4

SECURE YOUR CODE AS FAST AS YOU l
RELEASE

How ShiftLeft is able to analyze a million lines of code in just under 15 minutes

Dresden, November 1, 2021
Dr.-Ing. Max Leuthauser

max@shiftleft.io (4 ShiftLeft

About me

2019 - Senior Software Developer, ShiftLeft GmbH (ShiftLeft.io)

2018 - Consultant, Software Developer, 1t
Language Engineer (Xtext, Xtend, EMF/Ecore,
Eclipse; mainly Automotive)

2017 - Dr.-Ing., TU Dresden ™

Dr.Ing. Max Leuthauser 2 (Shift

Outline

1 ShiftLeft in a nutshell

2 Getting technical

3 Other things | want to talk about

Dr.Ing. Max Leuthéuser 3 (Shift

Application is THE Attack Surface
| @FS Tecrinica (ZDie]

Muni system hacker hit others by

Scannin fOI' ear—old Java Vulnerabilit The attack happened at around the same time as one security
g y y researcher, known as Revolver, disclosed a local file inclusion
Bloomberg flaw on the AdultFriendFinder site.
Technology

- benefits&pro
Uber Hack Shows Vulnerability of
Software Code-Sharing Services Accidental data breaches remain the leading

cause of loss

TE InfoWorld

Mixpanel analytics accidentally slurped up passwords

How you could be leaking your secrets onto
GitHub
(WhiR}AD)|

UIFAX OFFICIALLY HAS NO

ROBERT MCMILLAN BUSINESS 04.11.14 DB:30 AM

E
E%CUSE HOW HEARTBLEED BRORE THE
— e INTERNET — AND WHY IT CAN
HAPPEN AGAIN

Dr.Ing. Max Leuthauser 4

GIZMODO
Wag Left User Data Exposed

“A vast majority of the attacks will be
on the custom code in an application”

Gartner

Verizon’ aigitalmedia services

Verizon DBIR 2016: Web Application Attacks are the #1
Source of Data Breaches

Percentage and count of attacks that resulted in data breaches per pattern, DBIR 2016

Web App Attacks 908
POS Intrusions 525
Miscellaneous Errors 197
Privilege Misuse 172
Cyber-espionage 155
Everything Else 125

Physical Theft / Loss 56
Crimeware 49

Denial-of-Service 1

Percentage of breaches

ShiftLeft in a Nutshell 1

Code analysis solution that finds:

* Business logic flaws /
(Auth bypasses, Insecure Direct Object References, etc.) .
* Insider threats, rootkits & back-doors - =

* Data flows & critical leakages

* Vulnerabilities in your code & all its dependencies /fé x‘\,
/
4

Dr.Ing. Max Leuthauser 9 (Shift

ShiftLeft in a Nutshell

Automation

* Code analysis at the speed of CI/CD
* Too late once your stuff is deployed
at the customer side

Dr.Ing. Max Leuthauser

ShiftLeft in a Nutshell

Results
Achieves highest Static Application Security Testing (SAST)
score ever on the OWASP Benchmark

The OWASP Benchmark for Security Automation

is a free and open test suite designed to evaluate the
speed, coverage, and accuracy of automated software
vulnerability detection tools and services.

Four possible test outcomes in the Benchmark:

* Tool correctly identifies a real vulnerability (True Positive)
* Tool fails to identify a real vulnerability (False Negative)

e Tool correctly ignores a false alarm (True Negative)

* Tool fails to ignore a false alarm (False Positive)

Dr.Ing. Max Leuth&user 7

OWASP Benchmark Results
Random Gacs

ShiftLeft in a Nutshell

ia

Developers

* seamlessly insert security
into CI/CD (code analysis
in minutes, not days)

* fix vulnerabilities faster
(get detailed information
such as line-of-code for
each vulnerability)

Dr.Ing. Max Leuthauser

o

AppSec

* protect every version of
every release

* increase feature velocity
w/o sacrificing security

* identify external data
leakages

&

Code Auditors

use Turing-complete
language to query your
application dataflows
integrate custom security
queries into CI/CD
annotate on your own for
customized code
analysis

K shift

Go Beyond 'grep’ to Analyze Your Code

* mine the Code Property Graph using a formal graph traversal language

* apply the same query across all your code
(independent of programming languages)
Java, Scala, C, C++, C#, Go, Javascript, Python, LLVM,
Kotlin, Ghidra

Dr.Ing. Max Leuthauser 9 (Shift

Ocular? Joern?

