

Context- and Role-Oriented Software Development (CROSD)

Prof. Uwe Aßmann
Version 20-0.1, 9/27/21

MOST and
Role-based Context-Aware Software Infrastructures (RoSI)

4. Context- and Role-Oriented
Modeling and Development

Context- and Role-Oriented Software Development (CROSD)

4.1 Roles are a Core Concept in Software
Development

The RoSI Cube

Working still on locality and role mapping.

Context- and Role-Oriented Software Development (CROSD)
(c) Prof. Uwe Aßmann 3

Hypothesis: Roles are a Core Concept of Software
Development

3

Die Hypothese des GK spannt einen 3-dimensionalen
Raum auf:

Themenbereiche erklären!!
Rollen sind ein Kernkonzept der Software-Entwicklung für

Kontextbezug, aber auch für andere Eigenschaften
(Dimension 1).

Um das nachzuweisen, muss man die Rollen in allen
Abstraktionsebenen und Phasen des Lebenszyklusses
untersuchen (Dimension 2).

Daneben muss man Anwendungsgebiete untersuchen
(Dimension 3).

3

Context- and Role-Oriented Software Development (CROSD)
(c) Prof. Uwe Aßmann 4

Hypothesis: Roles are a Core Concept of Software
Development - Universality

4

Dabei ist nicht nur singulär jeder Punkt in diesem
Raum zu untersuchen (Universalität),

Universalität: für alle Zeitpunkte im Lebenszyklus

4

Context- and Role-Oriented Software Development (CROSD)
(c) Prof. Uwe Aßmann 5

Hypothesis: Roles are a Core Concept of Software
Development - Crosscutting

5

sondern auch die Durchgängigkeit (Verbindung und
Interation von Punktmengen, Dimensionen oder
Scheiben/slices)

Skalierbarkeit

5

Context- and Role-Oriented Software Development (CROSD)
(c) Prof. Uwe Aßmann 6

Hypothesis: Roles are a Core Concept of Software
Development - Practicality

6

und die Praktikabilität (Nachweis in
Anwendungsgebieten).

Dimension 3 ist unterspezifiziert, d.h. die Hypothese muss
für weitere Anwendungsgebiete untersucht werden.

Die Hoffnung ist, dass mit der exemplarischen Nachweis
für die untersuchten Gebiete dies einfacher ergibt bzw.
Randbedingungen

Für weitere Untersuchungen bestimmt werden können.

6

Context- and Role-Oriented Software Development (CROSD)
(c) Prof. Uwe Aßmann 7

 Roles are a universal
core concept

Crosscutting all
development phases

Crosscutting at
run-time

Practicability

Hypotheses of Role-Oriented Software
Infrastructures

H 1

H 2

H 3

H 4

Animation weg

7

Context- and Role-Oriented Software Development (CROSD)

4.2 Roles as a Universal Core Concept in
Software Development

The RoSI Cube

Working still on locality and role mapping.

Context- and Role-Oriented Software Development (CROSD)
(c) Prof. Uwe Aßmann 9

Objective 1: Roles are a Core Concept of Software
Development - Universality

● Fine-grain information for better
analysis of life times

● Behavior abstraction for better
provability

● Better extensibility

● Better substitutability

9

Context- and Role-Oriented Software Development (CROSD)

4.2.1. Fine-Grained Information for
Separation of Concerns

Context- and Role-Oriented Software Development (CROSD)
(c) Prof. Uwe Aßmann 11

Different Attributes

name = “Peter”
taxId = 0493027940

marriedTo = “Silvie”
fatherTo = “Vanessa”
employeeOf = “Folgswagen”

heart = “heart12303”
knee = “knee23”

foodInStomach = “apple”

age = “grown-up”

:Person

Context- and Role-Oriented Software Development (CROSD)
(c) Prof. Uwe Aßmann 12

Different Attributes

name = “Peter”
taxId = 0493027940

marriedTo = “Silvie”
fatherTo = “Vanessa”
employeeOf = “Folgswagen”

heart = “heart12303”
knee = “knee23”

foodInStomach = “apple”

age = “grown-up”

:Person

<<core>>

<<roles>>

<<intrinsic parts>>

<<transient parts>>

<<phases>>

Context- and Role-Oriented Software Development (CROSD)
(c) Prof. Uwe Aßmann 13

Cores and Mixins
(“Subobjects”, “Satellites”)

<<core>>
name = “Peter”
taxId = 0493027940

:Person

<<role>>
marriedTo = “Silvie”
fatherTo = “Vanessa”

employeeOf = “Folgswagen”

<<intrinsic part>>
heart = “heart12303”

knee = “knee23”<<transient part>>
foodInStomach = “apple”

<<phase>>
age = “grown-up”

Role arrows are drawn with
Rounded source

Context- and Role-Oriented Software Development (CROSD)
(c) Prof. Uwe Aßmann 14

Separation of Concerns with Roles:
Distinguishing Life-Times
● Roles are contextually dependent (founded), and have a different life-time as the

core

– → Memory allocation must be different

● Distinguish core-local, role-local, role-alternative, role-shared memory between core
and roles

– natural memory (core-local memory)

– founded memory (context-dependent memory)

● Roles-of-roles (deep roles) are stacked upon roles;

– Obstack allocation possible (mark-release heaps)

●

Roles can improve knowledge about life-time and co-life-time of
memory

Context- and Role-Oriented Software Development (CROSD)
(c) Prof. Uwe Aßmann 15

Separation of Concerns with Roles:
Alias Freedom and Data Independence
● Natural and role-local memory are alias free

● Shared memory is still problematic (competitive writes)

Roles can improve life-time and independence knowledge

Context- and Role-Oriented Software Development (CROSD)
(c) Prof. Uwe Aßmann 16

Role Types are Metatypes (Mixin Types)

● A metatype describes a type (is a type of a type) [Guarino:OntoClean]

– Natural Type

– Part Type (intrinsic, shared, owned,..)

