

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Softwrae Development in Technical Spaces

03. Context-Aware Metamodels with the
CROM Metametamodel

Prof. Uwe Aßmann
Softwaretechnologie
Version 0.2, 1/8/22

1) Adaptation problems of the classic OO model

2) Beyond Objects

1) From Objects to Roles and their Benefit
for Separation of Concerns

2) From Roles to Contexts

3) The Steimann product-lattice
factorization of types and its Kühn
extension (Role-oriented Context-Aware
Software Infrastructures, ROSI)

3) Advantages of the ROSI: Dynamic Data
Adaptability (Extensibility, Variability)…

4) Roles and Contexts for Behavior Abstraction

5) Advantages of the ROSI: Dynamic Behavior
Adaptability

6) Roles and their Benefit for Separation of
Concerns

 ©
 P

ro
f.

U
. A

ß
m

an
n

2 Model-Driven Software Development in Technical Spaces (MOST)

Obligatory References

► Friedrich Steimann. On the representation of roles in object-oriented and conceptual modelling. Data Knowl.
Eng, 35(1):83-106, 2000.

► Friedrich Steimann. A radical revision of UML’s role concept”. UML 2000, 3rd International Conference,
Springer LNCS, 194–209.

■ and many more, see his home page at U Hagen

 ©
 P

ro
f.

U
. A

ß
m

an
n

3 Model-Driven Software Development in Technical Spaces (MOST)

Roles in the Literature

► Charles W. Bachman and Manilal Daya. The role concept in data models. In VLDB ’1977: Proceedings of the
third int.l conf. on Very large data bases, pages 464–476. VLDB Endowment, 1977.

► ER model (Chen 76); though hidden in association ends
► T. Reenskaug, P. Wold, and O. Lehne. Working with Objects, The OOram Software Engineering Method.

Manning Publications, 1996.

■ Design patterns (Riehle 98) - Course “Design patterns and frameworks” at TUD

► Product line engineering (Smaragdakis,Batory 02)

► Connectors in architectural languages (Garlan, Shaw 95)

► Security: Role-based Access Control (RBAC)
■ ACL lists in operating systems

► Ontologies (Brachman, description logic)

► ... [Steimann DKE 2000] has many more and tries to unify them

► UML has “collaborations” using role types

► [Kühn 2014] defines compartments as structured context objects

 ©
 P

ro
f.

U
. A

ß
m

an
n

4 Model-Driven Software Development in Technical Spaces (MOST)

Ontological Foundations of Metatypes

► Giancarlo Guizzardi, Heinrich Herre, and Gerd Wagner. On the general ontological
foundations of conceptual modeling. 21st Int. Conf. on Conceptual Modeling (ER 2002),
LNCS 2503, pages 65-78, 2002.

► Guizzardi, G. (2005). Ontological Foundations for Structural Conceptual Models. PhD
thesis, University of Twente.

► [Guariono] Nicola Guarino Chris Welty. Supporting ontological analysis of taxonomic
relationships. Data and Knowledge Engineering, 39:51--74, 2001.

► Paul Lorenzen, Oswald Schwemmer. Konstruktive Logik, Ethik und
Wissenschaftstheorie. BI Hochschultaschenbücher, Band 700, 1973.

► Paul Lorenzen. Lehrbuch der konstruktiven Wissenschaftstheorie, Metzler Reprint,
2000.

► H. Wedekind, E. Ortner, R. Inhetveen. Informatik als Grundbildung. Informatik
Spektrum, Springer, April 2004

► H. v. Braun, W. Hesse, H.B. Kittlaus,G. Scheschonk. Ist die Welt objektorientiert? Von
der natürlich-sprachlichen Weltsicht zum OO-Modell. Uni Marburg.

 ©
 P

ro
f.

U
. A

ß
m

an
n

5 Model-Driven Software Development in Technical Spaces (MOST)

Programming Languages

► S. Herrmann. Object teams: Improving modularity for crosscutting collaborations. In Proc. Net
Object Days 2002, 2002.

► S. Herrmann. A precise model for contextual roles: The programming language objectteams/ java.
Applied Onthology, (to appear), 2007.

► www.objectteams.org: a programming lanugage with roles

► Max Leuthäuser. A Pure Embedding of Roles - Exploring 4-dimensional Dispatch for Roles in
Structured Contexts. PhD thesis, Technische Universität Dresden, August 2017.

■ This PhD thesis developes a programming language for contexts and roles, based on some
implementation patterns and the base language Scala. "
http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-227624

► [SCROLL] SCROLL Library https://github.com/max-leuthaeuser

 ©
 P

ro
f.

U
. A

ß
m

an
n

6 Model-Driven Software Development in Technical Spaces (MOST)

Important References

► D. Bäumer, D. Riehle, W. Silberski, and M. Wulf. Role object. In Conf. On Pattern Languages of
Programming (PLOP), 1997.

► Dirk Riehle and Thomas Gross. Role model based framework design and integration. ACM
SIGPLAN Notices, 33(10):117-133, October 1998.

► Dirk Riehle. Framework Design - A Role Modelling Approach. PhD thesis, ETH Zürich, 2000. No.
13509. www.riehle.org.