Goal: provide query language to describe patterns in code
- to identify bugs and vulnerabilities
- to help in deeply understanding large programs

Think of it as an extensible Code Analysis Machine
Programmable in JVM-based languages (e.g., Java/Scala/Kotlin)
You can write scripts, language extensions and libraries on top of it

Joern is Ocular’s open-source brother

See: docs.joern.io/lhome

OOS frontends for: C/C++, Javascript, x86/x64 bytecode via Ghidra,
Kotlin, LLVM bytecode

Query Database: queries.joern.io

Dr.Ing. Max Leuthduser 10 (Shift

Ocular Example

Dr.Ing. Max Leuthauser 11 G ShiftLeft

Let's get technical

Dr.Ing. Max Leuthauser

12

?77?

77?7

?77?

777

€ shiftLeft

Low-level Graph Representations of Programs 2

- Each graph provides a different perspective on the code
- Can we merge them?

D, D

X X

I:g Package Explorer e .=§=' v X -
i (i -
- 5 unit v | if (x < MAX) P true ﬂ>{ inty=2+*x |
—-FF junit
+-EF awtui C D
true y
+-fF extensions ENTRY
+- 33 framework AL

int x = source()

BCE @886 AhstractSet<String> mySet; e Program dependence graphs

r_?‘n. UML Class Diagram For AbstractSet

— 3
o’

(1) T Iterable<T> true

[BPath("
public ring duns, [Cor int x = source()
retur
} € false
(1) % Collection<E> @ = 0hiec|:|
s1ni
@Path(" A ¥ / \.
public | I : mg oid, BEConter ¢
inty=2+
o .
y = E EXIT l
@D % Setdb‘ B Ahstract(nllectinn<E>|
ink .
pubiic i A R— Dominator
| I
B i
— tree
5 public @) 7 AbstractSet<g>

Dr.Ing. Max Leuthauser e} (Shift

Combining Graphs with “Property Graphs”

“A property graph is a directed edge-labeled, attributed multi-graph”
- Attributes allow data to be stored in nodes/edges
- Edge labels allow different types of relations to be present in one graph

Dr.Ing. Max Leuthauser 14 (Shift

Modeling and Discovering Vulnerabilities
with Code Property Graphs

Fabian Yamaguchi*, Nico Golde', Daniel Arp* and Konrad Rieck*
*University of Gottingen, Germany
TQualcomm Research Germany

—> AST edge
—» CFG edge
— PDG edge

Dr.Ing. Max Leuthauser 15 (Shift

Specification - Key Design Ideas

- Specification that works over programming languages

- Prowde generic representation for core programming language concepts
Methods/Functions
Types
Namespaces
Instructions
Call sites

- Encode control flow structures only via a control flow graph
- Model only local program properties and leave global program
representations for later analysis stages

Dr.Ing. Max Leuthduser 16 (Shift

Spec at: cpg.joern.io
Impl. at: github.com/ShiftLeftSecurity/codepropertygraph

OSS Specification

TYPE_DECL
NAME: FOO e *| TYPE I NAHE: myMethod
full name ,v' DISPATCH TYPE: static
\ g NAME: int ORDER: @
FULL_NAME: int METHOD_FULL_NAME : Associated wia full name
io0.shiftleft. Foo .myMethod %

T NAME: myMethod
FULL_NAME: io.shiftleft.Foo.myMethod

IDENTIFIER

CODE: 42
ORDER: 1

CODE: int bar

FULL_NAME: io.shiftleft.Foo.myMethod NAME: bar
TYPE_FULL_NAME: int

NAME: myMethod

NAME: io/shiftleft/Foo.java

]

| METHOD ll 5
NAME: myMethod Assactated] NAME: int
FULL_NAME: io.shiftleft.Foo.myMethod ‘\ LA LLRL FULL_NAME: i o] AST
v
AST £ NAMESPACE_BLOCK |
;
/ - NAME: io.shiftleft
AST L FULL_NAME: iofshiftleft/Foo.java:io.shiftleft
METHOD_PARAMETER_IN
CODE: int paraml
NAME: paraml
METHOD_RETURN _| peijied e [_rvee_pect
i TYPE_FULL_NAME: 1 NAME: Foo
CODE: String = o FULL_NAME: io.shiftleft.Foo
FVALUATTON_STRATEGY: BY_SHARING IS_EXTERNAL: False
AST PARENT TYPE: NAMESPACE_BLOCK
AST_PARENT_FULL_NAME:
io/fshiftleft/Foo.java:io.shiftleft

Dr.Ing. Max Leuthauser 17 (Shift

“Container” for Code over arbitrary
Instruction Sets

- Define only a common format for

Call Site Method Stub
representing code ,
- Allow arbitrary instruction set (given foolx) = caL —H int foo(int x)
by semantics) as a parameter X, CALL_ARG
- Represent all code using only curors RN 1M X

X \
. aut i
- call sites and method stubs OUTPUT int x

- call edges, and control flow edges CALL RETURN

- data-flow semantics via data flow edges k
RET

Dr.Ing. Max Leuthauser 18 (Shift

Second Stage: “linking”

Dr.Ing.

