC-SWOT grading matrix canvas uses the SWOT grading dimension
■ LeanCanvas-SWOT uses SWOT grading dimension for LeanCanvas

► Grading on nested canvases: Grading is like commenting, but attributing a grade to a
node. It defines the grading functions for all tree nodes of the nested canvas.

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

42 Software as a Business

Examples of Attributes (Variables) of a Canvas Field
(Node)

► Node.Questions: List(Question) → // all questions of a field or note
► Node.SWOT: List(SWOT)→

► Node.Comments: → List(Comment) // all nodes in a canvas can be commented
■ NumberOf // all lists in nodes of a canvas can be counted

► Field.AllStickyNotes: List(StickyNotes)→
► Field.MissingStickyNodes: List(empty Fields)→

► Field.Grade: /* The average of all sticky note grades */

► StickyNote.Grade: /* the grading: e.g., red, yellow, green */

► StickyNode.SWOT.Strength.Grade: /* Grade of SWOT */

► StickyNode.SWOT.Weakness.Grade: /* Grade of SWOT */

► StickyNode.SWOT.Opportunity.Grade: /* Grade of SWOT */

► StickyNode.SWOT.Trend.Grade: /* Grade of SWOT */

► StickyNote.CorrespondingStickyNote: List(Ref StickyNote)→ /*
corresponding sticky nodes or holes */

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

43 Software as a Business

Examples of Attributes of a Canvas Tree

► Canvas.subCanvases() /* Get all subcanvases */

► Canvas.subCanvases.count()

► Canvas.StickyNotes() /* get sticky note list */

► Canvas.CountStickyNotes() /* how many sticy notes */

► Canvas.Grade: /* The average of all sticky note grades of all nodes */

Every matrix analysis (SWOT, 7W, SCAMPER, ...)
creates a metric on the Canvas Tree

Every matrix analysis (SWOT, 7W, SCAMPER, ...)
creates a metric on the Canvas Tree

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

44 Software as a Business

Thresholds for Canvas Tree Metrics

► Status of invariants is important for the maturity of the canvas

If a set of metric function on a nested canvas does not
fulfil their thresholds, or if not all invariants are fulfilled,

we call the canvas tree orange.

If a set of metric function on a nested canvas does not
fulfil their thresholds, or if not all invariants are fulfilled,

we call the canvas tree orange.

A green canvas tree fills all its variables
and fulfills all its invariants.

Only green canvas trees are models.

A green canvas tree fills all its variables
and fulfills all its invariants.

Only green canvas trees are models.

A red canvas tree does not fulfill all its MUST invariants.A red canvas tree does not fulfill all its MUST invariants.

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Software as a Business

31.2.4 The Formal Canvas Tree Cactus as
Multimodel and its Metrics

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

46 Software as a Business

The Evolving BMC-VPC Canvas Cactus (extended)

► Growing a tree with side edges (link tree - cactus) out of a first version
■ Assess with red-yellow-green; choose a current “greenest” “champion”

► Every step tests hypotheses about the customer

► Not too many canvases are kept active (small dashboard)

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

47 Software as a Business

The Evolving deep-BMC-VPC Canvas Tree Cactus
(extended)

► Growing a tree with side edges (link tree - cactus) out of a first version

■ Assess with metrics and red-yellow-green; choose a current “greenest” “champion”

► Every step tests hypotheses about the customer and changes metrics

► Not too many canvases are kept active (small dashboard)

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

48 Software as a Business

The Multimodel of Evolving Canvases

► A multimodel is a set of interrelated models, a megamodel describes a multimodel

► A canvas tree cactus is a multimodel of canvases, i.e., a link-tree-shaped multimodel of
canvases

► Canvas cactus evolution evolves the multimodel with agile modeling

► The multimodel of canvases in a cactus is set of link trees
■ and can be analysed by constrained multiset grammar (CMG)
■ Wellformedness
■ Metrics
■ Constraints

