
Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Software Development in Technical Spaces

2. Heterogeneous Applications for MOST -
Design Tools for Complex Systems

Prof. Dr. Uwe Aßmann
Technische Universität Dresden
Institut für Software- und
Multimediatechnik
Lehrstuhl Softwaretechnologie
http://st.inf.tu-dresden.de/
teaching/most
WS 21-0.2, 20.11.21

1) Motivation for MOST
2) Design Tools for Complex Software Systems
3) Design of CPS with Domain-Specific CPS tool

chain

1) Cyber-physical systems (CPS)
4) Why Software Factories?

 ©
 P

ro
f.

U
. A

ß
m

an
n

2 Model-Driven Software Development in Technical Spaces (MOST)

Obligatory Literature

► [Preevision] Vector. Modellbasierte Elektrik-/Elektronik-Entwicklung vom
Architekturentwurf bis zur Serienreife. Preevision Handbuch

■ http://vector.com/portal/medien/cmc/marketing_items/web/91106.pdf

► [Reichmann] Clemens Reichmann, Daniel Gebauer, Klaus D. Müller-Glaser. Model
Level Coupling of Heterogeneous Embedded Systems. Technical Report, FZI, 2008

■ http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.101.366

► [ETAS] Ulrich Lauff, Christoph Stoermer, Thomas Dollmaier, Mathias Klauda. ETAS
GmbH, Stuttgart, Germany. Development Tools for Hybrids and Electric Cars.

■ http://www.etas.com/download-center-files/
products_ASCET_Software_Products/
1002_ATZ_elektronik_Entwicklungswerkzeuge_fuer_HEV_EV_EN.pdf

 ©
 P

ro
f.

U
. A

ß
m

an
n

3 Model-Driven Software Development in Technical Spaces (MOST)

Literature

► [Zverlov] Sergey Zverlov. Comparison of two level-based Approaches for the
Development of Embedded Systems. Bachelor Thesis in Computer Science. TU
München, 2008.

► [Wurman] Peter R. Wurman, Raffaello D’Andrea, and Mick Mountz. Coordinating
Hundreds of Cooperative, Autonomous Vehicles in Warehouses. AI Magazine Volume
29 Number 1 (2008) (© AAAI)

► [MüGl09] Prof. Dr.-Ing. Klaus D. Müller-Glaser. Slide set. Model-Driven Engineering for
Automotive Systems. UCSD SAASE 2009

■ http://jacobsschool.ucsd.edu/GordonCenter/g_leadership/l_summer/
docs/saase/symposium-presentations/KlausMuellerGlaser.pdf

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Software Development in Technical Spaces

2.1 Example for Heterogeneous Software
Factories:
Integrated Development Environments for Large
Software Systems (MDSD-Software-IDE)

 ©
 P

ro
f.

U
. A

ß
m

an
n

8 Model-Driven Software Development in Technical Spaces (MOST)

Change in Software Development

► From code-only to documents to models to macromodels (integrated consistent
multimodels)

Document-Centered Software Development
(tests, documentation)

Model-Driven Software Development (MDSD)
(requirements, design, tests, documentation)

Macromodel-Driven Software Development
(integrated, consistent requirements, design, tests, documentation)

Code-Centered Software Development
(tests, but no documentation)

 ©
 P

ro
f.

U
. A

ß
m

an
n

9 Model-Driven Software Development in Technical Spaces (MOST)

What is needed for MDSD: Tool, Language, Process,
Workflow and Method Engineering

Process Engineering (Method Engineering) is the discipline of
specifying and constructing methods and processes for a team of people
to conduct a project.
Software Process Engineering (Software Method Engineering)
focuses on software development processes.

Workflow Engineering is the discipline of running executable processes
(workflows)
● For a team, in an application
Workflow engineering uses behavioral languages.

Tool Engineering is the
discipline of constructing
company-specific, domain-
specific tools.

Language Engineering is the
discipline of constructing
company-specific, domain-
specific languages for tools,
processes, and workflows.

Product-Line Engineering is
the discipline of constructing
domain-specific product families.

Software Ecosystem
Engineering is the discipline of
constructing open product
platforms with appstores.

 ©
 P

ro
f.

U
. A

ß
m

an
n

10 Model-Driven Software Development in Technical Spaces (MOST)

Design Tools:
Integrated Development Environment (IDE)
Software-Entwicklungsumgebungen (SEU)

► IDE support Computer aided Software Engineering (CASE)

► A MDSD-IDE (Meta-CASE) is complex software machine tool (Software-Werkzeugmaschine), an
IDE for model-driven software development supporting

■ Many languages (DSL, metamodels) in a technical space

■ Heterogeneous software development

■ Model management system and Macromodel

► Other terms

■ Design Tools

■ Integrated Computer Aided Software Engineering (I-CASE)

■ Integrated Software Factory (ISF)

■ Software Engineering Environment System (SEES)

■ Integrated Project Support Environment (IPSE)

■ Integrated Software Engineering Environment (ISEE)
Nagl. M.: Software-Entwicklungsumgebungen: Einordnung und zukünftige Entwicklungslinien;
Informatik-Spektrum 16(1993) H.5, S. 273-280

An integrated development environment (IDE, Software-
Entwicklungsumgebung, SEU) consists of a structured set of
integrated standalone tools
•to support a team in software development (process engineering)
•to construct a multimodel or macromodel.

 ©
 P

ro
f.

U
. A

ß
m

an
n

11 Model-Driven Software Development in Technical Spaces (MOST)

Design Tools can be Heterogeneous
(Heterogeneous Software Factories)

► While IDE are hosted in one technical space, (Heterogeneous) Software Factories span
several ones.

Design Tools for Heterogeneous Software-Systems
(MetaCASE)

Design Tools for Heterogeneous Embedded Systems
(MetaCASSE)

Design Tools for Cyber-Physical Systems
(MetaCACPSE)

Design Tools for Software-Systems
(IDE)

 ©
 P

ro
f.

U
. A

ß
m

an
n

12 Model-Driven Software Development in Technical Spaces (MOST)

Q16: Languages in Software Factories are Built on
Metamodels and Grammars

General
Purpose

Language

Domain-
Specific

Language

Controlled
Natural

Language

Markup
Languages

Metamodels + Grammars

diagram-
matic

textual

modeling programming

M2

 ©
 P

ro
f.

U
. A

ß
m

an
n

13 Model-Driven Software Development in Technical Spaces (MOST)

Basic Languages for Design Tools

OO-
Diagramme

Data-flow
diagramm

(DFD)

Function
tree

Nassi-
Schneiderman

diagrams

Petri Nets

Pseudo-
code

Binary
decision
diagrams

Decision
tables

Petri Nets

State
automata

Jackson
dia-

grams

Entity-
Relation-

ship
diagrams

object-oriented
method

data-oriented
method

functional
method

control-
oriented
method

Data
Dictionary

after [BAL]

State-
charts

Workflow

ST-2

ST-2

ST-2

ST

ST

OO-
Realtime

Diagramme

Role
Modeling

RuleML
URML

Spider-
diagrams

OCL

logic
method

Ontologies

XML-
Querying

Graph
Querying

ST-2
CBSE

ST-2

Graph
Structuring

rule-based
method

state
oriented
method

SysML

hierarchic
method

ST-2

UML
components

ST-2

 ©
 P

ro
f.

U
. A

ß
m

an
n

14 Model-Driven Software Development in Technical Spaces (MOST)

Problem for Companies: Building Domain- and Company-
Specific Software Tools is Expensive

Tool Person years Cost in kEuro

Compiler 1-2 100

Optimizer 1-3 150

Back-End 0.5-1 100

Compiler component
framework

20 1000

UML-IDE 5 250

Java-Refactorer 2-4 200

Energy Unit Test-
Framework

1 50

Tool for Requirments
management

2-4 200

Mobile Phone Test-
Framework

2 100

 ©
 P

ro
f.

U
. A

ß
m

an
n

15 Model-Driven Software Development in Technical Spaces (MOST)

How to Master Tool, Language, Process, Method Engineering
in a Company?

How can I create
simple tools, methods, languages,

and
reuse them for more complex tools, methods, languages

in my company?

Answer:
Mastering a software factory in a technical space

creating and composing
● Metamodels of base languages (on M2)

● Models (on M1)
● Repositories (on M0)

 ©
 P

ro
f.

U
. A

ß
m

an
n

16 Model-Driven Software Development in Technical Spaces (MOST)

Maturity Levels of Software Companies

► Many companies do not know technical spaces nor software factories

► Many companies work with homogeneous software development in one technical space
► Some companies master heterogeneous software development in one technical spaces for

complex software systems. Tools are required

► Some companies master heterogeneous software development in several technical spaces
for very complex software systems. MDSD tool chains are required

Product lines

Heterogeneous development with Software Factories
with several technical spaces

Homogeneous development with Software Factories
 - one technical space -

Software Ecosystems

LanguagesTools Processes

 ©
 P

ro
f.