– Role Type

– Facet Type

– Phase Type

Hypothesis:
The distinction of metatypes promotes

Separations of Concerns.

Context- and Role-Oriented Software Development (CROSD)
(c) Prof. Uwe Aßmann 17

Distinguishing Mixin Types (“Colors”, “Metatypes”,
“Satellite Types”)

<<natural type>>
<<sortal>>
name: String
taxId: int

Person

<<role type>>
marriedTo: Person
fatherTo: Person

employeeOf: Company

<<intrinsic part type>>
heart: Heart
knee: Knee<<transient part type>>

foodInStomach:Food

<<phase type>>
age: enum

Context- and Role-Oriented Software Development (CROSD)
(c) Prof. Uwe Aßmann 18

Separation of Concerns Helps

● The distinction of metatypes enables us to separate more concerns (SoC)

– And bring it to run-time: Life-time, independence, ….

– Cross-cutting: traceability, certification,...

Roles can improve modeling and programming.

Context- and Role-Oriented Software Development (CROSD)

Roles are a Core Concept
Advantages of Roles:
The Role-Play Automaton
The Role-Play Petri Net

Role-Oriented Context-Aware Software Infrastructures (ROSI)

4.2.2. Abstraction of Object Behavior -
Compartments and Role Playing

Context- and Role-Oriented Software Development (CROSD)
(c) Prof. Uwe Aßmann 20

Role-Play Nets

● The role-play (petri) net of an object switches in and off the object‘s roles

– Specifies constraints on the order of the role play

– Thereby constraints on the compartment activation

● Roles are specific states indicating

– There is a compartment active to which the role belongs

– There is a partner role within the compartment that can be called or notified or streamed

● Two forms:

– Role-Play automaton (sequential)

– Role-play net (parallel)

Context- and Role-Oriented Software Development (CROSD)
(c) Prof. Uwe Aßmann 21

Aquisition and
Loss of Roles
● Aquisition and Loss of Roles creates

an Role-Play Automaton
abstracting the behavior of a class of objects

Man

Husband

Celib

Woman

Wife

Celib
<marry>

<divorce>

Relship

Celibataire Marriage

Relship

Celibataire Marriage

Husband
Wife

Context- and Role-Oriented Software Development (CROSD)
(c) Prof. Uwe Aßmann 22

Aquisition and Loss of Roles
with Role-Play Automata

● Aquisition and Loss of Roles creates an Role-Play Automaton
abstracting the behavior of a class of objects

● Here: some states with the same color are coupled

Man

Courter

Happy

Woman

Courted

happy

Relship

Courting Good

Courting Courted

Crises

Talking Talking

Quarelling Quarreling

Angry angry

Context- and Role-Oriented Software Development (CROSD)
(c) Prof. Uwe Aßmann 23

Aquisition and Loss of Roles
with Role Nets

● Aquisition and Loss of Roles of parallel objects and their state
transitions creates a Role-Play Net indicating parallel transitions

● Here: exclusive compartments, exclusive roles

● Coupling via synchronizing transitions

Man

Courter

Happy

Woman

Courted

Happy

Relship

Courting Good

Courting Courted

Crises

Talking Talking

Quarelling Quarreling

Angry Angry

Context- and Role-Oriented Software Development (CROSD)
(c) Prof. Uwe Aßmann 25

Humans think and argue based on Role-Play Nets

A Fancy Observation

● “become a father”

● „if you are a husband, you should care about your wife“

● “become a driver”, „drivers, watch out for pedestrians“

● “cease to be an employee”

● “cease to be student”

Context- and Role-Oriented Software Development (CROSD)
(c) Prof. Uwe Aßmann 26

Role-Play Net of a Compartment

● The role-play net of a compartment is the view on all role-play nets comprising
all roles places of the compartment.

● When a compartment is activated there is the constraint that

– all the compartment‘s roles in all their players are activated (firable)

– Otherwise the net is inconsistent.

● When a compartment is deactivated there is the constraint that

– all the compartment‘s roles in all their players are deactivated (non-firable)

Context- and Role-Oriented Software Development (CROSD)
(c) Prof. Uwe Aßmann 27

Parallel Aquisition and Loss of Roles

● Parallel Aquisition and Loss of Roles in a parallel class creates an Role-Play (Petri)
net

Man

Husband

Celib

Woman

Wife

Celib<marry>

<divorce>

Jewelry Shop

Bottom
(nothing)

Seller

Bottom
(nothing)

Customer

with
Ring

<buy ring>

Context- and Role-Oriented Software Development (CROSD)
(c) Prof. Uwe Aßmann 28

The role-play petrinet of a regularly adaptable class is k-bounded.

Regular Adaptability and Variability

The composed role-play petrinet of a Turing-complete program
with finite nunber of objects is decidable.