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Software as a Business

31.3 From Values to Features -
How to Derive the MVFS

(World 2 – Feature Engineering)

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Software as a Business

31.3.1 Variability Modeling in Feature Trees
Variability Modeling with And-Or Trees

• Describing Feature Models as Constraint And-Or Trees

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

51 Software as a Business

And-Or Trees as CPG

► Every OR and XOR describes a variation point

Grammar AndOrTree = {
 import Fields
 PartRules {
 Root Tree ::= (Conjunction | Disjunction | ExclDisjunction) Child +
 Conjunction ::= ‚AND‘
 Disjunction ::= ‚OR‘ | ‚IOR‘
 ExclDisjunction ::= ‚XOR‘
 Child ::= Tree Lower:Cardinality Upper:Cardinality
 Cardinality: ‚0‘ | ‚1‘ | ‚*‘
 }
}

Grammar AndOrTree = {
 import Fields
 PartRules {
 Root Tree ::= (Conjunction | Disjunction | ExclDisjunction) Child +
 Conjunction ::= ‚AND‘
 Disjunction ::= ‚OR‘ | ‚IOR‘
 ExclDisjunction ::= ‚XOR‘
 Child ::= Tree Lower:Cardinality Upper:Cardinality
 Cardinality: ‚0‘ | ‚1‘ | ‚*‘
 }
}

For specification of
Variation Points

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

52 Software as a Business

And-Or Trees as CTG with Constraints

► Invariants:
■ All references must point to target nodes within the tree

Grammar ConstraintAndOrTree = {
 import AndOrTree
 PartRules {
 Source:Tree ::= (Constraint Target:^Tree) %% from nodes, constraints may go out
 %% they are modeled as references to other tree nodes can go out
 Constraint ::= (‚implies‘ | ‚excludes‘ | ‚bidirectionally implies‘ | ‚bidirectionally excludes‘)
 }
 Invariants {
 Invariant forall t:Target: t is_contained_in(Root.nodes) %% Target node must be IN tree
 }
}

Grammar ConstraintAndOrTree = {
 import AndOrTree
 PartRules {
 Source:Tree ::= (Constraint Target:^Tree) %% from nodes, constraints may go out
 %% they are modeled as references to other tree nodes can go out
 Constraint ::= (‚implies‘ | ‚excludes‘ | ‚bidirectionally implies‘ | ‚bidirectionally excludes‘)
 }
 Invariants {
 Invariant forall t:Target: t is_contained_in(Root.nodes) %% Target node must be IN tree
 }
}

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

53 Software as a Business

Feature Models as ConstraintAndOrTrees

► Invariants:
■ All references must point to target nodes within the tree

Grammar FeatureModel = {
 import ConstraintAndOrTree
 PartRules {
 Root ProductFamily:Tree ::= %% Root of tree models a product family
 Feature:Tree ::= %% Tree nodes model features of a product
 }
}

Grammar FeatureModel = {
 import ConstraintAndOrTree
 PartRules {
 Root ProductFamily:Tree ::= %% Root of tree models a product family
 Feature:Tree ::= %% Tree nodes model features of a product
 }
}

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

54 Software as a Business

Multi-Product Feature Models as
ConstraintAndOrTrees

► The MultiProductFeatureModel has several roots (multi-hierarchy), and therefore
describes several product families (Multi-SPL)

► Invariants:
■ All references must point to target nodes within the tree

Grammar MultiProductFeatureModel = {
 import ConstraintAndOrTree
 PartRules {
 Root MultiProductFeatureModel:MultiTree ::= . %% Root of tree models a product family
 MultiTree ::= Tree +.
 Feature:Tree ::= . %% Tree nodes model features of a product
 }
}

Grammar MultiProductFeatureModel = {
 import ConstraintAndOrTree
 PartRules {
 Root MultiProductFeatureModel:MultiTree ::= . %% Root of tree models a product family
 MultiTree ::= Tree +.
 Feature:Tree ::= . %% Tree nodes model features of a product
 }
}

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Software as a Business

31.3.2 From Canvas and Value Trees to Feature
Trees

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

56 Software as a Business

How Do We Derive a Minimal Viable Feature Set
Systematically?