► Y. Smaragdakis and D. Batory. Mixin layers: an object-oriented implementation technique for
refinements and collaboration-based designs. ACM Transactions on Software Engineering and
Methodology, 11(2):215–255, 2002.

 ©
 P

ro
f.

U
. A

ß
m

an
n

7 Model-Driven Software Development in Technical Spaces (MOST)

Works at TU Dresden

► Thomas Kühn. A Family of Role-Based Languages. PhD thesis, Technische Universität Dresden, March
2017. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-228027

► U. Aßmann, S. Zschaler, and G. Wagner. Ontologies, Meta-Models, and the Model-Driven Paradigm,
Handbook on Ontologies and Software Engineering. pages 249–273. Springer, 2006.

► U Aßmann, J Johannes, J Henriksson, and Ilie Savga. Composition of rule sets and ontologies. In F. Bry,
editor, Reasoning Web, Second Int. Summer School 2006, number 4126 in LNCS, pages 68-92, Sept
2006. Springer.

► M. Pradel, J. Henriksson, and U. Aßmann. A good role model for ontologies: Collaborations. Int.
Workshop on Semantic-Based Software Development. at OOPSLA’07, Montreal, Oct 22, 2007.

► Christian Piechnick, Sebastian Richly, Sebastian Götz, Claas Wilke, and Uwe Aßmann. Using Role-Based
Composition to Support Unanticipated, Dynamic Adaptation - Smart Application Grids. In Proceedings
of ADAPTIVE 2012, The Fourth International Conference on Adaptive and Self-adaptive Systems and
Applications, pages 93-102, 2012.

 ©
 P

ro
f.

U
. A

ß
m

an
n

8 Model-Driven Software Development in Technical Spaces (MOST)

Works at TU Dresden

► J. Reimann, M. Seifert, U. Aßmann. Role-based generic model refactoring. MODELS
Okt. 2010

► Thomas Kühn, Max Leuthäuser, Sebastian Götz, Christoph Seidl, and Uwe Aßmann. A
metamodel family for role-based modeling and programming languages. In Benoit
Combemale, David J. Pearce, Olivier Barais, and Jurgen J. Vinju, editors, SLE, volume
8706 of Lecture Notes in Computer Science, pages 141--160. Springer, 2014.

► Thomas Kühn, Stephan Böhme, Sebastian Götz, and Uwe Aßmann. A combined formal
model for relational context-dependent roles. In Richard F. Paige, Davide Di Ruscio,
and Markus Völter, editors, SLE, pages 113--124. ACM, 2015.

► Johannes Mey, René Schöne, Görel Hedin, Emma Söderberg, Thomas Kühn, Niklas
Fors, Jesper Öqvist, and Uwe Aßmann. Continuous model validation using reference
attribute grammars. In Proceedings of the 11th ACM SIGPLAN International
Conference on Software Language Engineering, SLE 2018, pages 70--82, New York,
NY, USA, 2018. ACM.

 ©
 P

ro
f.

U
. A

ß
m

an
n

9 Model-Driven Software Development in Technical Spaces (MOST)

Other PhD Theses (all available via www.qucosa.de)

► Mirko Seifert. Designing Round-Trip Systems by Model Partitioning and Change
Propagation. PhD thesis, Dresden University of Technology, June 2011.

■ Shows how roles simplify round-trip engineering by partitioning data

► Sebastian Richly. Autonom rekonfigurierbare Workflows. PhD thesis, Dresden
University of Technology, December 2011.

■ shows how roles can be used to provide an extensible tool platform

► Christian Wende. Language Family Engineering. PhD thesis, Dresden University of
Technology, March 2012.

■ shows how roles can be used to do context-based language composition

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Softwrae Development in Technical Spaces

3.1 Overview

 ©
 P

ro
f.

U
. A

ß
m

an
n

11 Model-Driven Software Development in Technical Spaces (MOST)

Welcome to a Changing World...

► „ever-changing contexts“
■ Mobility
■ Personalization
■ Resource availablity

► How to realize
■ Adaptation to change of context?
■ Context polymorphism?

Photos by Alex Azabache on Unsplashhttps://commons.wikimedia.org/wiki/File:2018-01-11_Olympiaeinkleidung_Deutschland_2018_by_Sandro_Halank%E2%80%9356.jpg

 ©
 P

ro
f.

U
. A

ß
m

an
n

12 Model-Driven Software Development in Technical Spaces (MOST)

Function-based (Name, parameters, Parameter types)

Multi-Dimensional Dispatch for Multi-Polymorphism

► How is the semantics of a feature of an object (function, attribute, method, condition,
service) determined?

Receiver-based Sender-based

Context-based

 ©
 P

ro
f.

U
. A

ß
m

an
n

13 Model-Driven Software Development in Technical Spaces (MOST)

Application Areas of Context- and Role-Oriented Software
Infrastructures

► Adaptive, context-sensitive cyber-physical systems (CPS)
■ Hypothesis: Role exchange for adaptation

► Roles for emergence in Systems-of-Systems (SoS), when systems meet that were not
built for each other

■ Hypothesis: Role models for unforeseen emergence

62

http://commons.wikimedia.org/wiki/File:Traffic_seen_from_top_of_Arc_de_Triomphe.JPG http://commons.wikimedia.org/wiki/File:Jona_(SG)_-_L%C3%A4ttenhofweg_2011-04-08_14-54- 48_ShiftN.jpg

Verschmelzen in “neue Herausforderungen”

1
3

 ©
 P

ro
f.