U
. A

ß
m

an
n

17 Model-Driven Software Development in Technical Spaces (MOST)

Evolution of Software Factories

Meta-Case
IDE

Universal
Reqt‘s Analysis &

Design Tools
Interface Editors

IDE

Debuggers
Subroutine
Packages

Compilers
Interpreters
Execution
Profilers

Assemblers
Core Dump
Analyzers

1965 1970 1980 1990 2000

After [Alan S. Fisher. 1991. Case: Using Software Development Tools (2nd ed.). John Wiley & Sons, Inc., New York, NY, USA., S.20]
https://archive.org/details/caseusingsoftwar00fish

2010

DSL-IDE with
domain-specif.

Languages

Multi-Technical-
Space

Development

2015 2020

Multi-Technical-
Space

Development

Multi-Technical-
Space

Development

Model-driven
Tool Chains
(MDSD IDE)

Domain-spec.
CPS tool

chains

Software IDE

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Software Development in Technical Spaces

2.2. Example 2 of Software Factory:
“Silicon Compilers”

 ©
 P

ro
f.

U
. A

ß
m

an
n

19 Model-Driven Software Development in Technical Spaces (MOST)

• [Wikipedia:Silicon_Compiler] A silicon compiler is a software system that
takes a user's specifications and automatically generates an integrated
circuit (IC). The process is sometimes referred to as hardware compilation.

• [Wikipedia:Design_flow_(EDA)]
• Alberto Sangiovanni-Vincentelli distinguished three periods of EDA [Tides]:
• “The Age of Invention: During the invention era, routing, placement, static timing analysis

and logic synthesis were invented.
• The Age of Implementation: In the age of implementation, these steps were drastically

improved by designing sophisticated data structures and advanced algorithms. This allowed the
tools in each of these design steps to keep pace with the rapidly increasing design sizes.
However, due to the lack of good predictive cost functions, it became impossible to execute a
design flow by a set of discrete steps, no matter how efficiently each of the steps was
implemented.

• The Age of Integration: This led to the age of integration where most of the design steps are
performed in an integrated environment, driven by a set of incremental cost analyzers.”

Pr
of

.
U

.
A
ßm

an
n,

 T
U

 D
re

sd
en

19

Example 1: MDSD ToolChain: Silicon Compilers

 ©
 P

ro
f.

U
. A

ß
m

an
n

20 Model-Driven Software Development in Technical Spaces (MOST)

Industrial
Silicon

Compiler

Systematic
Silicon

Compiler

Ad-hoc
Silicon

Compiler

20

Example 1: How the Silicon Compiler Industry Matured over
Time

Age of invention

Age of implementation

Age of integration

[Sangiovanni-Vincentelli Tides]

► Sangiovanni-Vincentelli claims that other industries (e.g., for CPS) will go the same way

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Software Development in Technical Spaces

2.3. Example 3:
Software Factories for Cyber-Physical Systems

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Software Development in Technical Spaces

2.3.1. What is a Cyber-Physical System (CPS)?

 ©
 P

ro
f.

U
. A

ß
m

an
n

23 Model-Driven Software Development in Technical Spaces (MOST)

• [Wurmer] Just search on YouTube for Kiva Systems
• https://www.youtube.com/watch?v=8gy5tYVR-28
• https://www.youtube.com/watch?v=6KRjuuEVEZs

Pr
of

.
U

.
A
ßm

an
n,

 T
U

 D
re

sd
en

23

Kiva Bots for Logistics

https://www.youtube.com/watch?v=8gy5tYVR-28
https://www.youtube.com/watch?v=6KRjuuEVEZs
https://www.youtube.com/watch?v=8gy5tYVR-28
https://www.youtube.com/watch?v=6KRjuuEVEZs

 ©
 P

ro
f.

U
. A

ß
m

an
n

24 Model-Driven Software Development in Technical Spaces (MOST)

Smart Parking

Pr
of

.
U

.
A
ßm

an
n,

 T
U

 D
re

sd
en

24

http://commons.wikimedia.org/wiki/File:Bundesarchiv_Bild_183-H0605-0007-001,_Rostock,_Ernst-Th%C3%A4lmann-
Platz,_Parkplatz,_Marienkirche.jpg#mediaviewer/File:Bundesarchiv_Bild_183-H0605-0007-001,_Rostock,_Ernst-Th
%C3%A4lmann-Platz,_Parkplatz,_Marienkirche.jpg

 ©
 P

ro
f.

U
. A

ß
m

an
n

25 Model-Driven Software Development in Technical Spaces (MOST)

• „Standard“ Computing maps the real world into the computer and
computes about it by simulation

„Standard“ Computing

Virtual World
Real World

System

Miniaturized
Real world

represent

computing

 ©
 P

ro
f.

U
. A

ß
m

an
n

26 Model-Driven Software Development in Technical Spaces (MOST)

• The computer is integrated into the real-life object

Embedded System

Virtual World
Real World

System

ES

ES

ES

 ©
 P

ro
f.

U
. A

ß
m

an
n

27 Model-Driven Software Development in Technical Spaces (MOST)

• Simulation of intelligent things in space and time
• Search possible

• Control of the intelligent things in space and time
– Self regulation
– Self optimization
– Self organisation

• Dual reality

Cyber-Physical System (CPS)

Virtual World Real World

Miniaturized
Real world

Represent

Control/search

 ©
 P

ro
f.

U
. A

ß
m

an
n

28 Model-Driven Software Development in Technical Spaces (MOST)

Real World

• Systems of CPS, i.e., remote tools

The Internet of Things

Virtual World

Real WorldMiniaturized
Real world represent

control

Real World

represent

controlMiniaturized
Real world

 ©
 P

ro
f.

U
. A

ß
m

an
n

29 Model-Driven Software Development in Technical Spaces (MOST)

• Cyber-physical systems are the first step in the internet of things

Trend CPS

Embedded
systems

Computing CPS
Human-CPS

(Resubic
Systems)

Internet of things

10**9 chips 10**10 chips 10**13 chips

Systems
of

CPS

 ©
 P

ro
f.

U
. A

ß
m

an
n

30 Model-Driven Software Development in Technical Spaces (MOST)

Two Classes of Cyber-Physical Systems for
Cyber-Physical Search and Management

CPS Capabilities

Sensing Actuating

System

EnvironmentSelf-Aware

Moving Interacting„Searching“ Predicting

 ©
 P

ro
f.

U
. A

ß
m

an
n

31 Model-Driven Software Development in Technical Spaces (MOST)

Cyber-Physical Database Systems =
Analysis, Simulation and Prediction

Measure/Collect

AnalyzeDecide

Act

Sensors

cyber

physical

Simulation

Raw Data

Goal
Present

state
Objective

 ©
 P

ro
f.

U
. A

ß
m

an
n

32 Model-Driven Software Development in Technical Spaces (MOST)

A Cyber-Physical System

http://commons.wikimedia.org/wiki/File:Traffic_seen_from_top_of_Arc_de_Triomphe.JPGhttp://commons.wikimedia.org/wiki/File:Traffic_seen_from_top_of_Arc_de_Triomphe.JPG

 ©
 P

ro
f.

U
. A

ß
m

an
n

33 Model-Driven Software Development in Technical Spaces (MOST)

Cloud Robots =
Cyber-Physical Management Systems

Measure/Collect

AnalyzeDecide

Act

SensorsActuators

cyber

physical

Simulation

Parameters

Raw Data

Goal
Present

state
Objective

 ©
 P

ro
f.

U
. A

ß
m

an
n

34 Model-Driven Software Development in Technical Spaces (MOST)

World Database Systems are Monitoring CPS (Analysis,
Simulation and Prediction)

Measure/Collect

AnalyzeDecide

Act

Sensors

cyber

physical

Simulation

Raw Data

Goal
Present

state
Objective

World
Model

Cloud

Real World

Discrete and
continuous models

 ©
 P

ro
f.

U
. A

ß
m

an
n

35 Model-Driven Software Development in Technical Spaces (MOST)

• Realtime data from the city‘s traffic
• http://www.vamosportal.de/
• http://wwwpub.zih.tu-dresden.de/~vamos/flyer/vamos_web.pdf

Pr
of

.
U

.
A
ßm

an
n,

 T
U

 D
re

sd
en

Ex.: The VAMOS Traffic Management System
(Verkehrsleitsystem) Dresden

 ©
 P

ro
f.

U
. A

ß
m

an
n

36 Model-Driven Software Development in Technical Spaces (MOST)

Cloud Robots are Controlling CPS

Measure/Collect

AnalyzeDecide

Act

SensorsActuators

Simulation

Parameters Raw Data

Goal
Present

state
Objective

Discrete and
continuous models

Cloud World
Model

Real World

cyber

physical

 ©
 P

ro
f.

U
. A

ß
m

an
n

37 Model-Driven Software Development in Technical Spaces (MOST)

• How can I control a cloud robot move in space?

Physical Dynamics (Movement) of Cloud Robot

Surface

Weather

forces

heat

rain

Layers

Air

Cloud Robots
Need

World Models

 ©
 P

ro
f.