► Remember Value
Proposition Canvas

► Features of Products and
Services

■ are derived from
right to left from
gains and pains
(Values)

► Products and services
can be modeled by
feature models!

► How to develop a feature
model from the VPC?

AdvantagesFeatures Values

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

57 Software as a Business

The Nested BMC adds ReqEC and Feature Models as
Subcanvas

► Many subcanvases

Customer Double
Funnel Canvas

BMC

VPC

Customer Journey
Canvas (CJC)

Channel
Flipbook Canvas

Pain-Gain
Banana

Pain Canvas
Pain Killer Canvas

Pain Portfolio

Customer
BMCY

SPIN™ Canvas

Solution
Selling™

Canvas

Feature Model

Minimal Viable
Vision

Customer
Model

Customer
Jobs to be Done

Customer
Empathy Map

Minimal Viable
Product

Viral
Products

ReqEC
Function
modeling

Customer
modeling

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

58 Software as a Business

How to Find Features (from BMC and LC)

Brew Coffee

and

Switching
Power

xor

Keep warm
Store

Coffee

xor

Auto-
Switching Off

Manual
Switching Off Store in

visible Glas

Store in
Thermo

Heating with
plate

0..1

<<implies>>
<<excludes>>

or

Heat from
Top

Feature
Tree

Automation of
Brewing Coffee

and

Fresh
Coffee

Warm Coffee
for long time

Heating

AND

Store Coffee

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

59 Software as a Business

How to Find Features (via ReqEC)

Feature
Tree

Brew Coffee

and

Switching
Power

xor

Keep warm
Store

Coffee

xor

Auto-
Switching Off

Manual
Switching Off

Store in
visible Glas

Store in
Thermo

Heating with
plate

0..1

<<implies>>

<<excludes>>

or

Heat from
Top

1

2

3
4

Automation of
Brewing Coffee

and

Fresh
Coffee

Warm Coffee
for long time

Heating

AND

Store Coffee

1b

2b

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

60 Software as a Business

From VPC to ReqEC

► Remember Value Proposition Canvas

■ >ProductAndServiceFeatures

■ >Cain Creators

■ >Pain Killers

► Transfer left side fields to
Requirements Engineering Canvas
(ReqEC)

► Transfer field KeyFunctions to
Feature Model

Use Cases
(Value Propo.)

Components Domain ModelScope and
Context

ScenariosCrosscutting

Customer World

Business Rules
Stakeholders

Key Functions
(Features)

Functions

Feature tree

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

61 Software as a Business

Feature Models as well as Value Trees Obey Grammars

► Between two hierarchies, a value-feature mapping can be drawn showing which value is
delivered by which feature

Value Tree Feature Tree

Brew Coffee

and

Switching
Power

xor

Keep warm

Store
Coffee

xor

Auto-
Switching Off

Manual
Switching Off

Store in
visible Glas

Store in
Thermo

Heating with
plate

0..1

<<implies>>

<<excludes>>

or

Heat from
Top

Automation of
Brewing Coffee

and

Fresh
Coffee

Warm Coffee
for long time

Heating

AND

Store Coffee

«delivered by»

«delivered by»

«delivered by»

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Software as a Business

31.4 Bridging Features to Solutions
(World 3 – Solution engineering)

• Describing Feature Models as Constraint And-Or Trees

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

63 Software as a Business

From Feature Trees to Product Component Trees

Brew Coffee

and

Switching
Power

xor xor

Store
Coffee

Auto-
Switching Off

Manual
Switching Off

Store in
visible Glas

Store in
Thermo

Heating with
plate

0..1

<<implies>>

<<excludes>>

or

Heat from
Top

Feature
Tree

Coffee
machine

and

Switch

xor

Mug

xor

Auto-Off

Manual
Glas

Thermo

Heating
plate

0..1

<<implies>>

<<excludes>>

or

Top
Heater

Heating

Keep warm

Product
Component

Tree

Software
Automaton

Software
WebApp

0..1

«produced from»

«produced from»

«produced from»

► The feature-component mapping (feature-solution mapping) shows which feature is
produced from which component of the product.