U
. A

ß
m

an
n

14 Model-Driven Software Development in Technical Spaces (MOST)

A Riddle..

Man Woman

Person
MotherFather

 ©
 P

ro
f.

U
. A

ß
m

an
n

15 Model-Driven Software Development in Technical Spaces (MOST)

Another Riddle..

Marriage Husband

Person

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Softwrae Development in Technical Spaces

3.1.1. Dynamic Adaptation in Huge Object-
Oriented Applications

 ©
 P

ro
f.

U
. A

ß
m

an
n

17 Model-Driven Software Development in Technical Spaces (MOST)

► Enterprise Resource Planning (ERP) in Java, 1995-99
► Dynamic extensions of classes and life-cycle automata
► Classic object-orientation too inflexible
► FAILED

Person Customer

Long-Term
Behavior

Premium
Behavior

is-a
CompanyVendor

is-a

extends
dynamically

extends dynamically

Big Problem: Run-time Adaptability
Negative Example: “San Francisco”-Framework of IBM

•Zu lang, straffen
•ES HAT NICHT FUNKTIONIERT!! Mit statischen Klassenmodellen

•Nummer

 ©
 P

ro
f.

U
. A

ß
m

an
n

18 Model-Driven Software Development in Technical Spaces (MOST)

Business Objects

► In large ERP frameworks (see SAP) business objects get very complex

► Ex.: Order
■ Many phases and collaborators
■ Many states and roles

► Dynamic Extensibility and Variability (Adaptation) required

Order

received

Order

commissioned

Order

produced

Order

billed

Order

reminded

Order

payed

 ©
 P

ro
f.

U
. A

ß
m

an
n

19 Model-Driven Software Development in Technical Spaces (MOST)

► P. Monday, J. Carey, M. Dangler. SanFrancisco Component Framework: an
introduction. Addison-Wesley, 2000.

Java Virtual Machine

Foundation

<<material>>
Common Business Objects (Geschäftsobj.)

Order, Bill, Money, Time,..

<<workflow>>
Core Business Processes

Application Application

A
p

plica
tion

A
pplicatio

n

Customer
Solutions

Architecture of IBM San Francisco ERP Java-Framework

General
Ledger Warehouse Mgmt

Order Managmt
AR/AP
Ledger

<<tools>>
Common Functions Financial Interface (CFFI)

 ©
 P

ro
f.

U
. A

ß
m

an
n

20 Model-Driven Software Development in Technical Spaces (MOST)

Role Modelling – a Hope

► Separate the functional core of an object of its context-based and fluid features

■ Store the functional core in a main object with natural type

■ Store the context-based and fluid features into subobjects of the main object

► Roles have been used so far in singular fields of Computer Science, such as databases, or design patterns

■ no cross-layer correspondance

■ no formalization

2
0

plays-a

Person CompanyCustomer Vendor

plays-a

Hier Rollen erklären!!

eine plakative abholende Einführung für Fachfremde
Auch Gutachterrollen

2
0

 ©
 P

ro
f.

U
. A

ß
m

an
n

21 Model-Driven Software Development in Technical Spaces (MOST)

Example: Business Objects

► Extend behavior dynamically by roles (context-based and fluid types)
– Convention: Context is expressed by background boxes or background color

2
1

plays-a
Person CompanyCustomer Vendor

plays-a

<<context>> Business

Employee Employer

<<context>> Employment

 ©
 P

ro
f.

U
. A

ß
m

an
n

22 Model-Driven Software Development in Technical Spaces (MOST)

Example: Business Objects

► Extend behavior dynamically by roles (context-based and fluid types)
► Refinement by role inheritance
•

2
2

is-a

plays-a
Person CompanyCustomer Vendor

plays-a

Long - Term
Customer

Premium
Customer

is-a

<<context>> Business

 ©
 P

ro
f.

U
. A

ß
m

an
n

23 Model-Driven Software Development in Technical Spaces (MOST)

The Hypothesis of Context- and Role-Oriented
Development (CROD)

► ...is that context-based features of objects and systems can be modeled
with roles, cross-cutting

■ all phases of the life-cycle
. requirements, design, implementation, runtime

■ all levels of development
. Concept modelling in metalanguages,
. Language modelling,
. Application modelling and programming,
. Run-time

► and that this technology is practically applicable.

2
3

 ©
 P

ro
f.

U
. A

ß
m

an
n

24 Model-Driven Software Development in Technical Spaces (MOST)

Ladder of Technologies

Object-oriented development
(OOA, OOD, OOP)

Objects with roles
(Role-oriented Programming,

ROP)

1967-1995

1995-today

 ©
 P

ro
f.