U
. A

ß
m

an
n

38 Model-Driven Software Development in Technical Spaces (MOST)

Cloud Robots are Adaptive Systems
(MAPE Loop), and run a Dynamic Software Product Lines

38

Sensors

Actuators

Measure

Analyze

Plan

Execute

Robot Software

Elastic Architecture

 ©
 P

ro
f.

U
. A

ß
m

an
n

39 Model-Driven Software Development in Technical Spaces (MOST)

39

Cloud Robots are Multi-Adaptive Systems

Sensors

Actuators

Robot Software

Measure

Analyze

Plan

Execute
Sensors

Actuators

Elastic Architecture

 ©
 P

ro
f.

U
. A

ß
m

an
n

40 Model-Driven Software Development in Technical Spaces (MOST)

Cloud Robots are Context-Adaptive Systems

40

Robot

Environment (Context, World Model)

Measure

Analyze

Plan

Execute

Sensors

Actuators

Sensors

Actuators

Sensors

Software

Elastic Architecture

 ©
 P

ro
f.

U
. A

ß
m

an
n

41 Model-Driven Software Development in Technical Spaces (MOST)

• Embedded System: machines, robots, presses, transport systems
• CPS: Autonomous control of the factory

• Self assembly of the products
• Autonomous control of logistics
• Pull of products instead of push

Industrie-4.0 (Smart Factory) with CPS

http://commons.wikimedia.org/wiki/File:Mail_sorting_assembly_line.jpg

http://commons.wikimedia.org/wiki/File:Factory_Automation_Robotics_Palettizing_Bread.jpg?uselang=de

http://commons.wikimedia.org/wiki/File:Mail_sorting_assembly_line.jpg
http://commons.wikimedia.org/wiki/File:Mail_sorting_assembly_line.jpg
http://commons.wikimedia.org/wiki/File:Mail_sorting_assembly_line.jpg

 ©
 P

ro
f.

U
. A

ß
m

an
n

42 Model-Driven Software Development in Technical Spaces (MOST)

• Embedded System: Railcabs are autonomous train cars (Paderborn)
• CPS: Optimization of the German logistics

Smart Traffic/Transport/Logistics mit CPS

http://www.railcab.de

http://www.railcab.de/
http://www.railcab.de/

 ©
 P

ro
f.

U
. A

ß
m

an
n

43 Model-Driven Software Development in Technical Spaces (MOST)

• All domains in transport, logistics, assembly, housing, cities will change
• Nothing will stay as it is
• All engineering disciplines will change until 2020

The Revolution of CPS

So far:

Miniaturization of the
world in the computer

To make decisions
about it

With CPS:

All objects of the real world
have dual reality

Control of the place of things
 in space and time

 ©
 P

ro
f.

U
. A

ß
m

an
n

44 Model-Driven Software Development in Technical Spaces (MOST)

Questions

How can we build such complex tool suites for CPS
(CPS-IDE)?

Answer: By Model-Driven Software Development (MDSD)
for software and system, with

● Metamodels of languages (on M2)
● Models (on M1)

● Repositories (on M0)

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Software Development in Technical Spaces

2.3.2 Domain-Specific Software Factories (Design
Tools) for Design of Cyber-Physical Systems

 ©
 P

ro
f.

U
. A

ß
m

an
n

48 Model-Driven Software Development in Technical Spaces (MOST)

CPS-
Software
Factory

Domain
Models
• World models
• System models

System
models

Different
Levels of

Abstraction

Domain-
specific

algorithms

Pr
of

.
U

.
A
ßm

an
n,

 T
U

 D
re

sd
en

48

Domain-Specific CPS-Software Factories

CPS-Software Factories
are domain-specific

 ©
 P

ro
f.

U
. A

ß
m

an
n

49 Model-Driven Software Development in Technical Spaces (MOST)

49

Example: Car Design with PREEVision (Vector)

Requirements

Logical Architecture

System Software
Architecture

Implementation

Hardware
Architecture

Electric circuit

Wiring harness

Geometric topology

[Preevision]

 ©
 P

ro
f.

U
. A

ß
m

an
n

50 Model-Driven Software Development in Technical Spaces (MOST)

PreeVision has 3 Tools Steered by Metamodels

► PREEvision Architect

► PREEvision Function Designer

► PREEvision Electric Designer

System Analysis

System Design

Software Analysis ECU Analysis

ECU DesignSoftware Design

Software
In the Loop

Software
Implementation

Software
Integration

ECU
Integration

Hardware in the
Loop

Network integration

Car integration

► With options:
■ vTESTcenter
■ PREEvision Collaboration

Platform

► All involved models are metamodeled

[MüGl09]

 ©
 P

ro
f.

U
. A

ß
m

an
n

51 Model-Driven Software Development in Technical Spaces (MOST)

PreeVision Models in More Details

► Requirements specification with Excel and Requirements Interchange Format (RIF)

► Logical architecture with AUTOSAR components

 ©
 P

ro
f.

U
. A

ß
m

an
n

52 Model-Driven Software Development in Technical Spaces (MOST)

PreeVision Models in More Details

► Software Architecture with Simulink components (blocks) and ASCET model
components (from ETAS)

► Implementation (generated or hand written)

 ©
 P

ro
f.

U
. A

ß
m

an
n

53 Model-Driven Software Development in Technical Spaces (MOST)

PreeVision Models in More Details

► Hardware architecture with LDF component model

► Electronic circuit design in ECU by ELOG

 ©
 P

ro
f.

U
. A

ß
m

an
n

54 Model-Driven Software Development in Technical Spaces (MOST)

PreeVision Models in More Details

► Wiring in the car (physical network) with KBL

► 3-D CAD drawings for geometrical topology

 ©
 P

ro
f.

U
. A

ß
m

an
n

55 Model-Driven Software Development in Technical Spaces (MOST)

55

Electric Cars (ETAS)

[ETAS]
http://www.etas.com/en/products/ascet_md_modeling_design.php

 ©
 P

ro
f.

U
. A

ß
m

an
n

56 Model-Driven Software Development in Technical Spaces (MOST)

CPS
Software
Factory

MDSD Tool
Chain

Ad-hoc
MDSD

Pr
of

.
U

.
A
ßm

an
n,

 T
U

 D
re

sd
en

56

CPS Software Factories (CPS IDE, Design Tools, CPS Tool
Chains) are a Sign of a Maturing Productivity Industry

Age of invention

Age of implementation

Age of integration

Will hold for all domains of CPS!

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Software Development in Technical Spaces

2.4 Why Do We Need Software Factories and
MDSD in TS?

 ©
 P

ro
f.

U
. A

ß
m

an
n

60 Model-Driven Software Development in Technical Spaces (MOST)

(Heterogeneous) Software Factories

Software Factories for Software Product Lines
in Complex, Domain-Specific Software-Systems

Software Factories for Software Product Lines
in Embedded Systems

Software Factories for Software Product Lines
in Cyber-Physical Systems

Technical
Space 1

Technical
Space 2

Technical
Space 3

 ©
 P

ro
f.

U
. A

ß
m

an
n

61 Model-Driven Software Development in Technical Spaces (MOST)

Q10: The House of a Technical Space

Mega- and Macromodels
Tracing, Regeneration, Synchronization

Tool Engineering
Composition, Extension

Model Management
Composition, Mapping, Transformation

Technical
Space
Bridges

Technical Space

Meta-
modeling

Model Analysis
Querying, Attribution, Analysis, Interpretation

Metapyramid (Metahierarchy)

 ©
 P

ro
f.

U
. A

ß
m

an
n

62 Model-Driven Software Development in Technical Spaces (MOST)

Q11: Overview of Technical Spaces in the Classical
Metahierarchy

Gramm
arware
(String
s)

Text-
ware

Table-ware Treewar
e
(trees)

Link-Tree-
ware

Graph
ware/
Model
ware

Role-
Ware

CROM-
Ware

Ontology
-ware

Strings Text Text-
Table

Relationa
l Algebra

NF2 XML Link
trees

MOF Eclipse CDI
F

MetaEdit+ Context-
role graphs

OWL-Ware

M
3

EBNF EBNF CWM
(common
warehou
se model)

NF2-
language

XSD JastAd
d,
Silver

MOF Ecore,
EMOF

ERD GOPPR CROM RDFS
OWL

M
2

Gramma
r of a
language

Gramm
ar with
line
delimite
rs

csv-
heade
r

Relationa
l Schema

NF2-
Schema

XML
Schema
, e.g.
xhtml

Specific
RAG

UML-
CD, -SC,
OCL

UML,
many
others

CDI
F-
lang
uage
s

UML,
many
others

CROM HTML
XML
MOF UML
DSL

M
1

String,
Program

Text in
lines

csv
Table

Relation
s

NF2-tree
relation

XML-
Docum
ents

Link-
Syntax-
Trees

Classes,
Progra
ms

Classes,
Program
s

CDI
F-
Mod
els

Classes,
Programs

CROM
models

Facts (T-
Box)

M
0

Objects Sequenc
es of
lines

Seque
nces of
rows

Sets of
tuples

trees dynami
c
semanti
cs in
browse
r

Object
nets

Hierarch
ical
graphs

Obje
ct
nets

Object nets Context-
Object-Role
Nets

A-Box
(RDF-
Graphs)

 ©
 P

ro
f.

