
Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Softwrae Development in Technical Spaces

10. Classical Metamodelling in the Technical
Space MOF/EMOF
Prof. Dr. rer. nat. Uwe Aßmann

Institut für Software- und
Multimediatechnik

Lehrstuhl Softwaretechnologie

Fakultät für Informatik

Technische Universität Dresden

http://st.inf.tu-dresden.de/teaching/most

Version 21-1.3, 20.11.21

1) Metamodelling

1) Meta-Hierarchy

2) Metametamodels (Metalanguages)

1) Meta-Object-Facility (MOF)

2) EMOF

 ©
 P

ro
f.

U
. A

ß
m

an
n

2 Model-Driven Software Development in Technical Spaces (MOST)

Obligatory Literature

► Kurtev, I., Bezivin, J., Aksit, M.: Technological Spaces: An Initial Appraisal. In:
International Symposium on Distributed Objects and Applications, DOA Federated
Conferences, Industrial track, Irvine. (2002)

► Model-based Technology Integration with the Technical Space Concept. Jean Bezivin
and Ivan Kurtev. Metainformatics Symposium, 2005.

► Jean Bézivin. Model Driven Engineering: An Emerging Technical Space. In R. Lämmel, J.
Saraiva, and J. Visser (Eds.): GTTSE 2005, LNCS 4143, pp. 36 – 64, 2006. Springer.

► Ed Seidewitz. What models mean. IEEE Software, 20:26-32, September 2003.
■ http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1231147&tag=1

 ©
 P

ro
f.

U
. A

ß
m

an
n

3 Model-Driven Software Development in Technical Spaces (MOST)

Other Literature

► Gaševic, Dragan, Djuric, Dragan, Devedžic, Vladan. Model Driven Engineering and Ontology
Development, 2nd ed., 2009, ISBN 978-3-642-00281-6

 http://www.springer.com/computer/swe/book/978-3-642-00281-6?cm_mmc=Google-_-
Book%20Search-_-Springer-_-0

► [MOF] Metaobject Facility. OMG. 1.4 and 2.0. www.omg.org

► [Nill] C. Nill. Analysis and Design Modeling Using Metaphorical Modeling Entities. A Modeling Language
for the Tools and Materials Approach. Diplomarbeit Technische Universität Dresden, 2006.

► [Atkinson/Kühne] Colin Atkinson and Thomas Kühne. Model-driven development: A metamodeling
foundation. IEEE Software, 20(5):36-41, 2003.

► [Favre] Jean-Marie Favre. Foundations of model (driven) (reverse) engineering: Models. Technical
report, ADELE Team, Laboratoire LSR-IMAG Université Joseph Fourier, Grenoble, France, 20010. vol. 1-
3.

► [Flatscher] Rony Flatscher. Metamodeling in EIA/CDIF - meta-metamodel and metamodels. ACM Trans.
Model. Comput. Simul, 12(4):322-342, 2002.

► [Kendall] D. T. Chang and E. Kendall. Metamodels for RDF Schema and OWL. Proceedings of the First
International Workshop on the Model-Driven Semantic Web (MDSW 2004), Monterey, USA, September
21, 20010.

 ©
 P

ro
f.

U
. A

ß
m

an
n

4 Model-Driven Software Development in Technical Spaces (MOST)

Q10: The House of a Technical Space

Mega- and Macromodels
Tracing, Regeneration, Synchronization

Tool Engineering
Composition, Extension

Model Management
Composition, Mapping, Transformation

Technical
Space
Bridges

Technical Space

Meta-
modeling

Model Analysis
Querying, Attribution, Analysis, Interpretation

Metapyramid (Metahierarchy)

EMOF

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Softwrae Development in Technical Spaces

10.1 Metamodelling in the Classical Metapyramid

 ©
 P

ro
f.