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

64 Software as a Business

Bridging three Worlds: From Value Trees via Feature
Trees to Product Component Trees

Brew Coffee

and

Switching
Power

xor xor

Store
Coffee

Auto-
Switching Off

Manual
Switching Off

Store in
visible Glas

Store in
Thermo

Heating with
plate

0..1

<<implies>>

<<excludes>>

or

Heat from
Top

Feature Tree

Coffee
machine

and

Switch

xor

Mug

xor

Auto-Off

Manual
Glas

Thermo

Heating
plate

0..1

<<implies>>

<<excludes>>

or

Top
Heater

Heating

Keep warm

Product
Component Tree

Software
Automaton

Software
WebApp

0..1

«produced
from»

«produced
from»

«produced
from»

Value Tree

Automation of
Brewing Coffee

and

Fresh
Coffee

Warm Coffee
for long time

Heating

AND

Store Coffee

«delivered by»

«delivered by»

► Values can be traced via features to components of the product

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

65 Software as a Business

How Do We Derive a Minimal Viable Feature Set
Systematically?

► Remember Value Proposition Canvas

■ >ProductAndServiceFeatures

■ >Cain Creators

■ >Pain Killers

► Transfer left side fields to
Requirements Engineering Canvas
(ReqEC)

► Transfer field KeyFunctions to
Feature Model

Use Cases
(Value Propo.)

Components Domain ModelScope and
Context

ScenariosCrosscutting

Customer World

Business Rules
Stakeholders

Key Functions
(Features)

Functions

Multi-hierarchy
Feature model
with MVFS, MVF, MLF

Features-Components

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

66 Software as a Business

How Can We Select a MVFS and MVP from the
Feature Model?

► The MVP is a minimal-development-cost model: What does a Product Component tree cost
to develop, if a feature configuration is selected?

■ what does HeatingPlate cost?
■ what does Thermo cost?
■ what does Glass/HeadingFromTop cost?

Brew Coffee

and

Switching
Power

xor

Store
Coffee

xor

Auto-
Switching Off

Manual
Switching Off

Store in
visible Glas

Store in
Thermo

Heating with
plate

0..1

<<implies>>

<<excludes>>

or

Heat from
Top

Feature
Tree

Coffee
machine

and

Switch

xor

Mug

xor

Auto-Off

Manual
Glas

Thermo

Heating
plate

0..1

<<implies>>

<<excludes>>

or

Top
Heater

Heating

Keep warm

Product
Component Tree

Software
Automaton

Software
WebApp

0..1

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

67 Software as a Business

How To Compute the Cost of Features and MVFS in a
Lean Model

► Feature.Cost() Integer → is a function on the feature tree looking up all selected
subfeatures, relates them to their subproducts and accumulates their costs (the feature
cost metrics)

The cost of a feature is the accumulated cost of all related subproducts. The cost of a feature is the accumulated cost of all related subproducts.

The MVFS is the feature set with the minimal cost.

The MVP is the realization of the MVFS.

The MVFS is the feature set with the minimal cost.

The MVP is the realization of the MVFS.