U
. A

ß
m

an
n

64 Model-Driven Software Development in Technical Spaces (MOST)

Q12: The ReDoDeCT Problem and its Macromodel

► The ReDoDeCT problem is the problem how requirements, documentation, design,
code, and tests are related (V model)→

► Mappings between the Requirements model, Documentation files, Design model, Code,
Test cases

► A ReDoDeCT macromodel has maintained mappings between all 5 models

Requirements Design Code Test

Package Bill {
 Uses Order;
 Class Counting {
 Procedure count IS
 End;
}
}

Package Order {
 Uses Bill;
 Class Ordering {
 Procedure count IS
 End;
}
}

Package TestBill {
 Uses TestOrder;
 Proc testCounting
IS
….
 End;
}
}
Package TestOrder {
 Uses Bill;
 Class TestOrdering {
 Procedure
testCount IS
 End;
}
}

Node

Node

Component

Component

System

DocumentationNon-Functional
Requirement A Non-Functional

Requiremens B
Goal BGoal A

 ©
 P

ro
f.

U
. A

ß
m

an
n

65 Model-Driven Software Development in Technical Spaces (MOST)

Q13: A Software Factory's Heart: the Multi-TS Megamodel

Mega- and Macromodels

Method Engineering

Model Management
Mapping, Transf., Composition

Technical
Space
Bridges

Technical Space

Pattern
Languages

Model Analysis
Querying, Interpretation

Metapyramid (Metahierarchy) for Token Modeling

Software Factory

Heterogeneous
Multi-repository
Megamodel

Mega- and Macromodels

Method Engineering

Model Management
Mapping, Transf., Composition

Technical
Space
Bridges

Technical Space

Pattern
Languages

Model Analysis
Querying, Interpretation

Metapyramid (Metahierarchy) for Token Modeling

 ©
 P

ro
f.

U
. A

ß
m

an
n

66 Model-Driven Software Development in Technical Spaces (MOST)

The End

► Why are future CPS a good application area for model-driven software development?

► Explain the model-driven tool chain Preevision, which problems about heterogeneous
software systems it solves

► Why are CPS based on collaboration, contexts and roles?

► Why is modeling important for CPS?

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Software Development in Technical Spaces

Important World Models of “World
Databases” (Monitoring CPS)

 ©
 P

ro
f.

U
. A

ß
m

an
n

68 Model-Driven Software Development in Technical Spaces (MOST)

• Where is my thing in space?
– Model of Physical Environment required
– spatial, real-timed
– magnetic, heat, humidity, user-defined
– Continuous models

Physical Location of Thing in Environment

CPS
Need

Real-time
World Models

3D office models
Building models
City models
http://www.turbosquid.com

http://tf3dm.com/3d-model/the-city-39441.html

 ©
 P

ro
f.

U
. A

ß
m

an
n

69 Model-Driven Software Development in Technical Spaces (MOST)

• How does it move in space?
– Continuous modeling languages (Modelica)
– Www.modelica.org, www.openmodelica.org

Physical Dynamics (Movement) of Thing

Surface

Weather

forces

heat

rain

complex interplay of
- surface props
- weather: wind, rain, heat

Layers

Air

CPS
Need

Dynamics
Models

http://Www.modelica.org/
http://www.openmodelica.org/
http://Www.modelica.org/
http://www.openmodelica.org/

 ©
 P

ro
f.

U
. A

ß
m

an
n

70 Model-Driven Software Development in Technical Spaces (MOST)

• How much energy is left for its tasks?

Energy Consumption of Thing

Surface

harvesting

Layers

CPS
Need

Energy Models

 ©
 P

ro
f.

U
. A

ß
m

an
n

71 Model-Driven Software Development in Technical Spaces (MOST)

• Which contexts has my system of things?
– Role-based modeling
– Context-aware models

Current Physical Composition of a Thing

HB1

HB2
HB3

CPS3

CPS2

CPS1

Query Interface

Query
Inter-
face

CPS
Need

Context
Models

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Software Development in Technical Spaces

A Simple CPS: Cloud Robots

 ©
 P

ro
f.

U
. A

ß
m

an
n

73 Model-Driven Software Development in Technical Spaces (MOST)

Made by
• Paris, Frankreich

[http://www.aldebaran-robotics.com/]

Application fields
• Teaching (Robot programming)
• Research

– Robotics, AI
– RoboCup
– Software Engineering

Price
• 9.000 – 12.000 €

A Cloud Robot uses a Standard Robotic Platform
Hello, I‘m NAO

Slide 73

 ©
 P

ro
f.

U
. A

ß
m

an
n

74 Model-Driven Software Development in Technical Spaces (MOST)

Nao Fact Sheet

Microfone
Speakers

SonarCameras

Infrared

Tactile sensors

Slide 74

Length: 58cm
Weight: 5kg
Hardware:
• x86 AMD

GEODE
500MHz

• 256MB RAM
• 21 motors
• Battery

55Wh
OS:
Embedded
Linux 32bit

WLAN

 ©
 P

ro
f.

U
. A

ß
m

an
n

75 Model-Driven Software Development in Technical Spaces (MOST)

Turtle Bot

Pr
of

.
U

.
A
ßm

an
n,

 T
U

 D
re

sd
en

75

50kHz Sensor data rate

http://wiki.ros.org/Robots/TurtleBot
http://www.turtlebot.com

Kinect

Netbook

Roomla Kobuki

http://wiki.ros.org/Robots/TurtleBot
http://wiki.ros.org/Robots/TurtleBot
http://wiki.ros.org/Robots/TurtleBot
http://wiki.ros.org/Robots/TurtleBot
http://wiki.ros.org/Robots/TurtleBot
http://wiki.ros.org/Robots/TurtleBot

 ©
 P

ro
f.

U
. A

ß
m

an
n

76 Model-Driven Software Development in Technical Spaces (MOST)

Pr
of

.
U

.
A
ßm

an
n,

 T
U

 D
re

sd
en

76

ResUbic Lab:
NAO Web Service Architecture

Cloud

http://code.google.com/p/naoservice/

 ©
 P

ro
f.

U
. A

ß
m

an
n

77 Model-Driven Software Development in Technical Spaces (MOST)

NAO Web Service and Communication Framework

77

Runs on Nao

NaoQi (C++)

Python Bridge for NaoQi (Python)

Nao Web Service (Python, reflective)

Nao Utility Classes (Java)

Client (Java, NAOText)

HTTP

Java Nao Web Service Proxies (Java)
Generated

Runs in Cloud

https://github.com/max-leuthaeuser/naoservice

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Software Development in Technical Spaces

A Killer App for Cloud Robots:
Donut Production in „Nachtsprung“

 ©
 P

ro
f.

U
. A

ß
m

an
n

79 Model-Driven Software Development in Technical Spaces (MOST)

Donuts Should be Individual....

And the Topping Makes the Difference

Slide 79 of 19https://www.flickr.com/photos/amiga-commodore/10059167335/

 ©
 P

ro
f.

U
. A

ß
m

an
n

80 Model-Driven Software Development in Technical Spaces (MOST)

Situation Today

- Mass production

- No individual
configuration

- No fast, individualized
production

- No „Nachtsprung“

Slide 80 of 19

https://www.flickr.com/photos/jeades/2383525381/

 ©
 P

ro
f.

U
. A

ß
m

an
n

81 Model-Driven Software Development in Technical Spaces (MOST)

Configuring in the evening Producing in the night Shipping in the early
morning

Pr
of

.
U

.
A
ßm

an
n,

 T
U

 D
re

sd
en

81

Donut Industry-4.0: Pulling Individual Donuts out in
Nachtsprung

Server

Web Configurator
Customer A

Customer B
Web Configurator

https://www.flickr.com/photos/soso__1991/7179199134/

 ©
 P

ro
f.

U
. A

ß
m

an
n

82 Model-Driven Software Development in Technical Spaces (MOST)

Individualization Manufactures
Individual
Logistics

Pr
of

.
U

.
A
ßm

an
n,

 T
U

 D
re

sd
en

82

Industry-4.0: Economic Consequences

Server

Web Application
Customer A

Customer B

Web Application

Any
Indivi-

dualized
product

Amazon
2.0

https://www.flickr.com/photos/ideonexus/7311856946/
https://www.flickr.com/photos/ideonexus/7311859510

https://www.flickr.com/photos/ideonexus/7311856946/
https://www.flickr.com/photos/ideonexus/7311856946/
https://www.flickr.com/photos/ideonexus/7311859510
https://www.flickr.com/photos/ideonexus/7311859510
https://www.flickr.com/photos/ideonexus/7311856946/
https://www.flickr.com/photos/ideonexus/7311856946/
https://www.flickr.com/photos/ideonexus/7311859510
https://www.flickr.com/photos/ideonexus/7311859510

 ©
 P

ro
f.