U
. A

ß
m

an
n

6 Model-Driven Software Development in Technical Spaces (MOST)

The Metamodel Hierarchy (Metapyramid, Metahierarchy)

► Models are widely used in engineering disciplines
■ Need for tool support that enables model-editing

► Domain experts want domain specific languages (DSL)
 domain specific models with types from the domain lifted from M1 to M2

► Do not build model editors from scratch each time
 reuse functionality
 use meta-information

M0

M1

M2

Model

Metamodel

System

Meta-

metamodel
describe

describe

describe

describe

M3

[F. Klar, TU Darmstadt]

 ©
 P

ro
f.

U
. A

ß
m

an
n

7 Model-Driven Software Development in Technical Spaces (MOST)

Remember: The Clabject Metahierarchy and Metapyramids

► We call a hierarchy of instance-of relationships a metahierarchy.

► A metapyramid is a network of element-of, reified-to, and instance-of relationships

<<collection>>
Person.extent

John:Person

<<Class>>
Person

<<reified
-to>>

<<instance-of>>

<<element-of>>

<<collection>>
Class.extent

<<Metaclass>>
Class

<<reified-
to>>

<<instance-of>><<element-of>>

<<collection>>
Concept.extent

<<Metametaclass>>
Concept

<<reified
-to>>

<<instance-of>><<element-of>>

M3

M2

M1

M0

 ©
 P

ro
f.

U
. A

ß
m

an
n

8 Model-Driven Software Development in Technical Spaces (MOST)

Notation

► We write metaclasses (clabjects) with dashed lines, metametaclasses (clabjects) with
dotted-dashed lines

<<instance-of>>

<<instance-of>>

<<instance-of>>

car1:Car

Car:Class

Class:ModellingConcept

ModellingConcept

<<instance-of>>

<<instance-of>>

<<instance-of>>

car1:

Car

Class

ModellingConcept

Clabject Hierarchy

M3

M2

M1

M0 myAudi

 ©
 P

ro
f.

U
. A

ß
m

an
n

9 Model-Driven Software Development in Technical Spaces (MOST)

Lifting a Domain Concept to a Language Concept

► Advantages: support of domain-specific semantics by language semantics

► Which domain semantics has the concept Car?

<<instance-of>>

<<instance-of>>

<<instance-of>>

car1:

Audi

Class

ModellingConceptM3

M2

M1

M0 myAudi

Car

 ©
 P

ro
f.

U
. A

ß
m

an
n

11 Model-Driven Software Development in Technical Spaces (MOST)

Models in Software Engineering

Models define abstractions of realities.

► Process models (Workflow models) define
workflows and other processes

► Domain models describe a domain of the
world, or a problem domain from the world of
the customer

► System models specify systems or artefacts:

 Software models define the
structure of code

 Architecture models define
computational units,
distribution, runtime issues,
design patterns or architectural
styles

 Data models define die structure
of materials and the data (e.g.
relational model)

Metamodels define types for model elements.
They define the structure of models. Their
instances are models.

► Process metamodels define concepts for
workflows

► Domain metamodels define concepts of
domains

► System metamodels define concepts of
systems

► Programming Language Metamodels define
concepts of programming languages

► Modeling Language Metamodels define
concepts of modeling languages

► Domain-specific language (DSL) metamodels
define concepts of DSL

► Pattern Language Metamodels define
stereotypes for classes

► Data metamodels define concepts for
materials

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Softwrae Development in Technical Spaces

10.2 Metametamodels on M3

 ©
 P

ro
f.

U
. A

ß
m

an
n

13 Model-Driven Software Development in Technical Spaces (MOST)

The Metametamodel (Metalanguage)

► Def.: A Metametamodel (MMM, Metalanguage) is a structural graph schema of a
language

■ Defines types for the concepts of a language (the metaclasses on M2)
. Contains the modeling concepts for languages

■ Structural – no behavior
■ Contains wellformedness rules for the graphs on M2
■ Via its multiplicity constraints, the metametamodel defines the form of data

structure on M0 (sequence, list, table, tree, link tree, reducible graph, graph)
■ Should be minimalistic

Problem: All tools and materials heavily depend
on the MMM of the technical space

 ©
 P

ro
f.