U
. A

ß
m

an
n

25 Model-Driven Software Development in Technical Spaces (MOST)

Ladder of Technologies

Object-oriented development
(OOA, OOD, OOP)

Objects with roles
(Role-oriented Programming,

ROP)

1967-1995

1995-today

Role-oriented, context-aware
software development

(CROD)
RoSI

Scalability
Extensibility

Variability

Adaptability

Views,
aspects

Alias-freedom

Locality

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Softwrae Development in Technical Spaces

3.1.2. Scenario Families and Banks

 ©
 P

ro
f.

U
. A

ß
m

an
n

27 Model-Driven Software Development in Technical Spaces (MOST)

► Komplexe Objekte leben oft parallel zueinander und kommunzieren oft über Ströme,
Senken, Kanäle

► Stücklisten haben Teile; Rollenspieler haben Rollen; Geschäftsobjekte haben beides.

A complex object (subject, compound object)
is a (logically coherent) object,

represented in modeling and programming level by
one Core and several Subobjects (mixins)

Complex
object

Business
Object

Part List

Role Holder

Mixin
(Satellite)

Part

Role

Phase

Facet

Complex Objects

*

mixins

*

roles

 ©
 P

ro
f.

U
. A

ß
m

an
n

28 Model-Driven Software Development in Technical Spaces (MOST)

:Child

Papa:Father
Mama:
Mother

:Customer

:Loaner

Families, Resources and Banks (Snapshot, Object-Role
Model)

Max:Person Buy24:Bank

Frank:Man

Rosi:Woman

:Resource

Bnn:Newspaper thuringa:Sausage

:Eatable
:Readable

<<context>>
:Family

:Eating

:Reader

<<context>>:Resources <<context>>:Nutrition

<<context>>
:Money

 ©
 P

ro
f.

U
. A

ß
m

an
n

29 Model-Driven Software Development in Technical Spaces (MOST)

Child

Father Mother
Customer

Loaner

Families and Banks in Natural and Role Types

Person Person

Man Woman

Resource

Newspaper Sausage

Eatable
ReadableReader

Eating

<<context>>
Family

<<context>>Resources <<context>>Nutrition

<<context>>
Money

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Softwrae Development in Technical Spaces

3.2. Beyond Objects -
Role Modeling and the Steimann Factorization
of Types

Splitting a type into a tuple of natural and founded
parts

 ©
 P

ro
f.

U
. A

ß
m

an
n

31 Model-Driven Software Development in Technical Spaces (MOST)

Rigid and Founded Types

► Example:
■ Book is a rigid type, Reader is a non-rigid type

. Reader can stop reading, but Book stays Book

► Rigid types are tied to the identity of objects
■ A non-rigid type is a dynamic type that is indicating a state of the object

If an object that has a rigid type, it cannot stop being of the type without
loosing its identity [Guarino]

A founded type (relative type) is a type that exists always in collaboration
(association) with another class.

 ©
 P

ro
f.

U
. A

ß
m

an
n

32 Model-Driven Software Development in Technical Spaces (MOST)

Role and Natural Types

A role type is a founded and non-rigid type.

A natural type is non-founded and rigid.

Role types are in collaboration and if the object does no longer play the role type, it does
not give up identity.

A natural type is independent of a relationship.
The objects cannot leave it.

 ©
 P

ro
f.

U
. A

ß
m

an
n

33 Model-Driven Software Development in Technical Spaces (MOST)

Solution to the Little Riddles..

Mother Woman

Person

Man

FatherPerson

Thing

Woman

┴

Mother

Grand
Father

Grand
Mother

Ancestor

┴

Man

Father

Marriage

 ©
 P

ro
f.

U
. A

ß
m

an
n

34 Model-Driven Software Development in Technical Spaces (MOST)

Role Types are Metatypes

► A metatype describes a type (is a type of a type)
■ Rigid Type
■ Natural Type
■ Founded Type
■ Role Type

Hypothesis:
The distinction of metatypes promotes

Separations of Concerns.

 ©
 P

ro
f.

U
. A

ß
m

an
n

35 Model-Driven Software Development in Technical Spaces (MOST)

Steimann Factorization [Steimann, DKE 2000]

► Splitting a full type into its natural and role-type components

■ FullType = Natural x (role-type, role-type, ...)

■ FullMan = Man x (Reader, Husband, Customer, ..)

Man

Husband

Reader

Buyer

Sausage

Newspaper

WomanWife

Read

Bought
FullMan

FullBook

FullWoman

FullNewspaper

 ©
 P

ro
f.

U
. A

ß
m

an
n

36 Model-Driven Software Development in Technical Spaces (MOST)

Full Type is from an Inheritance Product Lattice

► What is a reading buying husband person?

Person

Father

Mammal

LivingBeing

Thing

Dinosaurs

Chicken

┴

Mother

Husband Wife

Ancestor

┴

Acquain-
ted

Reader Writer

Accessor

┴

Negotiator

Contractor

Buyer Seller

Customer

┴

Natural (entity)
Role 1

Role 2
Role 3

 ©
 P

ro
f.

U
. A

ß
m

an
n

37 Model-Driven Software Development in Technical Spaces (MOST)

The Steimann Factorization

► Simpler, multi-dimensional inheritance hierarchies (product lattice)

Divide (partition) a type into a tuple type over a
product lattice of a core dimension and n-1 role dimensions(Core, Role_1, ...,

Role_n)

 ©
 P

ro
f.