U
. A

ß
m

an
n

83 Model-Driven Software Development in Technical Spaces (MOST)

Industry-4.0:
Cloud Robots Produce Things in Workflows

83

Motor
Control Actuators

Move motor of
head

Move motor of
leg

Moving
Stand up Run

Color Donut Ship DonutTasks

Bake Donut Chocolatize
Donut

Color Donut Pack Donut Ship Donut

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Software Development in Technical Spaces

2. Heterogeneous Applications for MOST -
Design Tools for Complex Systems

Prof. Dr. Uwe Aßmann
Technische Universität Dresden
Institut für Software- und
Multimediatechnik
Lehrstuhl Softwaretechnologie
http://st.inf.tu-dresden.de/
teaching/most
WS 21-0.2, 20.11.21

1) Motivation for MOST
2) Design Tools for Complex Software Systems
3) Design of CPS with Domain-Specific CPS tool

chain

1) Cyber-physical systems (CPS)
4) Why Software Factories?

 ©
 P

ro
f.

U
. A

ß
m

an
n

2 Model-Driven Software Development in Technical Spaces (MOST)

Obligatory Literature

► [Preevision] Vector. Modellbasierte Elektrik-/Elektronik-Entwicklung vom
Architekturentwurf bis zur Serienreife. Preevision Handbuch

■ http://vector.com/portal/medien/cmc/marketing_items/web/91106.pdf

► [Reichmann] Clemens Reichmann, Daniel Gebauer, Klaus D. Müller-Glaser. Model
Level Coupling of Heterogeneous Embedded Systems. Technical Report, FZI, 2008

■ http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.101.366

► [ETAS] Ulrich Lauff, Christoph Stoermer, Thomas Dollmaier, Mathias Klauda. ETAS
GmbH, Stuttgart, Germany. Development Tools for Hybrids and Electric Cars.

■ http://www.etas.com/download-center-files/
products_ASCET_Software_Products/
1002_ATZ_elektronik_Entwicklungswerkzeuge_fuer_HEV_EV_EN.pdf

 ©
 P

ro
f.

U
. A

ß
m

an
n

3 Model-Driven Software Development in Technical Spaces (MOST)

Literature

► [Zverlov] Sergey Zverlov. Comparison of two level-based Approaches for the
Development of Embedded Systems. Bachelor Thesis in Computer Science. TU
München, 2008.

► [Wurman] Peter R. Wurman, Raffaello D’Andrea, and Mick Mountz. Coordinating
Hundreds of Cooperative, Autonomous Vehicles in Warehouses. AI Magazine Volume
29 Number 1 (2008) (© AAAI)

► [MüGl09] Prof. Dr.-Ing. Klaus D. Müller-Glaser. Slide set. Model-Driven Engineering for
Automotive Systems. UCSD SAASE 2009

■ http://jacobsschool.ucsd.edu/GordonCenter/g_leadership/l_summer/
docs/saase/symposium-presentations/KlausMuellerGlaser.pdf

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Software Development in Technical Spaces

2.1 Example for Heterogeneous Software
Factories:
Integrated Development Environments for Large
Software Systems (MDSD-Software-IDE)

 ©
 P

ro
f.

U
. A

ß
m

an
n

8 Model-Driven Software Development in Technical Spaces (MOST)

Change in Software Development

► From code-only to documents to models to macromodels (integrated consistent
multimodels)

Document-Centered Software Development
(tests, documentation)

Model-Driven Software Development (MDSD)
(requirements, design, tests, documentation)

Macromodel-Driven Software Development
(integrated, consistent requirements, design, tests, documentation)

Code-Centered Software Development
(tests, but no documentation)

 ©
 P

ro
f.

U
. A

ß
m

an
n

9 Model-Driven Software Development in Technical Spaces (MOST)

What is needed for MDSD: Tool, Language, Process,
Workflow and Method Engineering

Process Engineering (Method Engineering) is the discipline of
specifying and constructing methods and processes for a team of people
to conduct a project.
Software Process Engineering (Software Method Engineering)
focuses on software development processes.

Workflow Engineering is the discipline of running executable processes
(workflows)
● For a team, in an application
Workflow engineering uses behavioral languages.

Tool Engineering is the
discipline of constructing
company-specific, domain-
specific tools.

Language Engineering is the
discipline of constructing
company-specific, domain-
specific languages for tools,
processes, and workflows.

Product-Line Engineering is
the discipline of constructing
domain-specific product families.

Software Ecosystem
Engineering is the discipline of
constructing open product
platforms with appstores.

 ©
 P

ro
f.

U
. A

ß
m

an
n

10 Model-Driven Software Development in Technical Spaces (MOST)

Design Tools:
Integrated Development Environment (IDE)
Software-Entwicklungsumgebungen (SEU)

► IDE support Computer aided Software Engineering (CASE)

► A MDSD-IDE (Meta-CASE) is complex software machine tool (Software-Werkzeugmaschine), an
IDE for model-driven software development supporting

■ Many languages (DSL, metamodels) in a technical space

■ Heterogeneous software development

■ Model management system and Macromodel

► Other terms
■ Design Tools

■ Integrated Computer Aided Software Engineering (I-CASE)

■ Integrated Software Factory (ISF)

■ Software Engineering Environment System (SEES)

■ Integrated Project Support Environment (IPSE)

■ Integrated Software Engineering Environment (ISEE)
Nagl. M.: Software-Entwicklungsumgebungen: Einordnung und zukünftige Entwicklungslinien;
Informatik-Spektrum 16(1993) H.5, S. 273-280

An integrated development environment (IDE, Software-
Entwicklungsumgebung, SEU) consists of a structured set of
integrated standalone tools
•to support a team in software development (process engineering)
•to construct a multimodel or macromodel.

 ©
 P

ro
f.

U
. A

ß
m

an
n

11 Model-Driven Software Development in Technical Spaces (MOST)

Design Tools can be Heterogeneous
(Heterogeneous Software Factories)

► While IDE are hosted in one technical space, (Heterogeneous) Software Factories span
several ones.

Design Tools for Heterogeneous Software-Systems
(MetaCASE)

Design Tools for Heterogeneous Embedded Systems
(MetaCASSE)

Design Tools for Cyber-Physical Systems
(MetaCACPSE)

Design Tools for Software-Systems
(IDE)

 ©
 P

ro
f.

U
. A

ß
m

an
n

12 Model-Driven Software Development in Technical Spaces (MOST)

Q16: Languages in Software Factories are Built on
Metamodels and Grammars

General
Purpose

Language

Domain-
Specific

Language

Controlled
Natural

Language

Markup
Languages

Metamodels + Grammars

diagram-
matic

textual

modeling programming

M2

 ©
 P

ro
f.

U
. A

ß
m

an
n

13 Model-Driven Software Development in Technical Spaces (MOST)

Basic Languages for Design Tools

OO-
Diagramme

Data-flow
diagramm

(DFD)

Function
tree

Nassi-
Schneiderman

diagrams

Petri Nets

Pseudo-
code

Binary
decision
diagrams

Decision
tables

Petri Nets

State
automata

Jackson
dia-

grams

Entity-
Relation-

ship
diagrams

object-oriented
method

data-oriented
method

functional
method

control-
oriented
method

Data
Dictionary

after [BAL]

State-
charts

Workflow

ST-2

ST-2

ST-2

ST

ST

OO-
Realtime

Diagramme

Role
Modeling

RuleML
URML

Spider-
diagrams

OCL

logic
method

Ontologies

XML-
Querying

Graph
Querying

ST-2
CBSE

ST-2

Graph
Structuring

rule-based
method

state
oriented
method

SysML

hierarchic
method

ST-2

UML
components

ST-2

 ©
 P

ro
f.

U
. A

ß
m

an
n

14 Model-Driven Software Development in Technical Spaces (MOST)

Problem for Companies: Building Domain- and Company-
Specific Software Tools is Expensive

Tool Person years Cost in kEuro

Compiler 1-2 100

Optimizer 1-3 150

Back-End 0.5-1 100

Compiler component
framework

20 1000

UML-IDE 5 250

Java-Refactorer 2-4 200

Energy Unit Test-
Framework

1 50

Tool for Requirments
management

2-4 200

Mobile Phone Test-
Framework

2 100

 ©
 P

ro
f.

U
. A

ß
m

an
n

15 Model-Driven Software Development in Technical Spaces (MOST)

How to Master Tool, Language, Process, Method Engineering
in a Company?

How can I create
simple tools, methods, languages,

and
reuse them for more complex tools, methods, languages

in my company?

Answer:
Mastering a software factory in a technical space

creating and composing
● Metamodels of base languages (on M2)

● Models (on M1)
● Repositories (on M0)

 ©
 P

ro
f.

