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Original and Representing Model
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A model is an abstraction of an
original [Stachowiak]

A system model is an abstraction of
a system

A direct model is an abstraction of a
reality

A world model is an abstraction of a
world

An indirect model is an abstraction
of another model

A domain model is an abstraction of
a domain of the world
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Token Modeling Provides Abstraction of Features of Objects
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> In Token modeling, some features of the objects in original domain O are forgotten,
but never the objects themselves

= Abstraction over features
= Leading to view-based modeling, aspect-oriented modeling
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Type Modeling
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> Intype modeling, sets of objects are abstracted

N:m<n Mapping
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Type Modeling with Reification
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» Clabjects (class-objects) are classes reified as representant objects on the metalevel.
= |nan object-oriented program, clabjects are objects that represent classes

of other objects.

» Russells Paradox “The set of all sets containing themselves as elements” forbids

infinitely many reifications

» <<instance-of>> is a composition of <<element-of>> with <<reified-to>>
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Type Modeling with Reification Works over Several Levels:
The Smalltalk Metaclass
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» Smalltalk-80 was the first language to introduce metamodeling
» |tintroduced clabjects as class-objects (and as metaclasses).
» Changing the Smalltalk metaclass changes the semantics of all classes and all objects.

» InJava, class Class is the metaclass, but it is immutable
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<<collection>>
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Notation Clabject Hierarchy
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»  We write metaclasses with dashed lines, metametaclasses with dotted lines

M 3 ModellingConcept ModellingConcept
<<instance-of>> <<instance-of>>
Mz | Class | . Class:ModellingConcept |
e e e ; L e e e e d
<<instance-of>> <<instance-of>>
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Q16: Languages in Software Factories are Built on
Metamodels and Grammars
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Q1: IDE and Model-Driven Software Development
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» MDSD systematically connects the customer's problems, the system's
requirements, testing, design, coding, and documentation and develops these

models in coordination

» MDSD relies on model mappings between requirements, test cases, design, and
code

> Integrated Development Environments (IDE) provide tools for all singular aspects,
as well as model mappings
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Q2: Tool-Objects and Materials in an Integrated
Development Environment (IDE, SEU) for MDSD
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The End
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