U
. A

ß
m

an
n

38 Model-Driven Software Development in Technical Spaces (MOST)

Man

Concern-Separated Representation of Object Nets

► Collaborations (Role models) are interprocedural slices and belong to contexts

► Collaboration schemas are schemas for interprocedural slices

Husband

Reader

Buyer

Sausage

Newspaper

WomanWife

Read

Bought

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Softwrae Development in Technical Spaces

[Kühn 2014]

3.3 Contexts and Compartments

 ©
 P

ro
f.

U
. A

ß
m

an
n

40 Model-Driven Software Development in Technical Spaces (MOST)

How to Model Contexts

● A context is an object reifying contextual conditions, activating
and deactivating a set of roles of a set of objects
– Contexts show that contextual conditions hold
– Marriage (enables Husband and Wife)
– Light (enables reading)

● A compartment is a structured context activating and deactivating
subcontexts
– Marriage: Mistress (Mätresse) enables lover and lovee

during Marriage
– Light: Glasses (enables reading while light is on)

● A compartment hierarchy is a hierarchy of structured contexts
– World model (town, building, room)

● A compartment forest is a multi-hierarchy of structured contexts
– World model and company model

Photo by Alex Azabache on Unsplash

Photo by ROOM on Unsplash

 ©
 P

ro
f.

U
. A

ß
m

an
n

41 Model-Driven Software Development in Technical Spaces (MOST)

Explicit and Implicit Contexts (Compartments and other
Contexts)

Context

Explicit
Representation

as Object

Adaptivity
Modeling

Reliability of
Distributed

Context

Implicit
Representation in
State or Database

Querying
Context

Adaptivity
Platforms

Context

Compartment
Implicit
Context

Query ContextTeam

Collaboration

 ©
 P

ro
f.

U
. A

ß
m

an
n

42 Model-Driven Software Development in Technical Spaces (MOST)

More on Concern-Separated
Representation of Object Nets

► Compartments contain collaborations

► Compartments form indices to interprocedural slices

Man

Husband

Reader

Buyer

Sausage

Newspaper

WomanWife

Read

Bought

<<compartment>> Nutrition

<<compartment>> Marriage

<<compartment>>
Resources

Photo by Bruno Kelzer on Unsplash

 ©
 P

ro
f.

U
. A

ß
m

an
n

43 Model-Driven Software Development in Technical Spaces (MOST)

 Universe
Of Contexts

Example of Compartment Multi-Hierarchies

Business

Money

Family

ResourcesMarriage Nutrition

Role Universe
 Universe

Of Complex Objects

Context-Role
Mapping

Object-Role
Mapping

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Softwrae Development in Technical Spaces

3.4. Advantages of Roles:
Simple Static and Dynamic Data Extensibility

 ©
 P

ro
f.

U
. A

ß
m

an
n

45 Model-Driven Software Development in Technical Spaces (MOST)

Simplified Extension with Compartments

► Object-role nets can be extended by new compartments with new role models
collaborations

Man

Sausage

Buyer

Bought

<<compartment>> Nutrition

Husband WomanWife

<<compartment>> Marriage

Reader

Newspaper
Read

<<compartment>>
Resources

 ©
 P

ro
f.

U
. A

ß
m

an
n

46 Model-Driven Software Development in Technical Spaces (MOST)

A Compartment is a Relational Module (Collaboration)

► Nets of roles with open ends, open plays-a tentacles,
■ to be attached to object cores

Husband Wife

Marriage
Husband

Wife

– UML Notation (class level) with role-type parameter
P:

M

W

M
W

 ©
 P

ro
f.

U
. A

ß
m

an
n

47 Model-Driven Software Development in Technical Spaces (MOST)

Structured Compartment: Resources and Nutrition

Buyer

Bought

<<compartment>> Nutrition

Reader

Read

<<compartment>>
Resources

<<compartment>> NutritionResources

 ©
 P

ro
f.

U
. A

ß
m

an
n

48 Model-Driven Software Development in Technical Spaces (MOST)

Extension on the Steimann Product Lattice

► A new role relationship extends the product lattice by another dimension.

Person

Father

Mammal

LivingBeing

Thing

Dinosaurs

Chicken

┴

Mother

Husband Wife

Ancestor

┴

Acquain-
ted

Reader Writer

Accessor

┴

Negotiator

Contractor

Buyer Seller

Customer

┴

Natural (entity)

Role 1 Role 2

Role 3

 ©
 P

ro
f.

U
. A

ß
m

an
n

49 Model-Driven Software Development in Technical Spaces (MOST)

Separation of Concerns with Roles:
Identity of Objects is Fixed to Core Facet of Product Lattice

► Role type extensions does not change the name of the core type nor of the full type
(polymorphism)

Person

Father

Mammal

LivingBeing

Thing

Dinosaurs

Chicken

┴

Mother

Husband Wife

Ancestor

┴

Acquain-
ted

Reader Writer

Accessor

┴

Negotiator

Contractor

Buyer Seller

Customer

┴

Natural (entity)

Role 1 Role 2

Role 3

 ©
 P

ro
f.

