TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

Part O - MOST Introduction
1. Modeling

Prof. Dr. rer. nat. Uwe AlRmann

Institut fur Software- und
Multimediatechnik

Lehrstuhl Softwaretechnologie
Fakultat fur Informatik
Technische Universitat Dresden

http://st.inf.tu-dresden.de/teaching/most ‘(A‘
Version WS-21-0.2, 20.11.21 \v)’
DRESDEN

concept

Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. ABmann

Literature

2

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

» Obligatory:
= [HesseMayr] Wolfgang Hesse and Heinrich C. Mayr. Modellierung in der
Softwaretechnik: eine Bestandsaufnahme. Informatik Spektrum, 31(5):377-

393, 2008.

» References:
= Stachowiak, Herbert. Allgemeine Modelltheorie. Springer, Wien, 1973

Original and Representing Model

3 Model-Driven Software Development in Technical Spaces (MOST)

|s-described-by
Mapping

sent’s/

Original

Modeled
properties

Image

Additional ,,abundant”
properties

Non-modeled ,preterite”
properties

> [HesseMayr, Stachowiak]

» Model mappings can be sequenced:

- j C i

@ © Prof. U. ABmann

4

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

A model is an abstraction of an
original [Stachowiak]

A system model is an abstraction of
a system

A direct model is an abstraction of a
reality

A world model is an abstraction of a
world

An indirect model is an abstraction
of another model

A domain model is an abstraction of
a domain of the world

5 Model-Driven Software Development in Technical Spaces (MOST) https://openclipart.org/detail/205983/mount-kilimanjaro

Py
Descriptive Prescriptive
Modeller Modeler;

Specifier;

Implementer

[HesseMayr]

@ © Prof. U. ABmann

Token Modeling Provides Abstraction of Features of Objects

6

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

> In Token modeling, some features of the objects in original domain O are forgotten,
but never the objects themselves

= Abstraction over features
= Leading to view-based modeling, aspect-oriented modeling

1:1 Object Mapping

O —
o— i

>0
 2®
 2®
 2®
>0
2@

——
-l

Type Modeling

8

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

> Intype modeling, sets of objects are abstracted

N:m<n Mapping

0 0O

Type Modeling with Reification

9

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ARBmann

» Clabjects (class-objects) are classes reified as representant objects on the metalevel.
= |nan object-oriented program, clabjects are objects that represent classes

of other objects.

» Russells Paradox “The set of all sets containing themselves as elements” forbids

infinitely many reifications

» <<instance-of>> is a composition of <<element-of>> with <<reified-to>>

<<reified-to>>
<<class>>

Person

.
-
-

ﬁ&«element-of»

John:Person

-

<<class-object>>
Person

-
-
-
-
-
-
-
-
-
-

-

<<metalevel>>

<<base level>>

Type Modeling with Reification Works over Several Levels:
The Smalltalk Metaclass

10

Model-Driven Software Development in Technical Spaces (MOST)

» Smalltalk-80 was the first language to introduce metamodeling
» |tintroduced clabjects as class-objects (and as metaclasses).
» Changing the Smalltalk metaclass changes the semantics of all classes and all objects.

» InJava, class Class is the metaclass, but it is immutable

<<collection>>
extent

<<collection>>
extent

<<reified-to>>

T«element-of»

<<reified-to>>
.

<<Class>>
Person

ﬁ&«element-of» .

John:Person

@ © Prof. U. ABmann

-
-
-
-
-
-
-
-
PR
-

________ <<instance-of>>

-

<<Metaclass>>
Class

v
<<instance-of>>

Notation Clabject Hierarchy

11 Model-Driven Software Development in Technical Spaces (MOST)

» We write metaclasses with dashed lines, metametaclasses with dotted lines

M 3 ModellingConcept ModellingConcept
<<instance-of>> <<instance-of>>
Mz | Class | . Class:ModellingConcept |
e e e ; L e e e e d
<<instance-of>> <<instance-of>>

M 1 Car Car:Class

<<instance-of>> <<ijnstance-of>>

M 0 car1 car1:Car
o
o

Q16: Languages in Software Factories are Built on
Metamodels and Grammars

Model-Driven Software Development in Technical Spaces (MOST)

modeling I programming I

General
Purpose
Language

Markup
Languages
/

© Prof. U. ABmann

Metamodels + Grammars

.

diagram-
matic

textual I

M2

Q1: IDE and Model-Driven Software Development

13 Model-Driven Software Development in Technical Spaces (MOST)

» MDSD systematically connects the customer's problems, the system's
requirements, testing, design, coding, and documentation and develops these

models in coordination

» MDSD relies on model mappings between requirements, test cases, design, and
code

> Integrated Development Environments (IDE) provide tools for all singular aspects,
as well as model mappings

Problem .
Space Solution
Space O
~
Customer Needs / /\\
Problem The
Product
Software T; Blte
Requirements L
q \\‘ O
>
/\\

2z =
4’ =
" H $
g $
Test E i
> H] S
2, H
“, H o
% o
2 W
o gy

\
\/ \
User
Docs

@ © Prof. U. ABmann
N
SN

Q2: Tool-Objects and Materials in an Integrated
Development Environment (IDE, SEU) for MDSD

14 Model-Driven Software Development in Technical Spaces (MOST)

Application-Oriented Tools e
Requirements D tat Repository
[q][Design Tool] Coding Tool || Testing Tool ocumentation (M2)

Tool Tool

Technical Tools

[Model mappings] [Model transformation] [Model composition]

Querying]

[Reachability analysis] [Attribution analysis]

engine

f Reasoning J

Relational GRS TRS XML
engine engine engine engine

Materials

@ © Prof. U. ABmann

— = Crrr
Test Case Metamodel
Requirements Repository Repository (M2)

Repository

Documentation
Repository

— 3
Design Implementation
Repository Repository
(PIM, Arch) (PSI, Code)

The End

15

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