Local analysis
(language
dependent)

™~
A

- [epstinze |

First level
(unlinked) CPG

Shared operations and “linking” steps

Second level
(enhanced and linked) CPG

.

Max Leuthauser

19

€ shiftleft

Base Layer of the Code Property Graph 2

- Production quality version of 2014 code property graph
- Language-independent intermediate representation of control-flow and data-

flow semantics
- Inter-procedural, flow-sensitive, context-sensitive, field-sensitive data-flow

tracker available that operates on this representation
- Heuristics and street smarts to terminate in < 10 minutes

€ shift

Dr.Ing. Max Leuthauser 20

Outside Information, Business Logic, and
False Positive (FP) Reduction

- Literature deals a lot with FPs due to model limitations
- In practice, most FPs result from context information, e.g.,
information about the business logic, that you cannot deduce from

the code alone:
- “This is an internal service that only our admin uses”
- “Without first convincing the authentication server, this code would never be
executed”
“Due to $aliens, this integer is always 5 and thus cannot be negative”
- Ability to model the $aliens part is crucial to reduce false positives

- We do this mostly via passes that tag the graph

Dr.Ing. Max Leuthauser 21 (Shift

Summary 2

Vulnerabilities

Multiple domain-specific layers

Call graph, type hierarchy, data
flows, configurations, dependencies

Base layer - low level local program
representations: syntax, control flow,
methods, types.

Dr.Ing. Max Leuthauser 22 (Shift

Scaling Static Analysis

- Summaries
- Scaling static analysis requires “summaries” of program behavior (in order to skip duplicate
calculation of facts, e.g., for library methods)
- Calculating summaries for data flow is common practice
- Upper layers of the CPG generalize the concept of a summary

- Parallelism
- Processors aren’t getting much faster, but you’re getting more and more cores.
- Literature has very little to say about multiple cores, let alone multiple cloud instances
- CPG passes are a design with parallelism in mind

Dr.Ing. Max Leuthduser 23 (Shift

Designed for Distributed Computing

- Passes can be run in a sequence like the passes of a compiler
- The design also allows to run independent passes in parallel though!

‘ (CPG Pass), ’—}: —>

LY
\
L]
*
L
.
¥
r
[}
’
!
L
!
[

= 0OH I MmcCcC oOm™X

‘ (CPG Pass), ’—}:

Original CPG Overlay

CPG with bverlay

Dr.Ing. Max Leuthauser 24 (Shift

Ok ok... that was “interesting” ...

But what are you actually doing every
day?

Dr.Ing. Max Leuthauser 25 (Shift

Technical Environment (Codescience Team)

ﬁX) +) = Bscala

Language:

IDE: mostly Intelllj some Vim, Sublime etc.

SCM: git

Reviews / PRs, etc.: GitHub

Buildtool: sbt

CI/CD: Jenkins, Grafana, Dockerhub, jFrog, Maven Central
Communication: Mail, Slack, Zoom

Dr.Ing. Max Leuthauser 26 (Shift

3

Dev Process (Codescience Team) 3

Mostly sales-process-driven:

- Proof-of-Concept-oriented: potential new customers want to see our stuff
working in their environment.

- Once they paid: mostly maintenance mode. Bug-fixing, ad hoc new features.

Dr.Ing. Max Leuthauser 27 (Shift

Master the Tooling

SCM

Your IDE
 Debugger

* Shortcuts

* Refactorings
Console-based
stuff

* some scripting

Dr.Ing. Max Leuthauser 28 (Shift

Other Lessons learned ...

It doesn’t have to be perfect — just “good enough”

No-one knows everything

You are responsible for your own learning path

Don’t get overwhelmed

Take a break

Dr.Ing. Max Leuthauser 29 (Shift

Other Lessons learned ...

* What’s the most important language in programming?

* Talking to humans is way more important than talking to machines

* Have a deep understanding of what you are building and why

* If code review in your team is a stressful experience you are doing it wrong
* Something will go wrong, be prepared

* Don’t be afraid to say “I don’t know”

* Learn in public

Dr.Ing. Max Leuthéuser 30 (Shift

|

“We'd now like to open the floor to shorter speeches disguised as questions.”

Dr.Ing. Max Leuthauser 31 (Shifﬂ et

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31