U
. A

ß
m

an
n

50 Model-Driven Software Development in Technical Spaces (MOST)

Separation of Concerns with Roles: Simplifies Inheritance
Hierarchies

► Role Extension Retains Core Identity of a Class (Man stays Man)

Man
Father

Reader

Man Father

Man

FatherMixin
Father

Man

FatherMixin
Father

Man

ReaderMixin ReadingFather

 ©
 P

ro
f.

U
. A

ß
m

an
n

51 Model-Driven Software Development in Technical Spaces (MOST)

Compartment Superimposition extends the Steimann
Lattices of all involved Classes

Person

Father

Mammal

LivingBeing

Thing

Dinosaurs

Chicken

┴

Mother

Husband Wife

Ancestor

┴

Acquain-
ted

Reader Writer

Accessor

┴

Natural (entity)

Role 1 Role 2

Person

Father

Mammal

LivingBeing

Thing

Dinosaurs

Chicken

┴

Mother

Husband Wife

Ancestor

┴

Acquain-
ted

Reader Writer

Accessor

┴

Natural (entity)

Role 1 Role 2

Person

Father

Mammal

LivingBeing

Thing

Dinosaurs

Chicken

┴

Mother

Husband Wife

Ancestor

┴

Acquain-
ted

Reader Writer

Accessor

┴

Natural (entity)

Role 1 Role 2

Negotiator

Contractor

Buyer Seller

Customer

┴

Role 3

Negotiator

Contractor

Buyer Seller

Customer

┴

Role 3

Negotiator

Contractor

Buyer Seller

Customer

┴

Role 3

Extending
Compartment

 ©
 P

ro
f.

U
. A

ß
m

an
n

52 Model-Driven Software Development in Technical Spaces (MOST)

Extension and Adaptation in the Steimann Lattice Retains
Inheritance

► Stable entity inheritance hierarchies, if concepts are added relationally to a model
■ Otherwise: extension of superclasses necessary (role classes become superclasses

of entity classes)
■ Adding of new concerns is simple (adding a collaboration)

Superimposition of compartments to objects in Steimann-factored form retains all
inheritance structures

 ©
 P

ro
f.

U
. A

ß
m

an
n

53 Model-Driven Software Development in Technical Spaces (MOST)

Metametamodel CROM

Context

RoleCompartment

Object Mixin

Relation *

Collaboration

Team

M3
*

*

Roles are special. They belong to:
● objects (as context-specific behavior)
● relations (as the share with the objects)
● contexts (because they are depending on it)

 ©
 P

ro
f.

U
. A

ß
m

an
n

54 Model-Driven Software Development in Technical Spaces (MOST)

 Universe
Of Contexts

Adaptability with Compartment Multi-Hierarchies

Role Universe
 Universe

Of Complex Objects

Context-Role
Mapping

Object-Role
Mapping

Business

Money

Personal

ResourcesMarriage NutritionFamily

M2

 ©
 P

ro
f.

U
. A

ß
m

an
n

55 Model-Driven Software Development in Technical Spaces (MOST)

 Universe
Of Contexts

Adaptability with Compartment Multi-Hierarchies

Role Universe
 Universe

Of Complex Objects

Context-Role
Mapping

Object-Role
Mapping

Business

Money

Personal

ResourcesMarriage NutritionFamily

 ©
 P

ro
f.

U
. A

ß
m

an
n

56 Model-Driven Software Development in Technical Spaces (MOST)

 Universe
Of Contexts

Adaptability with Compartment Multi-Hierarchies

Role Universe
 Universe

Of Complex Objects

Context-Role
Mapping

Object-Role
Mapping

Business

Money

Personal

ResourcesMarriage NutritionFamily

 ©
 P

ro
f.

U
. A

ß
m

an
n

57 Model-Driven Software Development in Technical Spaces (MOST)

 Universe
Of Contexts

Adaptability with Compartment Multi-Hierarchies

Role Universe
 Universe

Of Complex Objects

Context-Role
Mapping

Object-Role
Mapping

Business

Money

Personal

ResourcesMarriage NutritionFamily

 ©
 P

ro
f.

U
. A

ß
m

an
n

58 Model-Driven Software Development in Technical Spaces (MOST)

ROSI Programming with SCROLL

► Compartment and Role Classes

► Dynamic Role Playing with deep roles
► SCROLL Scala Library https://github.com/max-leuthaeuser

► Change of context means to change to a new variant of the software

► SCROLL is perfect for dynamic software product lines (DSPL)

Roles and context are ready for programming in SCROLL

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Softwrae Development in Technical Spaces

3.5. Contextual Roles and their Benefit for
Separation of Concerns

 ©
 P

ro
f.

U
. A

ß
m

an
n

60 Model-Driven Software Development in Technical Spaces (MOST)

Business Objects with Roles and Contexts

► In large ERP frameworks (see SAP) business objects get very complex

► Ex.: Order gets different contexts, with roles
■ Every phase defines a context with different collaborators

► Dynamic Extensibility and Variability (Adaptation) by activation of new contexts

Order

received

Order

commissioned

Order

produced

Order

billed

Order

reminded

Order

payed

<<context>>
OrderProcessing

<<context>>
Production

<<context>>
Commissioning

<<context>>
Billing

<<context>>
Reminder

<<context>>
Archiving

 ©
 P

ro
f.