● Many applications have a restricted form of adapability (variability)

● A regularly adaptable class has a finite role-play automaton with n compartments
as states

– Infinitely many adaptations, but regularly many

Context- and Role-Oriented Software Development (CROSD)

4.2.3. Advantages of Roles: Behavioral
Extensibility

Roles are a Core Concept

Context- and Role-Oriented Software Development (CROSD)
(c) Prof. Uwe Aßmann 30

Extensibility as a Universal Feature of Role-based
Infrastructures
● New compartments with their roles can easily be integrated into an application →

extensibility (see lecture 01)

● Roles may have different implementation paradigms (groundings):

– Functional programs

– Workflow nets

– Data-flow nets (see MOST)

– Attributed trees (see MOST)

● All of them have the extensibility feature, but use different „open operators“ for
extensions.

Context- and Role-Oriented Software Development (CROSD)
(c) Prof. Uwe Aßmann 31

Example: Extending Role-based Systems
Grounded by Workflow Nets (Petri Nets)
● With an appropriate behavioral specification language, role classes and natural

classes can be extended with regard to behavior

● Example: Workflow Nets are a specific form of Petri Nets

– Place workflow nets have one single input place and a single output place

– Transition workflow nets have one single input transition and a single output transition

● For extension (and variation) of behavior of classes, we use the extension of AND,
OR, XOR split and join open transition operators

Context- and Role-Oriented Software Development (CROSD)
(c) Prof. Uwe Aßmann 32

Complex Transition Operators in Workflow Nets:
Join and Split „Open“ Transitions (of YAWL)

 OR

 XOR

 AND AND

XOR

OR

● All incoming places are ready
(conjunctive input, AND-join)

● One out of n incoming places are
ready (disjunctive input)

● Some out of n incoming places
are ready (selective input)

● All outgoing places are filled
(conjunctive output, AND-split)

● One out of n outgoing places are
filled (disjunctive output, XOR
split)

● Some out of n outgoing places are
filled (selective output, OR-split)

Context- and Role-Oriented Software Development (CROSD)
(c) Prof. Uwe Aßmann 33

Extension of Workflows with new
Place Workflow Nets
● Behavior can be added in slices to open split and join operators

Man

Husband WomanWife XOR

AND

Context- and Role-Oriented Software Development (CROSD)
(c) Prof. Uwe Aßmann 34

Extension of Workflows with new
Place Workflow Nets
● Behavior can be added in slices to open split and join operators

Man

Husband

Reader

Newspaper

WomanWife

Read

 XOR

AND

 OR

Context- and Role-Oriented Software Development (CROSD)
(c) Prof. Uwe Aßmann 35

Extension of Workflows with new
Place Workflow Nets
● with AND semantics

Man

Husband

Reader

Buyer

Sausage

Newspaper

WomanWife

Read

Bought

AND

 XOR

 OR

Context- and Role-Oriented Software Development (CROSD)
(c) Prof. Uwe Aßmann 36

Extension of Workflows with new
Place Workflow Nets
● with OR semantics

Man

Husband

Reader

Buyer

Sausage

Newspaper

WomanWife

Read

Bought

AND

 XOR

 OR

Scanner
Scanning Read

Context- and Role-Oriented Software Development (CROSD)

4.2.4 Better Substitutability: Role-Specific
Contracts

Roles as a Core Concept in Software Development

Working still on locality and role mapping.

Context- and Role-Oriented Software Development (CROSD)
(c) Prof. Uwe Aßmann 38

Separation of Concerns with Roles:
Role-Based Contracts are Context-Based
● Contracts describe conditions for substitutability

● A contract is a constraint on inputs (precondition), outputs (postcondition) and
invariants of a component (see courses CBSE, ST)

● Life-time and Alias Independence enable simpler proof of contracts

● The Role-Play Automaton determines which contracts are active

– in which context

Roles can improve contract theory for sequential and parallel classes

Context- and Role-Oriented Software Development (CROSD)
(c) Prof. Uwe Aßmann 39

Summary: Roles are a Core Concept of Software
Development

3
9

sondern auch die Durchgängigkeit (Verbindung und
Interation von Punktmengen, Dimensionen oder
Scheiben/slices)

Skalierbarkeit

3
9

Context- and Role-Oriented Software Development (CROSD)

4.3. Roles are a Concept Crosscutting all
Phases

Context- and Role-Oriented Software Development (CROSD)
(c) Prof. Uwe Aßmann

Folie 41

Objective 2: Roles Crosscut all Development Phases

4
1

4
1

Context- and Role-Oriented Software Development (CROSD)

4.3.1 Roles in Software Modeling

Roles as a Concept Crosscutting all Phases

Working still on locality and role mapping.

Context- and Role-Oriented Software Development (CROSD)

4.3.1.1. How to Do Object-Oriented Analysis
with ROSI

Context- and Role-Oriented Software Development (CROSD)
(c) Prof. Uwe Aßmann 44

RoSI Object Models
RoSI Component Models

● An Object Model describes a structure and behavior for all objects in all phases of
the life cycle

– It forms type systems

– specification languages

– the parallelism available

● Roles and Contexts can be used in Object-oriented Analysis (OOA), offering a very
flexible object model

Context- and Role-Oriented Software Development (CROSD)
(c) Prof. Uwe Aßmann 45

Object-Oriented Analysis with ROSI
Step 1: Ask for the Core Objects with Natural
Types