U
. A

ß
m

an
n

16 Model-Driven Software Development in Technical Spaces (MOST)

Maturity Levels of Software Companies

► Many companies do not know technical spaces nor software factories

► Many companies work with homogeneous software development in one technical space
► Some companies master heterogeneous software development in one technical spaces for

complex software systems. Tools are required

► Some companies master heterogeneous software development in several technical spaces
for very complex software systems. MDSD tool chains are required

Product lines

Heterogeneous development with Software Factories
with several technical spaces

Homogeneous development with Software Factories
 - one technical space -

Software Ecosystems

LanguagesTools Processes

 ©
 P

ro
f.

U
. A

ß
m

an
n

17 Model-Driven Software Development in Technical Spaces (MOST)

Evolution of Software Factories

Meta-Case
IDE

Universal
Reqt‘s Analysis &

Design Tools
Interface Editors

IDE

Debuggers
Subroutine
Packages

Compilers
Interpreters
Execution
Profilers

Assemblers
Core Dump
Analyzers

1965 1970 1980 1990 2000

After [Alan S. Fisher. 1991. Case: Using Software Development Tools (2nd ed.). John Wiley & Sons, Inc., New York, NY, USA., S.20]
https://archive.org/details/caseusingsoftwar00fish

2010

DSL-IDE with
domain-specif.

Languages

Multi-Technical-
Space

Development

2015 2020

Multi-Technical-
Space

Development

Multi-Technical-
Space

Development

Model-driven
Tool Chains
(MDSD IDE)

Domain-spec.
CPS tool

chains

Software IDE

Development with multiple technical
spaces comes into focus (heterogeneous
software development)

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Software Development in Technical Spaces

2.2. Example 2 of Software Factory:
“Silicon Compilers”

 ©
 P

ro
f.

U
. A

ß
m

an
n

19 Model-Driven Software Development in Technical Spaces (MOST)

• [Wikipedia:Silicon_Compiler] A silicon compiler is a software system that
takes a user's specifications and automatically generates an integrated
circuit (IC). The process is sometimes referred to as hardware compilation.

• [Wikipedia:Design_flow_(EDA)]
• Alberto Sangiovanni-Vincentelli distinguished three periods of EDA [Tides]:
• “The Age of Invention: During the invention era, routing, placement, static timing analysis

and logic synthesis were invented.
• The Age of Implementation: In the age of implementation, these steps were drastically

improved by designing sophisticated data structures and advanced algorithms. This allowed the
tools in each of these design steps to keep pace with the rapidly increasing design sizes.
However, due to the lack of good predictive cost functions, it became impossible to execute a
design flow by a set of discrete steps, no matter how efficiently each of the steps was
implemented.

• The Age of Integration: This led to the age of integration where most of the design steps are
performed in an integrated environment, driven by a set of incremental cost analyzers.”

Pr
of

.
U

.
A
ßm

an
n
,
TU

 D
re

sd
en

19

Example 1: MDSD ToolChain: Silicon Compilers

 ©
 P

ro
f.

U
. A

ß
m

an
n

20 Model-Driven Software Development in Technical Spaces (MOST)

Industrial
Silicon

Compiler

Systematic
Silicon

Compiler

Ad-hoc
Silicon

Compiler

20

Example 1: How the Silicon Compiler Industry Matured over
Time

Age of invention

Age of implementation

Age of integration

[Sangiovanni-Vincentelli Tides]

► Sangiovanni-Vincentelli claims that other industries (e.g., for CPS) will go the same way

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Software Development in Technical Spaces

2.3. Example 3:
Software Factories for Cyber-Physical Systems

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Software Development in Technical Spaces

2.3.1. What is a Cyber-Physical System (CPS)?

 ©
 P

ro
f.

U
. A

ß
m

an
n

23 Model-Driven Software Development in Technical Spaces (MOST)

• [Wurmer] Just search on YouTube for Kiva Systems
• https://www.youtube.com/watch?v=8gy5tYVR-28
• https://www.youtube.com/watch?v=6KRjuuEVEZs

Pr
of

.
U

.
A
ßm

an
n,

 T
U

 D
re

sd
en

23

Kiva Bots for Logistics

 ©
 P

ro
f.

U
. A

ß
m

an
n

24 Model-Driven Software Development in Technical Spaces (MOST)

Smart Parking

Pr
of

.
U

.
A
ßm

an
n,

 T
U

 D
re

sd
en

24

http://commons.wikimedia.org/wiki/File:Bundesarchiv_Bild_183-H0605-0007-001,_Rostock,_Ernst-Th%C3%A4lmann-
Platz,_Parkplatz,_Marienkirche.jpg#mediaviewer/File:Bundesarchiv_Bild_183-H0605-0007-001,_Rostock,_Ernst-Th
%C3%A4lmann-Platz,_Parkplatz,_Marienkirche.jpg

 ©
 P

ro
f.

U
. A

ß
m

an
n

25 Model-Driven Software Development in Technical Spaces (MOST)

• „Standard“ Computing maps the real world into the computer and
computes about it by simulation

„Standard“ Computing

Virtual World
Real World

System

Miniaturized
Real world

represent

computing

 ©
 P

ro
f.

U
. A

ß
m

an
n

26 Model-Driven Software Development in Technical Spaces (MOST)

• The computer is integrated into the real-life object

Embedded System

Virtual World
Real World

System

ES

ES

ES

 ©
 P

ro
f.

U
. A

ß
m

an
n

27 Model-Driven Software Development in Technical Spaces (MOST)

• Simulation of intelligent things in space and time
• Search possible

• Control of the intelligent things in space and time
– Self regulation
– Self optimization
– Self organisation

• Dual reality

Cyber-Physical System (CPS)

Virtual World Real World

Miniaturized
Real world

Represent

Control/search

 ©
 P

ro
f.

U
. A

ß
m

an
n

28 Model-Driven Software Development in Technical Spaces (MOST)

Real World

• Systems of CPS, i.e., remote tools

The Internet of Things

Virtual World

Real WorldMiniaturized
Real world represent

control

Real World

represent

controlMiniaturized
Real world

 ©
 P

ro
f.

U
. A

ß
m

an
n

29 Model-Driven Software Development in Technical Spaces (MOST)

• Cyber-physical systems are the first step in the internet of things

Trend CPS

Embedded
systems

Computing CPS
Human-CPS

(Resubic
Systems)

Internet of things

10**9 chips 10**10 chips 10**13 chips

Systems
of

CPS

 ©
 P

ro
f.

U
. A

ß
m

an
n

30 Model-Driven Software Development in Technical Spaces (MOST)

Two Classes of Cyber-Physical Systems for
Cyber-Physical Search and Management

CPS Capabilities

Sensing Actuating

System

EnvironmentSelf-Aware

Moving Interacting„Searching“ Predicting

 ©
 P

ro
f.

U
. A

ß
m

an
n

31 Model-Driven Software Development in Technical Spaces (MOST)

Cyber-Physical Database Systems =
Analysis, Simulation and Prediction

Measure/Collect

AnalyzeDecide

Act

Sensors

cyber

physical

Simulation

Raw Data

Goal
Present

state
Objective

 ©
 P

ro
f.

U
. A

ß
m

an
n

32 Model-Driven Software Development in Technical Spaces (MOST)

A Cyber-Physical System

http://commons.wikimedia.org/wiki/File:Traffic_seen_from_top_of_Arc_de_Triomphe.JPGhttp://commons.wikimedia.org/wiki/File:Traffic_seen_from_top_of_Arc_de_Triomphe.JPG

 ©
 P

ro
f.

U
. A

ß
m

an
n

33 Model-Driven Software Development in Technical Spaces (MOST)

Cloud Robots =
Cyber-Physical Management Systems

Measure/Collect

AnalyzeDecide

Act

SensorsActuators

cyber

physical

Simulation

Parameters

Raw Data

Goal
Present

state
Objective

 ©
 P

ro
f.

U
. A

ß
m

an
n

34 Model-Driven Software Development in Technical Spaces (MOST)

World Database Systems are Monitoring CPS (Analysis,
Simulation and Prediction)

Measure/Collect

AnalyzeDecide

Act

Sensors

cyber

physical

Simulation

Raw Data

Goal
Present

state
Objective

World
Model

Cloud

Real World

Discrete and
continuous models

 ©
 P

ro
f.

U
. A

ß
m

an
n

35 Model-Driven Software Development in Technical Spaces (MOST)

• Realtime data from the city‘s traffic
• http://www.vamosportal.de/
• http://wwwpub.zih.tu-dresden.de/~vamos/flyer/vamos_web.pdf

Pr
of

.
U

.
A
ßm

an
n,

 T
U

 D
re

sd
en

Ex.: The VAMOS Traffic Management System
(Verkehrsleitsystem) Dresden

 ©
 P

ro
f.

U
. A

ß
m

an
n

36 Model-Driven Software Development in Technical Spaces (MOST)

Cloud Robots are Controlling CPS

Measure/Collect

AnalyzeDecide

Act

SensorsActuators

Simulation

Parameters Raw Data

Goal
Present

state
Objective

Discrete and
continuous models

Cloud World
Model

Real World

cyber

physical

 ©
 P

ro
f.

U
. A

ß
m

an
n

37 Model-Driven Software Development in Technical Spaces (MOST)

• How can I control a cloud robot move in space?