U
. A

ß
m

an
n

61 Model-Driven Software Development in Technical Spaces (MOST)

Parallel Objects with Roles and Contexts

► Selection of synchronisation protocol by activation of new contexts
■

Application Application Application Application

Sequential DistributedShared Mem Cloud-based

<<context>>
Parallel

 ©
 P

ro
f.

U
. A

ß
m

an
n

62 Model-Driven Software Development in Technical Spaces (MOST)

Advantages of ROSI for System Construction

► Separation of Concerns
■ Natural features – Context-dependent features
■ Dynamic features – static features

► Representation of roles as interprocedural graph slices

► Adaptability
■ Extensibility
■ Aspect Orientation (behavioral extensibility)
■ Variability (delayed role embedding decisions)
■ Substitutability (of roles and role models)

 ©
 P

ro
f.

U
. A

ß
m

an
n

63 Model-Driven Software Development in Technical Spaces (MOST)

Function-based (Name, parameters, Parameter types)

SCROLL and CROM support Roles and Contexts for
Multi-Dimensional Dispatch for Multi-Polymorphism

► How is the semantics of a feature of an object (function, attribute, method, condition,
service) determined?

Receiver-based Sender-based

Context-based

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Softwrae Development in Technical Spaces

3.6. Contextual Roles in Models

 ©
 P

ro
f.

U
. A

ß
m

an
n

65 Model-Driven Software Development in Technical Spaces (MOST)

Business Objects DSL with Roles and Contexts

► Ex.: Order gets different
contexts, with roles

► Every phase defines a
context with different
collaborators

► Dynamic Extensibility and
Variability (Adaptation) by
activation of new contexts

Order

received

Order

commissioned

Order

produced

Order

billed

Order

reminded

Order

payed

Order
Processing

Production
Commiss
ioning Billing Reminder Archiving

OrderProcess
Order

Order
Commissioning

Product
Production

Product
Billing

Bill
Reminder

Product
Archiver

<<context>>
Ordering

<<context>>
OrderProcessing

<<context>>
Commissioning

<<context>>
Production

<<context>>
Billing

<<context>>
BillMonitoring

<<context>>
Archiving

M1

 ©
 P

ro
f.

U
. A

ß
m

an
n

66 Model-Driven Software Development in Technical Spaces (MOST)

Kontextwechsel als dynamische Variation –
Verhaltensänderung durch Rollenvariation

Process
Order

Order
Commissioning

Product
Production

Product
Billing

Bill
Reminder

Product
Archiver

<<context>>
Ordering

<<context>>
OrderProcessing

<<context>>
Commissioning

<<context>>
Production

<<context>>
Billing

<<context>>
BillMonitoring

<<context>>
Archiving

OrderProcess
Order

Order
Commissioning

Product
Production

Product
Billing

Bill
Reminder

Product
Archiver

<<context>>
Ordering

<<context>>
OrderProcessing

<<context>>
Commissioning

<<context>>
Production

<<context>>
Billing

<<context>>
BillMonitoring

<<context>>
Archiving

Order

 ©
 P

ro
f.

U
. A

ß
m

an
n

67 Model-Driven Software Development in Technical Spaces (MOST)

Phase 3+4

OrderProcess
Order

Order
Commissioning

Product
Production

Product
Billing

Bill
Reminder

Product
Archiver

<<context>>
Ordering

<<context>>
OrderProcessing

<<context>>
Commissioning

<<context>>
Production

<<context>>
Billing

<<context>>
BillMonitoring

<<context>>
Archiving

OrderProcess
Order

Order
Commissioning

Product
Production

Product
Billing

Bill
Reminder

Product
Archiver

<<context>>
Ordering

<<context>>
OrderProcessing

<<context>>
Commissioning

<<context>>
Production

<<context>>
Billing

<<context>>
BillMonitoring

<<context>>
Archiving

 ©
 P

ro
f.

U
. A

ß
m

an
n

68 Model-Driven Software Development in Technical Spaces (MOST)

Phase 5+6

OrderProcess
Order

Order
Commissioning

Product
Production

Product
Billing

Bill
Reminder

Product
Archiver

<<context>>
Ordering

<<context>>
OrderProcessing

<<context>>
Commissioning

<<context>>
Production

<<context>>
Billing

<<context>>
BillMonitoring

<<context>>
Archiving

OrderProcess
Order

Order
Commissioning

Product
Production

Product
Billing

Bill
Reminder

Product
Archiver

<<context>>
Ordering

<<context>>
OrderProcessing

<<context>>
Commissioning

<<context>>
Production

<<context>>
Billing

<<context>>
BillMonitoring

<<context>>
Archiving

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Softwrae Development in Technical Spaces

3.7. Contextual Roles in Metamodels

 ©
 P

ro
f.

U
. A

ß
m

an
n

70 Model-Driven Software Development in Technical Spaces (MOST)

Metamodel of an Order Management DSL

► Advantage: Generation of “boilerplate” code (support code) for Order and its roles
■ Specification of workflows with an appropriate CNL
■ Constraint modeling with Attributed Grammars on M2

<<context>>
Ordering

<<context>>
OrderProcessing

<<context>>
Commissioning

<<context>>
Production

<<context>>
Billing

<<context>>
BillMonitoring

<<context>>
Archiving

Process
Order

Order
Commissioning

Product
Production

Product
Billing

Bill
Reminder

Product
Archiver

Product
Role

Order

Billing

M2

 ©
 P

ro
f.