Max:Person Buy24:Bank

Frank:Man

Rosi:Woman

:Resource

Bnn:Newspaper thuringa:Sausage

Context- and Role-Oriented Software Development (CROSD)
(c) Prof. Uwe Aßmann 46

:Child

Papa:Father
Mama:
Mother

:Customer

:Loaner

Object-Oriented Analysis with ROSI
Step 2: Ask for the Roles with Founded Types

Max:Person Buy24:Bank

Frank:Man

Rosi:Woman

:Resource

Bnn:Newspaper thuringa:Sausage

:Eatable
:Readable

:Eating

:Reader

Context- and Role-Oriented Software Development (CROSD)
(c) Prof. Uwe Aßmann

Folie 47

:Child

Papa:Father
Mama:
Mother

:Customer

:Loaner

Object-Oriented Analysis with ROSI
Step 3: Ask for the Contexts and
Compartments of the Roles

Max:Person Buy24:Bank

Frank:Man

Rosi:Woman

:Resource

Bnn:Newspaper thuringa:Sausage

:Eatable
:Readable

<<context>>
Family

:Eating

:Reader

<<context>>Resources <<context>>Nutrition

<<context>>
Money

Business

Money

Personal

ResourcesMarriage NutritionFamily

Context- and Role-Oriented Software Development (CROSD)
(c) Prof. Uwe Aßmann

Folie 48

:Child

Papa:Father
Mama:
Mother

:Customer

:Loaner

Object-Oriented Analysis with ROSI
Step 4: Dynamic Variation: Variant
with Contexts
Family and Money

Max:Person Buy24:Bank

Frank:Man

Rosi:Woman

<<context>>
Family

<<context>>
Money

Business

Money

Personal

ResourcesMarriage NutritionFamily

Context- and Role-Oriented Software Development (CROSD)
(c) Prof. Uwe Aßmann

Folie 49

:Child

Papa:Father
Mama:
Mother

Object-Oriented Analysis with ROSI
Step 4b: Dynamic Variation:
Variant with Contexts
Nutrition and Family

Max:Person

Frank:Man

Rosi:Woman

:Resource

thuringa:Sausage

:Eatable

<<context>>
Family

:Eating

<<context>>Nutrition

Business

Money

Personal

ResourcesMarriage NutritionFamily

Context- and Role-Oriented Software Development (CROSD)
(c) Prof. Uwe Aßmann 50

:Child

Papa:Father
Mama:
Mother

:Customer

:Loaner

Object-Oriented Analysis with ROSI
Step 4c: Dynamic Variation: Variant
with Compartment Hierarchy
(Money, Resources) < Business | Family)

Max:Person Buy24:Bank

Frank:Man

Rosi:Woman

:Resource

Bnn:Newspaper

:Readable

<<context>>
Family

:Reader

<<context>>Resources

<<context>>
Money

:Resource

Bnn:Newspaper

Business

Money

Personal

ResourcesMarriage NutritionFamily

Context- and Role-Oriented Software Development (CROSD)

4.2. Scenario Fire Alarm – in the CROM
Modeling Language

52

Context- and Role-Oriented Software Development (CROSD)
(c) Prof. Uwe Aßmann 52

Context-Dependent Runtime Models
Compartment Role Object Model (CROM) [Kühn2015]

53

Context- and Role-Oriented Software Development (CROSD)
(c) Prof. Uwe Aßmann 53

Context-Dependent Runtime Models
Compartment Role Object Model (CROM) [Kühn2015]

54

Context- and Role-Oriented Software Development (CROSD)
(c) Prof. Uwe Aßmann 54

Context-Dependent Runtime Models
Compartment Role Object Model (CROM) [Kühn2015]

55

Context- and Role-Oriented Software Development (CROSD)
(c) Prof. Uwe Aßmann 55

Context-Dependent Runtime Models
Compartment Role Object Model (CROM) [Kühn2015]

Key properties
Roles and Relationships depend on the compartments (contexts)
Roles change over time
Compartments, “players” and roles have their own identity
Formal definition of well-formedness, compliance, and validity

56

Context- and Role-Oriented Software Development (CROSD)
(c) Prof. Uwe Aßmann 56

Context-Dependent Runtime Models
Compartment Role Object Instance (CROI) [Kühn2015]

Context- and Role-Oriented Software Development (CROSD)

4.3.3 Role Refinement in Model-Driven
Software Development (MDSD)
and Model-Driven Architecture (MDA)

Roles as a Concept Crosscutting all Phases

Working still on locality and role mapping.

Context- and Role-Oriented Software Development (CROSD)
(c) Prof. Uwe Aßmann

Folie 58

Role-based Refinement in the MDSD- and MDA-Process

● Refinement by allocation of additional
roles

– Better traceability

● Platform-features are „technical“ Roles
of an object

– Dynamic contexts (space, time, quality
of service)

5
8

Causal connection of context-
based features and fluidity

from requirements level to run
time

Person

Fath
erMamm

al

LivingBe
ing

Thing

Dinos
aurs

Chicken

┴

Chil
d

Gra
nd
Fath
er

Gra
nd
Chil
d

Rela
ted

┴

Natural
type

Role type
1

<is-a>

Negotiat
or

Contract
or

Buy
er

Sell
er

Cust
ome
r

┴

Role
type 3

Requirements

Design

Run-time

Implementation

Acq
uain
-
ted

Rea
der

Writ
er

Acc
ess
or

┴

Role
type 2

<is-a>

Person

Fath
erMamm

al

LivingBe
ing

Thing

Dinos
aurs

Chicken

┴

Chil
d

Gra
nd
Fath
er

Gra
nd
Chil
d

Rela
ted

┴

Natural
type

Role type
1

<is-a>

Acq
uain
-
ted

Rea
der

Writ
er

Acc
ess
or

┴

Role
type 2

<is-a>

Person

Fath
erMamm

al

LivingBe
ing

Thing

Dinos
aurs

Chicken

┴

Chil
d

Gra
nd
Fath
er

Gra
nd
Chil
d

Rela
ted

┴

Natural
type

Role type
1

<is-a>

M
od

el
-d

riv
en

 A
rc

hi
te

ct
ur

e
(M

D
A)