Physical Dynamics (Movement) of Cloud Robot

Surface

Weather

forces

heat

rain

Layers

Air

Cloud Robots
Need

World Models

 ©
 P

ro
f.

U
. A

ß
m

an
n

38 Model-Driven Software Development in Technical Spaces (MOST)

Cloud Robots are Adaptive Systems
(MAPE Loop), and run a Dynamic Software Product Lines

38

Sensors

Actuators

Measure

Analyze

Plan

Execute

Robot Software

Elastic Architecture

38

 ©
 P

ro
f.

U
. A

ß
m

an
n

39 Model-Driven Software Development in Technical Spaces (MOST)

39

Cloud Robots are Multi-Adaptive Systems

Sensors

Actuators

Robot Software

Measure

Analyze

Plan

Execute
Sensors

Actuators

Elastic Architecture

39

 ©
 P

ro
f.

U
. A

ß
m

an
n

40 Model-Driven Software Development in Technical Spaces (MOST)

Cloud Robots are Context-Adaptive Systems

40

Robot

Environment (Context, World Model)

Measure

Analyze

Plan

Execute

Sensors

Actuators

Sensors

Actuators

Sensors

Software

Elastic Architecture

40

 ©
 P

ro
f.

U
. A

ß
m

an
n

41 Model-Driven Software Development in Technical Spaces (MOST)

• Embedded System: machines, robots, presses, transport systems
• CPS: Autonomous control of the factory

• Self assembly of the products
• Autonomous control of logistics
• Pull of products instead of push

Industrie-4.0 (Smart Factory) with CPS

http://commons.wikimedia.org/wiki/File:Mail_sorting_assembly_line.jpg

http://commons.wikimedia.org/wiki/File:Factory_Automation_Robotics_Palettizing_Bread.jpg?uselang=de

http://commons.wikimedia.org/wiki/File:Mail_sorting_assembly_line.jpg

http://commons.wikimedia.org/wiki/
File:Factory_Automation_Robotics_Palettizing_Bread.jpg?uselang=de

 ©
 P

ro
f.

U
. A

ß
m

an
n

42 Model-Driven Software Development in Technical Spaces (MOST)

• Embedded System: Railcabs are autonomous train cars (Paderborn)
• CPS: Optimization of the German logistics

Smart Traffic/Transport/Logistics mit CPS

http://www.railcab.de

 ©
 P

ro
f.

U
. A

ß
m

an
n

43 Model-Driven Software Development in Technical Spaces (MOST)

• All domains in transport, logistics, assembly, housing, cities will change
• Nothing will stay as it is
• All engineering disciplines will change until 2020

The Revolution of CPS

So far:

Miniaturization of the
world in the computer

To make decisions
about it

With CPS:

All objects of the real world
have dual reality

Control of the place of things
 in space and time

 ©
 P

ro
f.

U
. A

ß
m

an
n

44 Model-Driven Software Development in Technical Spaces (MOST)

Questions

How can we build such complex tool suites for CPS
(CPS-IDE)?

Answer: By Model-Driven Software Development (MDSD)
for software and system, with

● Metamodels of languages (on M2)
● Models (on M1)

● Repositories (on M0)

45

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Software Development in Technical Spaces

2.3.2 Domain-Specific Software Factories (Design
Tools) for Design of Cyber-Physical Systems

0.7#
Software ist die stärkste gesellschaftsverändernde
Kraft heute

 ©
 P

ro
f.

U
. A

ß
m

an
n

48 Model-Driven Software Development in Technical Spaces (MOST)

CPS-
Software
Factory

Domain
Models
• World models
• System models

System
models

Different
Levels of

Abstraction

Domain-
specific

algorithms

Pr
of

.
U

.
A
ßm

an
n
,
TU

 D
re

sd
en

48

Domain-Specific CPS-Software Factories

CPS-Software Factories
are domain-specific

 ©
 P

ro
f.

U
. A

ß
m

an
n

49 Model-Driven Software Development in Technical Spaces (MOST)

49

Example: Car Design with PREEVision (Vector)

Requirements

Logical Architecture

System Software
Architecture

Implementation

Hardware
Architecture

Electric circuit

Wiring harness

Geometric topology

[Preevision]

 ©
 P

ro
f.

U
. A

ß
m

an
n

50 Model-Driven Software Development in Technical Spaces (MOST)

PreeVision has 3 Tools Steered by Metamodels

► PREEvision Architect

► PREEvision Function Designer

► PREEvision Electric Designer

System Analysis

System Design

Software Analysis ECU Analysis

ECU DesignSoftware Design

Software
In the Loop

Software
Implementation

Software
Integration

ECU
Integration

Hardware in the
Loop

Network integration

Car integration

► With options:
■ vTESTcenter
■ PREEvision Collaboration

Platform

► All involved models are metamodeled

[MüGl09]

 ©
 P

ro
f.

U
. A

ß
m

an
n

51 Model-Driven Software Development in Technical Spaces (MOST)

PreeVision Models in More Details

► Requirements specification with Excel and Requirements Interchange Format (RIF)

► Logical architecture with AUTOSAR components

 ©
 P

ro
f.

U
. A

ß
m

an
n

52 Model-Driven Software Development in Technical Spaces (MOST)

PreeVision Models in More Details

► Software Architecture with Simulink components (blocks) and ASCET model
components (from ETAS)

► Implementation (generated or hand written)

 ©
 P

ro
f.

U
. A

ß
m

an
n

53 Model-Driven Software Development in Technical Spaces (MOST)

PreeVision Models in More Details

► Hardware architecture with LDF component model

► Electronic circuit design in ECU by ELOG

 ©
 P

ro
f.

U
. A

ß
m

an
n

54 Model-Driven Software Development in Technical Spaces (MOST)

PreeVision Models in More Details

► Wiring in the car (physical network) with KBL

► 3-D CAD drawings for geometrical topology

 ©
 P

ro
f.

U
. A

ß
m

an
n

55 Model-Driven Software Development in Technical Spaces (MOST)

55

Electric Cars (ETAS)

[ETAS]
http://www.etas.com/en/products/ascet_md_modeling_design.php

 ©
 P

ro
f.

U
. A

ß
m

an
n

56 Model-Driven Software Development in Technical Spaces (MOST)

CPS
Software
Factory

MDSD Tool
Chain

Ad-hoc
MDSD

Pr
of

.
U

.
A
ßm

an
n
,
TU

 D
re

sd
en

56

CPS Software Factories (CPS IDE, Design Tools, CPS Tool
Chains) are a Sign of a Maturing Productivity Industry

Age of invention

Age of implementation

Age of integration

Will hold for all domains of CPS!

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Software Development in Technical Spaces

2.4 Why Do We Need Software Factories and
MDSD in TS?

 ©
 P

ro
f.

U
. A

ß
m

an
n

60 Model-Driven Software Development in Technical Spaces (MOST)

(Heterogeneous) Software Factories

Software Factories for Software Product Lines
in Complex, Domain-Specific Software-Systems

Software Factories for Software Product Lines
in Embedded Systems

Software Factories for Software Product Lines
in Cyber-Physical Systems

Technical
Space 1

Technical
Space 2

Technical
Space 3

 ©
 P

ro
f.

U
. A

ß
m

an
n

61 Model-Driven Software Development in Technical Spaces (MOST)

Q10: The House of a Technical Space

Mega- and Macromodels
Tracing, Regeneration, Synchronization

Tool Engineering
Composition, Extension

Model Management
Composition, Mapping, Transformation

Technical
Space
Bridges

Technical Space

Meta-
modeling

Model Analysis
Querying, Attribution, Analysis, Interpretation

Metapyramid (Metahierarchy)

 ©
 P

ro
f.

U
. A

ß
m

an
n

62 Model-Driven Software Development in Technical Spaces (MOST)

Q11: Overview of Technical Spaces in the Classical
Metahierarchy

Gramm
arware
(String
s)

Text-
ware

Table-ware Treewar
e
(trees)

Link-Tree-
ware

Graph
ware/
Model
ware

Role-
Ware

CROM-
Ware

Ontology
-ware

Strings Text Text-
Table

Relationa
l Algebra

NF2 XML Link
trees

MOF Eclipse CDI
F

MetaEdit+ Context-
role graphs

OWL-Ware

M
3

EBNF EBNF CWM
(common
warehou
se model)

NF2-
language

XSD JastAd
d,
Silver

MOF Ecore,
EMOF

ERD GOPPR CROM RDFS
OWL

M
2

Gramma
r of a
language

Gramm
ar with
line
delimite
rs

csv-
heade
r

Relationa
l Schema

NF2-
Schema

XML
Schema
, e.g.
xhtml

Specific
RAG

UML-
CD, -SC,
OCL

UML,
many
others

CDI
F-
lang
uage
s

UML,
many
others

CROM HTML
XML
MOF UML
DSL

M
1

String,
Program

Text in
lines

csv
Table

Relation
s

NF2-tree
relation

XML-
Docum
ents

Link-
Syntax-
Trees

Classes,
Progra
ms

Classes,
Program
s

CDI
F-
Mod
els

Classes,
Programs

CROM
models

Facts (T-
Box)

M
0

Objects Sequenc
es of
lines

Seque
nces of
rows

Sets of
tuples

trees dynami
c
semanti
cs in
browse
r

Object
nets

Hierarch
ical
graphs

Obje
ct
nets

Object nets Context-
Object-Role
Nets

A-Box
(RDF-
Graphs)

 ©
 P

ro
f.