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

68 Software as a Business

► Conceptualization Process:

► Canvas Trees Value Trees → Feature Trees Product Component Trees Multi-→ → →
Feature Model

Overview of MVP Construction

Lean Models
Initial feature model
with MVV, MVP

Immature
Canvases (full) Feature

Models for Scaling

Value Proposition is
A and B and C

Key partners

Channels are News,
Press, Web

Cost structure is

100€, 2 per day

Initial Feature
Model

Construction

Annes
Gedanke

Feature Model
Consolidation

Cost MetricsCanvas Tree
construction

Canvas Tree
greening

Nested Canvas maturification Feature Model Construction

Construction of
Component Tree

Construction of
Component Tree

Mature
Canvas Tree

Value Proposition is
A and B and C

Key partners

Channels are News,
Press, Web

Cost structure is

100€, 2 per day

Value Proposition is
A and B and C

Key partners

Channels are News,
Press, Web

Cost structure is

100€, 2 per day

OR

AND

XOROR

AND

XOR

ReqEC
Canvas

MVFS, MVP
Selection

OR

AND

XOR

OR

AND

XOR

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Software as a Business

31.6. From Feature Models (FM) and Multi-Product
Feature Models (MPFM) to Software Product Lines
(SPL)

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

70 Software as a Business

► Conceptualization Process:

► Canvas Trees Value Trees → Feature Trees Multi-Product Feature Model→ →

Multiple Canvases to Multi-Product Feature Model of
Multi-SPL

Lean Models (Lean Canvas Trees)
With initial feature model with
MVV, MVP

Immature
Canvases

(full) Multi-Product
Feature
Models for Scaling

Value Proposition is
A and B and C

Key partners

Channels are News,
Press, Web

Cost structure is

100€, 2 per day

Initial Feature
Model

Construction

Annes
Gedanke

Completion
Of Feature

Models

Adding
Multiple
Products

Canvas Tree
construction

Canvas Tree
greening

Nested Canvas maturification Feature Model Construction

Merging of
Feature Models
To a Multi-SPL

Multi-Product Feature Model
Construction

Mature
Canvas Tree

Value Proposition is
A and B and C

Key partners

Channels are News,
Press, Web

Cost structure is

100€, 2 per day

Value Proposition is
A and B and C

Key partners

Channels are News,
Press, Web

Cost structure is

100€, 2 per day

OR

AND

XOR

OR

AND

XOR

OR

AND

XOR

OR

AND

XOR

ANDAND

Multi-Product
Feature Model with
Product Families

Completion
Of Feature

Models

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

71 Software as a Business

Multi-Feature Product Model of a Product Line

► Combined with a multi-feature model, the green canvases document all products of your
product line

Brew Coffee
(and Tea)

and

Switch

xor

Keep warm Store

xor

Auto-
Switching Off

Manual
Switching Off

Store in
visible Glas

Store in
Thermo

Heating with
plate

0..1

or

Top
Heating

Brew Tea

0..1

Store Water

0..1

Timer
Controllable

Water Stream

Brew Coffee and
Espresso

and

0..1

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

72 Software as a Business

Remember: Multi-Feature Model (of Product Line)

► Variation adds 2 new products (Tea machine, coffee+pad-espresso machine)

► CoffeeMachine with enriched feature set

► Feature model may become too complex refactoring necessary→

Brew Coffee
(and Tea)

and

Switch

xor

Keep warm Store

xor

Auto-
Switching Off

Manual
Switching Off

Store in
visible Glas

Store in
Thermo

Heating with
plate

0..1

<<implies>> <<excludes>>

or

Top
Heating

Brew Tea

0..1

Store Water

0..1

Timer
Controllable

Water Stream

Brew Coffee and
Espresso

and

0..1

Tea MachineCoffee MachineCoffee-Epresso Machine

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

73 Software as a Business

The End

► More on modeling, lean modeling, and megamodeling in the course
■ “Model-Driven Software Development in Technical Spaces (MOST)” in WS

► Why do we need a grammar to model Canvases?

► Explain the concept of a Constraint Part Grammar (Constraint Tree Grammar (CTG) vs
Constraint Multiset Grammar (CMG)).

► Explain why a canvas is an instance of a CPG.
■ Which role do invariants play?
■ Which role do filling functions play?
■ Can the user execute / simulate a filling function?

► What is the difference of a value, a feature, and a component of the product?

► How do you compute the costs of an MVP?

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Software as a Business

31.6. Context-based Feature Models (CFM) and
Software Product Lines (CSPL)