Die Faktorisierung hilft, die Traceability von natürlichen
Objekten zu verbessern, denn sie können nun von
Rollen unterschieden werden

5
8

Context- and Role-Oriented Software Development (CROSD)
(c) Prof. Uwe Aßmann

Folie 59

Requirements Specification

• Domain models, tests

Platform-Independent Models

• Software architecture

Platform-Specific Models

• Platforms correspond to technical contexts

Dynamic Context-Free Models (models at run time)

• Roles belong to run-time contexts

Dynamic Context-Sensitive Models

• Dynamic reconfiguration to new contexts by exchange of roles

The Extended MDSD/MDA-Process with Contexts and Roles

TB2

TB3

59

Referenzen weg

5
9

Context- and Role-Oriented Software Development (CROSD)
(c) Prof. Uwe Aßmann

Folie 60

Good Mapping of Conceptual Role Models to Physical Class
Models

● Role instances must be

– embedded into core objects

– or become physical role objects

● Role mapping: Mapping conceptual role types to physical implementation-records
is an Embedding Decision

● For one conceptual model, many alternative phyisical models

Context- and Role-Oriented Software Development (CROSD)
(c) Prof. Uwe Aßmann

Folie 61

Roles in Relations

Computing Physical Representation from Conceptual Models

● Role embedding determines, which roles are embedded into which physical objects

Role Models (maximally splitted
responsibilities of the conceptual objects)

Roles in Players
(mixin inheritance)

Physical
models
without
roles Roles in Delegatees

(role objects)

Conceptual
role
models

Context- and Role-Oriented Software Development (CROSD)

4.5.3 Role-Mapping MDA with Scenario
„Families and Banks“

Context- and Role-Oriented Software Development (CROSD)
(c) Prof. Uwe Aßmann

Folie 63

:Child

Papa:Father
Mama:
Mother

:Customer

:Loaner

Families, Resources and Banks (Snapshot, Object-Role Model)

Max:Person Buy24:Bank

Frank:Man

Rosi:Woman

:Resource

Bnn:Newspaper thuringa:Sausage

:Eatable
:Readable

<<context>>
Family

:Eating

:Reader

<<context>>Business <<context>>Nutrition

<<context>>
Money

Context- and Role-Oriented Software Development (CROSD)
(c) Prof. Uwe Aßmann

Folie 64

Child

Father
Mother

Customer

Loaner

Families and Banks in Natural and Role Types

Person Bank

Man

Woman

Resource

Newspaper Sausage

Eatable
ReadableReader

Eating

Context- and Role-Oriented Software Development (CROSD)
(c) Prof. Uwe Aßmann

Folie 65

Implement „Families and Banks“
(Delegation to Role Objects - „Split Design“)

Person Bank

Man

Woman

Resource

Newspaper Sausage
<<role class>>

Child

<<role class>>

Father

<<role class>>

Reader
<<role class>>

Readable

<<role class>>

Mother

<<role class>>

Eating

<<role class>>

Eatable

<<role class>>

Customer

<<role class>>

Loaner

Context- and Role-Oriented Software Development (CROSD)
(c) Prof. Uwe Aßmann

Folie 66

Implement „Families and Banks“
(Delegation to Role Objects – Design „Inheritance Embeds Roles in
Players“)

Person Bank

Man

Woman

Resource

Newspaper Sausage
<<role-holder class>>

Child

<<role-holder class>>

Father

<<role-holder class>>

Reader
<<role-holder class>>

Readable

<<role-holder class>>

Mother

<<role-holder class>>

Eating

<<role-holder class>>

Eatable

<<role-holder class>>

Customer

<<role-holder class>>

Loaner

Usual design; this mixes dynamic, polymorphic red inheritance with static inheritance

Context- and Role-Oriented Software Development (CROSD)
(c) Prof. Uwe Aßmann

Folie 67

Implement „Families and Banks“
(Delegation to Role Objects – Design „Roles Embedded in
Relations“)

Person Bank

Man

Woman

Resource

Newspaper Sausage
<<role class>>

Child

<<role class>>

Father

<<role class>>

Reader
<<role class>>

Readable

<<role class>>

Mother

<<role class>>

Eating

<<role class>>

Eatable

<<role class>>

Customer

<<role class>>

Loaner

Usual design; this mixes dynamic, polymorphic red inheritance with static inheritance

<<association class>>

<<association class>>
<<association class>>

<<association class>>

Context- and Role-Oriented Software Development (CROSD)
(c) Prof. Uwe Aßmann

Folie 68

Scalable Binding Times of Contexts

● Problematic: Role mapping fixes binding time

Roles in Relations

Role Models (maximally splitted
responsibilities of the conceptual objects)

Roles in Players
(mixin inheritance)

Class
models

Roles in Delegatees
(role objects)

Role
models

static, good
“object” locality

dynamic,
bad locality

dynamic, good
relational locality

Context- and Role-Oriented Software Development (CROSD)
(c) Prof. Uwe Aßmann

Folie 69

The Role-Mapping Process and Model-Driven Architecture

● The question “Where is a role
embedded?” is a platform decision in
Model-Driven Architecture (MDA)

– A role model is more platform
independent than a class model

● → Role mapping is a task in Model-
Driven Architecture (MDA)

Conceptual
Role-Based Models

Physical Class Model
(roles embedded)

Code

Role mappingRole embedding

Context- and Role-Oriented Software Development (CROSD)
(c) Prof. Uwe Aßmann

Folie 70

Role Mapping MDA Yields Scalability

● From one conceptual role-based design, derive via Role-MDA:

– many physical designs

– many run-time behaviors with different QoS

● When to embed?