U
. A

ß
m

an
n

71 Model-Driven Software Development in Technical Spaces (MOST)

name:String creationtime:DateTime
amount:Money

Bank Transaction

Account

id:int
balance: Money

trans1 1

BankAccounts (1..1)

Person

title: String
firstName: String
lastName: String
address: String

Company

name: String
legalForm: String
addresses: String[]
POBox: String

own_ca

1

0..*

own_sa1..* 0..*

2..20..*
Participants (1..1)

0..*

0..*

1..*

advises

0..*

1..*

Natural Type Role Type
Fills-Relation

Compartment Type

RSTCardN CardMRoleGroup (n..m)

Card

RST Constraint

irreflexive

id:int
name:String

Customer

TargetSource

limit:Money

CheckingAccount

transactionFee:Double

SavingsAccount

execution:DateTime

MoneyTransfer

phone:String

Consultant

∃ Existential
Implication

∃

Recap Role-Based (Meta-)Modeling
The Compartment Role Object Model (CROM)

Example: Banking Application

 ©
 P

ro
f.

U
. A

ß
m

an
n

72 Model-Driven Software Development in Technical Spaces (MOST)

Recap Role-Based (Meta-)Modeling
Roles in Modeling and Programming Languages

Context-
Dependent

Relational

Behavioral

Behavioral

Relational

Combined

Relational & Behavioral

Contextual &
Relational

Contextual & Behavioral

► Structured Literature Review of publications since 2000
► Published by the big four (i.e., Springer, IEEE, ACM, Science Direct)

Research Field suffers from fragmentation and discontinuity

 ©
 P

ro
f.

U
. A

ß
m

an
n

73 Model-Driven Software Development in Technical Spaces (MOST)

Recap Role-Based (Meta-)Modeling
Formal Foundation of CROM in EMOF

RigidType Type

NaturalType

CompartmentType

AntiRigidType

RoleType

Relationship
direction : Direction

Fulfillment

Inheritance

Constraint

RoleConstraint

RelationshipConstraint

IntraRelationshipConstraint InterRelationshipConstraint

NaturalInherita...

CompartmentIn...

RoleInheritance

Place
lower : EInt
upper : EInt

<<enumeration>>
Direction

Undirected
FirstToSecond
SecondToFirst

RelationshipImplicationIrreflexive

Cyclic

Total

AbstractRole

RoleGroup
lower : EInt
upper : EInt

RoleImplication

RoleEquivalence

RoleProhibition

Part
lower : EInt
upper : EInt

RoleGroupElement

AbstractRoleRef

elements

1..*

super 1

super 1

super 1

sub 1

sub 1

sub 1

filled1

filler
1

first1

second1

first1

second1

holder1

relation
0..1

first
1

second
1

parts
0..*

whole1

relationships0..*

constraints

0..*

role 1

ref 1

contains

1..*

fulfillments
0..*

 ©
 P

ro
f.

U
. A

ß
m

an
n

74 Model-Driven Software Development in Technical Spaces (MOST)

Dijkstra on Separation of Concerns

E. W. Dijkstra “On the Role of Scientific Thought”, EWD 447 Selected Writings on
Computing: A Personal Perspective, pages 60–66, 1982.

"Let me try to explain to you, what to my taste is characteristic for all intelligent
thinking.

It is, that one is willing to study in depth an aspect of one's subject matter in
isolation for the sake of its own consistency, all the time knowing that one is
occupying oneself only with one of the aspects.

We know that a program must be correct and we can study it from that viewpoint
only; we also know that it should be efficient and we can study its efficiency on
another day, so to speak. In another mood we may ask ourselves whether, and if
so: why, the program is desirable. But nothing is gained --on the contrary!-- by
tackling these various aspects simultaneously.

Roles and contexts introduce separations of concerns.

Context

 ©
 P

ro
f.

U
. A

ß
m

an
n

75 Model-Driven Software Development in Technical Spaces (MOST)

Intelligent thinking and scientific thought

It is what I sometimes have called "the separation of concerns", which, even if not
perfectly possible, is yet the only available technique for effective ordering of one's
thoughts, that I know of.

This is what I mean by "focussing one's attention upon some aspect": it does not mean
ignoring the other aspects, it is just doing justice to the fact that from this aspect's point of
view, the other is irrelevant. It is being one- and multiple-track minded simultaneously.

Scientific thought comprises "intelligent thinking" as described above. A scientific
discipline emerges with the --usually rather slow!-- discovery of which aspects can be
meaningfully "studied in isolation for the sake of their own consistency", in other words:
with the discovery of useful and helpful concepts. Scientific thought comprises in addition
the conscious search for the useful and helpful concepts.

 ©
 P

ro
f.

U
. A

ß
m

an
n

76 Model-Driven Software Development in Technical Spaces (MOST)

The End https://rosi-project.org

► Why are roles dynamic views on objects?

► Why is role-oriented software context-dependent?