U
. A

ß
m

an
n

64 Model-Driven Software Development in Technical Spaces (MOST)

Q12: The ReDoDeCT Problem and its Macromodel

► The ReDoDeCT problem is the problem how requirements, documentation, design,
code, and tests are related (V model)→

► Mappings between the Requirements model, Documentation files, Design model, Code,
Test cases

► A ReDoDeCT macromodel has maintained mappings between all 5 models

Requirements Design Code Test

Package Bill {
 Uses Order;
 Class Counting {
 Procedure count IS
 End;
}
}

Package Order {
 Uses Bill;
 Class Ordering {
 Procedure count IS
 End;
}
}

Package TestBill {
 Uses TestOrder;
 Proc testCounting
IS
….
 End;
}
}
Package TestOrder {
 Uses Bill;
 Class TestOrdering {
 Procedure
testCount IS
 End;
}
}

Node

Node

Component

Component

System

DocumentationNon-Functional
Requirement A Non-Functional

Requiremens B
Goal BGoal A

 ©
 P

ro
f.

U
. A

ß
m

an
n

65 Model-Driven Software Development in Technical Spaces (MOST)

Q13: A Software Factory's Heart: the Multi-TS Megamodel

Mega- and Macromodels

Method Engineering

Model Management
Mapping, Transf., Composition

Technical
Space
Bridges

Technical Space

Pattern
Languages

Model Analysis
Querying, Interpretation

Metapyramid (Metahierarchy) for Token Modeling

Software Factory

Heterogeneous
Multi-repository
Megamodel

Mega- and Macromodels

Method Engineering

Model Management
Mapping, Transf., Composition

Technical
Space
Bridges

Technical Space

Pattern
Languages

Model Analysis
Querying, Interpretation

Metapyramid (Metahierarchy) for Token Modeling

 ©
 P

ro
f.

U
. A

ß
m

an
n

66 Model-Driven Software Development in Technical Spaces (MOST)

The End

► Why are future CPS a good application area for model-driven software development?

► Explain the model-driven tool chain Preevision, which problems about heterogeneous
software systems it solves

► Why are CPS based on collaboration, contexts and roles?

► Why is modeling important for CPS?

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Software Development in Technical Spaces

Important World Models of “World
Databases” (Monitoring CPS)

 ©
 P

ro
f.

U
. A

ß
m

an
n

68 Model-Driven Software Development in Technical Spaces (MOST)

• Where is my thing in space?
– Model of Physical Environment required
– spatial, real-timed
– magnetic, heat, humidity, user-defined
– Continuous models

Physical Location of Thing in Environment

Areas of Mackay City
http://www.mackay.qld.gov.au

predicated air temperature [1]

3D office model
http://www.turbosquid.com

CPS
Need

Real-time
World Models

3D office models
Building models
City models
http://www.turbosquid.com

http://tf3dm.com/3d-model/the-city-39441.html

 ©
 P

ro
f.

U
. A

ß
m

an
n

69 Model-Driven Software Development in Technical Spaces (MOST)

• How does it move in space?
– Continuous modeling languages (Modelica)
– Www.modelica.org, www.openmodelica.org

Physical Dynamics (Movement) of Thing

Surface

Weather

forces

heat

rain

complex interplay of
- surface props
- weather: wind, rain, heat

Layers

Air

CPS
Need

Dynamics
Models

 ©
 P

ro
f.

U
. A

ß
m

an
n

70 Model-Driven Software Development in Technical Spaces (MOST)

• How much energy is left for its tasks?

Energy Consumption of Thing

Surface

harvesting

Layers

CPS
Need

Energy Models

 ©
 P

ro
f.

U
. A

ß
m

an
n

71 Model-Driven Software Development in Technical Spaces (MOST)

• Which contexts has my system of things?
– Role-based modeling
– Context-aware models

Current Physical Composition of a Thing

HB1

HB2
HB3

CPS3

CPS2

CPS1

Query Interface

Query
Inter-
face

CPS
Need

Context
Models

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Software Development in Technical Spaces

A Simple CPS: Cloud Robots

 ©
 P

ro
f.

U
. A

ß
m

an
n

73 Model-Driven Software Development in Technical Spaces (MOST)

Made by
• Paris, Frankreich

[http://www.aldebaran-robotics.com/]

Application fields
• Teaching (Robot programming)
• Research

– Robotics, AI
– RoboCup
– Software Engineering

Price
• 9.000 – 12.000 €

A Cloud Robot uses a Standard Robotic Platform
Hello, I‘m NAO

Slide 73

 ©
 P

ro
f.

U
. A

ß
m

an
n

74 Model-Driven Software Development in Technical Spaces (MOST)

Nao Fact Sheet

Microfone
Speakers

SonarCameras

Infrared

Tactile sensors

Slide 74

Length: 58cm
Weight: 5kg
Hardware:
• x86 AMD

GEODE
500MHz

• 256MB RAM
• 21 motors
• Battery

55Wh
OS:
Embedded
Linux 32bit

WLAN

 ©
 P

ro
f.

U
. A

ß
m

an
n

75 Model-Driven Software Development in Technical Spaces (MOST)

Turtle Bot

Pr
of

.
U

.
A
ßm

an
n,

 T
U

 D
re

sd
en

75

50kHz Sensor data rate

http://wiki.ros.org/Robots/TurtleBot
http://www.turtlebot.com

Kinect

Netbook

Roomla Kobuki

 ©
 P

ro
f.

U
. A

ß
m

an
n

76 Model-Driven Software Development in Technical Spaces (MOST)

Pr
of

.
U

.
A

ßm
an

n,
 T

U
 D

re
sd

en

76

ResUbic Lab:
NAO Web Service Architecture

Cloud

http://code.google.com/p/naoservice/

 ©
 P

ro
f.

U
. A

ß
m

an
n

77 Model-Driven Software Development in Technical Spaces (MOST)

NAO Web Service and Communication Framework

77

Runs on Nao

NaoQi (C++)

Python Bridge for NaoQi (Python)

Nao Web Service (Python, reflective)

Nao Utility Classes (Java)

Client (Java, NAOText)

HTTP

Java Nao Web Service Proxies (Java)
Generated

Runs in Cloud

https://github.com/max-leuthaeuser/naoservice

77

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Software Development in Technical Spaces

A Killer App for Cloud Robots:
Donut Production in „Nachtsprung“

 ©
 P

ro
f.

U
. A

ß
m

an
n

79 Model-Driven Software Development in Technical Spaces (MOST)

Donuts Should be Individual....

And the Topping Makes the Difference

Slide 79 of 19https://www.flickr.com/photos/amiga-commodore/10059167335/

The Dough Is the Same, but the Topping
Makes the Difference

79

 ©
 P

ro
f.

U
. A

ß
m

an
n

80 Model-Driven Software Development in Technical Spaces (MOST)

Situation Today

- Mass production

- No individual
configuration

- No fast, individualized
production

- No „Nachtsprung“

Slide 80 of 19

https://www.flickr.com/photos/jeades/2383525381/

80

 ©
 P

ro
f.

U
. A

ß
m

an
n

81 Model-Driven Software Development in Technical Spaces (MOST)

Configuring in the evening Producing in the night Shipping in the early
morning

Pr
of

.
U

.
A
ßm

an
n,

 T
U

 D
re

sd
en

81

Donut Industry-4.0: Pulling Individual Donuts out in
Nachtsprung

Server

Web Configurator
Customer A

Customer B
Web Configurator

https://www.flickr.com/photos/soso__1991/7179199134/

3-d-printer

81

 ©
 P

ro
f.

U
. A

ß
m

an
n

82 Model-Driven Software Development in Technical Spaces (MOST)

Individualization Manufactures
Individual
Logistics

Pr
of

.
U

.
A
ßm

an
n,

 T
U

 D
re

sd
en

82

Industry-4.0: Economic Consequences

Server

Web Application
Customer A

Customer B

Web Application

Any
Indivi-

dualized
product

Amazon
2.0

https://www.flickr.com/photos/ideonexus/7311856946/
https://www.flickr.com/photos/ideonexus/7311859510

3-d-printer

82

 ©
 P

ro
f.

U
. A

ß
m

an
n

83 Model-Driven Software Development in Technical Spaces (MOST)

Industry-4.0:
Cloud Robots Produce Things in Workflows

83

Motor
Control Actuators

Move motor of
head

Move motor of
leg

Moving
Stand up Run

Color Donut Ship DonutTasks

Bake Donut Chocolatize
Donut

Color Donut Pack Donut Ship Donut

83