– At compile-time

– At run-time

● Tuning and optimization possible

Role embedding delivers variable implementations,
scalable in splitting, locality and allocation

Context- and Role-Oriented Software Development (CROSD)
(c) Prof. Uwe Aßmann

Folie 71

How to Achieve Scalable Binding Times of Contexts

● Scalability: Roles and their contexts can be statically bound

● Effects on Life-time, aliases and dependencies, cohesion, allocation, adaptation,
reconfiguration

Father

┴

Child

Related

┴

Acquainted

Reader Writer

Accessor

┴

Negotiator

Contractor

Buyer Seller

Customer

┴

Natural type Statically fixed Role type 1 Role type 2 Role type 3

Grand
Father

Grand
ChildPerson

Mammal

LivingBeing

Thing

Dinosaurs

Chicken

OPTIONAL

7
1

Context- and Role-Oriented Software Development (CROSD)

2.4. Roles are a Concept for Language
Modeling and Language Engineering

Context- and Role-Oriented Software Development (CROSD)
(c) Prof. Uwe Aßmann 74

Software objects
describing world objectsM0 Object level

M1 model level

M2 metamodel level

M3 metametamodel
level

Types, programs, models
domain ontologies

Language descriptions

Modelling concepts

 OWL, UML, CWM,ER

MOF, UML-core, OWL, AG, NS

model instances

Metamodelling conceptsM4 level = M3

validInstanceOf describes

validInstanceOf describes

validInstanceOf describes

validInstanceOf describes

The IRDS/MOF Metamodelling Hierarchy

Context- and Role-Oriented Software Development (CROSD)
(c) Prof. Uwe Aßmann 76

Context-Based Modelling of Languages on M2

● Role-types factor concept hierarchies into context-free and context-dependent
features

● Improved separation of concerns

● [Wende] PhD Thesis

Concept Hierarchy 1
Natural Metaclass Role types

TypeDecl

Declaration

Element

Expression

BinOp

┴

Checkable

Mono-
morphic

Poly-
morphic

┴

Language Component 1

M2

7
6

Context- and Role-Oriented Software Development (CROSD)
(c) Prof. Uwe Aßmann 77

Context-Based Modelling of Languages on M2

● Context-dependent features can easily be exchanged

Concept Hierarchy 1
Natural Metaclass Role types

TypeDecl

Declaration

Element

Expression

BinOp

┴

Checkable

Mono-
morphic

Poly-
morphic

┴

Language Component 1

30

TypeTypeChecker

Static
Type

Concept Hierarchy 2
Natural Metaclass

Dynamic
Type

┴
┴

Type
Inferencer

Language Component 2

Role types

M2

7
7

Context- and Role-Oriented Software Development (CROSD)
(c) Prof. Uwe Aßmann 78

Context-Based Modelling of Languages on M2

● Modular languages

– Domain-specific languages

– Ontologies

Concept Hierarchy 1
Natural Metaclass Role types

TypeDecl

Declaration

Element

Expression

BinOp

┴

Checkable

Mono-
morphic

Poly-
morphic

┴

Language Component 1

TypeTypeChecker3

Static
Type

Concept Hierarchy 3
Natural Metaclass

Dynamic
Type

┴
┴

Type
Inferencer

Language Component 3

Role types

M2

7
8

Context- and Role-Oriented Software Development (CROSD)

2.3.3 Roles are a Concept for Run-Time
Infrastructures

Context- and Role-Oriented Software Development (CROSD)
(c) Prof. Uwe Aßmann 82

Objective 3: Investigation of Context-Based and
Fluid Run-Time-Infrastructures

82

8
2

Context- and Role-Oriented Software Development (CROSD)
(c) Prof. Uwe Aßmann 83

Context-Based and Fluid Run-Time Features

is-a

Person CompanyCustomer Vendor

Long - Term
Customer

Premium
Customer

is-a

● Fluid complex objects can be dynamically reconfigured

● Context-dependent run-time behavior

● Fine-grained monitoring, persistency, adaption

Context- and Role-Oriented Software Development (CROSD)
(c) Prof. Uwe Aßmann 84

Dynamic Mixins

is-a

Person CompanyCustomer Vendor

Long - Term
Customer

Premium
Customer

is-a

● Can role types be mixed into core types at run-time?

Context- and Role-Oriented Software Development (CROSD)
(c) Prof. Uwe Aßmann 85

Dynamic Mixins

is-a

CustomerPerson Vendor Company

Long - Term
Customer

Premium
Customer

is-a

● Can role objects be mixed into core objects at run-time?

● Yes – by memory compaction in JIT recompilation

Context- and Role-Oriented Software Development (CROSD)
(c) Prof. Uwe Aßmann 86

Dynamic Mixins

is-a

Person CompanyCustomer Vendor

Long - Term
Customer

Premium
Customer

is-a

● But role instances can also be outlined again

Context- and Role-Oriented Software Development (CROSD)
(c) Prof. Uwe Aßmann 87

Dynamic Mixins

is-a

Person Company

Customer

Vendor
Long - Term
Customer

Premium
Customer

is-a

● But role instances can also be outlined again

● To change the role type

Context- and Role-Oriented Software Development (CROSD)
(c) Prof. Uwe Aßmann 88

Dynamic Mixins

is-a

Company

Customer

Vendor
Long - Term
Customer

Person

Premium
Customer

is-a

● And then re-inlined (dynamic mixin)
– by memory compaction during JIT re-compilation

Context- and Role-Oriented Software Development (CROSD)
(c) Prof. Uwe Aßmann 89

Dynamic Mixins

is-a

plays-a
Person CompanyCustomer Vendor

plays-a

Long - Term
Customer

Premium
Customer

is-a

Role-based run-time infrastructures can optimize locality of roles
dynamically

by dynamic mixins and recompilation

Context- and Role-Oriented Software Development (CROSD)

2.5. Roles are a Practical Concept

Context- and Role-Oriented Software Development (CROSD)
(c) Prof. Uwe Aßmann 93

Objective 4: Practicality in Application Areas

93

9
3

Context- and Role-Oriented Software Development (CROSD)
(c) Prof. Uwe Aßmann

Folie 94

● Business Informatics (Wirtschaftsinformatik)
– Improved Modeling of business objects and business models in ERP-systems

– Role-based organisation models

● Bioinformatics (Bioinformatik)
– Context-based dynamic biological processes

– Search in context-based ontologies

94

Practicality of Role Modeling

Querschneidende Arbeiten hier gruppieren

9
/
2
7
/
2
1

V
o
d
a
f
o
n
e

C
h
a
i
r

M
o
b
i
l
e

C
o
m
m
u
n
i
c
a
t
i
o
n
s

S
y
s
t
e
m
s

T
U

D
r
e
s
d
e
n

9
4

Context- and Role-Oriented Software Development (CROSD)
(c) Prof. Uwe Aßmann 95

New Application Areas

● Roles for context-sensitive cyber-physical systems (CPS)

– Hypothesis: Role-contracts for safety and security

● Roles for emergence in Systems-of-Systems (SoS)

– Hypothesis: Role models for unforeseen emergence

● Roles for Natural Energy Servers

– Hypothesis: Multi-criteria optimization for energy-adaptive systems

62

Verschmelzen in “neue Herausforderungen”

9
5

Context- and Role-Oriented Software Development (CROSD)
(c) Prof. Uwe Aßmann 97

The RoSI House

Object modeling
Metamodeling

Language modeling
Data modeling

App modeling
Schema modeling

System modeling

Roles in concept
and language
modeling

Roles in
software
development

Roles at
runtime

Themenbereich 1 (TB1 - Rollen in der Konzept- und
Sprachmodellierung) widmet sich den Metaebenen
M3 und M2.

Arbeiten in diesem Themenbereich untersuchen die
Begründung und Definition des Rollenbegriffs und
seine Einbettung in den verschiedenen Sprachen
(Modellierungssprachen, Datendefinitions- und -
abfragesprachen, Programmiersprachen) der
Softwareentwicklung.

Themenbereich 2 (TB2 - Rollen in der
Softwareentwicklung) konzentriert sich auf die
Verwendung des Rollenbegriffs auf Objektebene

die Grundlagen der Anwendungsentwicklung
(Anwendungsmodellierung, Schemaentwurf,
Systemmodellierung) mit Rollen.

Themenbereich 3 (TB3 - Rollen zur Laufzeit)
betrachtet die Verwendung des Rollenbegriffs und
rollenspezifischer Modelle zur Laufzeit
(Instanzebene) und deren Auswirkung.

97

Context- and Role-Oriented Software Development (CROSD)
(c) Prof. Uwe Aßmann 98

Ladder of Paradigms (ctd)

Object-oriented development
(OOA, OOD, OOP)

Role-oriented development
(ROD, Objects with roles)

Context- and
Satellite-oriented development

(Objects with orbits, ORBIT model)

1967-1995

1995-

RoSI-

Context- and Role-Oriented Software Development (CROSD)
(c) Prof. Uwe Aßmann 100

E. W. Dijkstra “On the Role of Scientific Thought”, EWD 447 Selected
Writings on Computing: A Personal Perspective, pages 60–66, 1982.

"Let me try to explain to you, what to my taste is characteristic for all
intelligent thinking.

It is, that one is willing to study in depth an aspect of one's subject
matter in isolation for the sake of its own consistency, all the time
knowing that one is occupying oneself only with one of the aspects.

Context- and Role-Oriented Software Development (CROSD)
(c) Prof. Uwe Aßmann 101

The End

Context- and Role-Oriented Software Development (CROSD)
(c) Prof. Uwe Aßmann

Folie 102

Important References

● T. Reenskaug, P. Wold, and O. Lehne. Working with Objects, The OOram Software
Engineering Method. Manning Publications, 1996.

● Friedrich Steimann. On the representation of roles in object-oriented and
conceptual modelling. Data Knowl. Eng, 35(1):83-106, 2000.

● Friedrich Steimann. A radical revision of UML’s role concept”. UML 2000, 3rd
International Conference, Springer LNCS, 194–209.

● Charles W. Bachman and Manilal Daya. The role concept in data models. In VLDB
’1977: Proceedings of the third int.l conf. on Very large data bases, pages 464–476.
VLDB Endowment, 1977.

● Nicola Guarino Chris Welty. Supporting ontological analysis of taxonomic
relationships. Data and Knowledge Engineering, 39:51-74, 2001.

● Heinrich Herre, and Gerd Wagner. On the general ontological foundations of
conceptual modeling. 21st Int. Conf. on Conceptual Modeling (ER 2002), LNCS 2503,
pages 65-78, 2002.

● Guizzardi, G. (2005). Ontological Foundations for Structural Conceptual Models. PhD
thesis, University of Twente.

Context- and Role-Oriented Software Development (CROSD)
(c) Prof. Uwe Aßmann

Folie 103

Important References for Role-Based Modeling

● D. Bäumer, D. Riehle, W. Silberski, and M. Wulf. Role object. In Conf. On Pattern
Languages of Programming (PLOP), 1997.

● Dirk Riehle and Thomas Gross. Role model based framework design and
integration. ACM SIGPLAN Notices, 33(10):117-133, October 1998.

● Dirk Riehle. Framework Design - A Role Modelling Approach. PhD thesis, ETH Zürich,
2000. No. 13509. www.riehle.org.

● Y. Smaragdakis and D. Batory. Mixin layers: an object-oriented implementation
technique for refinements and collaboration-based designs. ACM Transactions on
Software Engineering and Methodology, 11(2):215–255, 2002.

● H. Wedekind, E. Ortner, R. Inhetveen. Informatik als Grundbildung. Informatik
Spektrum, Springer, April 2004

● H. v. Braun, MSP München; W. Hesse, Univ. Marburg; H.B. Kittlaus, SIZ Bonn; G.
Scheschonk, C.I.T. Berlin. Ist die Welt objektorientiert? Von der natürlich-
sprachlichen Weltsicht zum OO-Modell. Uni Marburg.

Context- and Role-Oriented Software Development (CROSD)
(c) Prof. Uwe Aßmann

Folie 104

Role-Based Programming

● S. Herrmann. Object teams: Improving modularity for crosscutting collaborations. In
Proc. Net Object Days 2002, 2002.

● S. Herrmann. A precise model for contextual roles: The programming language
objectteams/java. Applied Onthology, 2007.

● www.objectteams.org: a Java-based programming language with roles

Context- and Role-Oriented Software Development (CROSD)
(c) Prof. Uwe Aßmann

Folie 105

Works at SMT

AOSD, MDD:

● U. Aßmann, S. Zschaler, and G. Wagner. Ontologies, Meta-Models, and the Model-Driven
Paradigm, Handbook on Ontologies and Software Engineering. pages 249–273. Springer,
2006.

● J. Henriksson, J. Johannes, S. Zschaler, U. Aßmann. Reuseware – adding modularity to
your language of choice. Proc. of TOOLS EUROPE 2007: Spec Iss Journal of Object
Technology, 2007.

Roles and aspects in ontologies and metamodeling:

● U Aßmann, J Johannes, J Henriksson, and Ilie Savga. Composition of rule sets and
ontologies. In F. Bry, editor, Reasoning Web, Second Int. Summer School 2006, number
4126 in LNCS, pages 68-92, Sept 2006. Springer.

● M. Pradel, J. Henriksson, and U. Aßmann. A good role model for ontologies:
Collaborations. Int. Workshop on Semantic-Based Software Development. at OOPSLA’07,
Montreal, Oct 22, 2007.

● Matthias Bräuer and Henrik Lochmann. Towards Semantic Integration of Multiple
Domain-Specific Languages Using Ontological Foundations.

Context- and Role-Oriented Software Development (CROSD)
(c) Prof. Uwe Aßmann

Folie 106

Works at PhD Theses ST (all available via www.qucosa.de)

● Mirko Seifert. Designing Round-Trip Systems by Model Partitioning and Change Propagation. PhD thesis,
Dresden University of Technology, June 2011.

– Shows how roles simplify round-trip engineering by partitioning data

● Sebastian Richly. Autonom rekonfigurierbare Workflows. PhD thesis, Dresden University of Technology,
December 2011.

– Shows how roles can be used to provide an extensible tool platform

● Christian Wende. Language Family Engineering. PhD thesis, Dresden University of Technology, March 2012.

– Shows how roles can be used to do context-based language composition

● Max Leuthäuser. A Pure Embedding of Roles - Exploring 4-dimensional Dispatch for Roles in Structured
Contexts. PhD thesis, Technische Universität Dresden, August 2017.

– This PhD thesis developes a programming language for contexts and roles, based on some
implementation patterns and the base language Scala.

● Thomas Kühn. A Family of Role-Based Languages. PhD thesis, Technische Universität Dresden, March 2017.

– This PhD develops language design with contexts and roles in CROM

● Georg Püschel. Testing Self-Adaptive Systems - A Model-based Approach to Resilience. PhD thesis, Technische
Universität Dresden, June 2018.

– Contexts for testing robots

Context- and Role-Oriented Software Development (CROSD)
(c) Prof. Uwe Aßmann

Folie 107

● Matthias Schmidt, Jan Polowinski, Jendrik Johannes, and Miguel A. Fernández. An
integrated facet-based library for arbitrary software components. In Thomas Kühne,
Bran Selic, Marie-Pierre Gervais, and Francois Terrier, editors, ECMFA, volume 6138
of Lecture Notes in Computer Science, pages 261-276. Springer, 2010.

Best paper awards:
● C. Piechnick, S. Richly. Using Role-Based Composition to Support Unanticipated,

Dynamic Adaptation, ADAPTIVE 2012

● J. Reimann, M. Seifert, U. Aßmann. Role-based generic model refactoring. MODELS
Okt. 2010