U
. A

ß
m

an
n

14 Model-Driven Software Development in Technical Spaces (MOST)

Type Level

 Schema-/Meta-/Type Level

Class has
*1

Objects, their Clabjects in Models and Metamodels

<<schema_of>>

1 *

M2

M1

Metameta-Level

Concept Relation
*1

1 *M3

<<Material>>
Building

<<Material>>
Room

*1<<Tool>>
Robot

Located-in

MaterialTool

<<schema_of>>

 ©
 P

ro
f.

U
. A

ß
m

an
n

15 Model-Driven Software Development in Technical Spaces (MOST)

Tower of Babel Problem

[Jan-Pieter
Breughel
(wikipedia)]

Tragically, no uniform
metametamodell has
appeared... (tower of
babel)

Tools depend on their
MMM

 ©
 P

ro
f.

U
. A

ß
m

an
n

16 Model-Driven Software Development in Technical Spaces (MOST)

Metametamodels - Overview

► A metametamodel describes the context-free and -sensitive structure of a
metalanguage. It can be augmented with wellformedness rules of the metalanguage.

Examples:

► Meta Object Facility – MOF
■ Complete MOF – CMOF

. UML core
■ Essential MOF – EMOF

. Ecore (Eclipse implementation of EMOF)

► GOPRR – Graph Object Property Role Relation (MetaCase.com)

► CROM of ROSI (DFG training group at TU Dresden)

► GXL – Graph eXchange Language

Problem: All tools and materials heavily depend
on the MMM of the technical space

17

Chair of Software Technology - Prof. U. Aßmann

 Model-Driven Software Development in Technical Spaces (MOST)

10.2.1 Ecore and MOF as Simple
Metametamodels

 ©
 P

ro
f.

U
. A

ß
m

an
n

18 Model-Driven Software Development in Technical Spaces (MOST)

Overview of Metalanguage MOF
(CMOF: Complete MOF)

[MOF]

 ©
 P

ro
f.

U
. A

ß
m

an
n

19 Model-Driven Software Development in Technical Spaces (MOST)

UML Core

[MOF]

► UML core is subset of
MOF, and UML-CD

► It is rather
minimalistic

 ©
 P

ro
f.

U
. A

ß
m

an
n

20 Model-Driven Software Development in Technical Spaces (MOST)

MOF Central Types

[MOF]

► MOF is for modeling of material, tools,
automata (not distinguished)

 ©
 P

ro
f.

U
. A

ß
m

an
n

21 Model-Driven Software Development in Technical Spaces (MOST)

Central MOF Metaclasses with Associations

 ©
 P

ro
f.

U
. A

ß
m

an
n

22 Model-Driven Software Development in Technical Spaces (MOST)

EMOF (Essential MOF)

[MOF]

Subset of CMOF
No (bidirectional) associations
Can be mapped to Java, C#

http://download.eclipse.org/modeling/emf/emf/javadoc/2.9.0/org/eclipse/emf/ecore/package-summary.html

 ©
 P

ro
f.

U
. A

ß
m

an
n

23 Model-Driven Software Development in Technical Spaces (MOST)

http://download.eclipse.org/modeling/emf/emf/javadoc/2.9.0/org/eclipse/emf/ecore/package-summary.html

 ©
 P

ro
f.

U
. A

ß
m

an
n

24 Model-Driven Software Development in Technical Spaces (MOST)

Generic Types

http://download.eclipse.org/modeling/emf/emf/javadoc/2.9.0/org/eclipse/emf/ecore/package-summary.html

 ©
 P

ro
f.

U
. A

ß
m

an
n

25 Model-Driven Software Development in Technical Spaces (MOST)

EMOF Classes in Detail

[MOF]

 ©
 P

ro
f.

U
. A

ß
m

an
n

26 Model-Driven Software Development in Technical Spaces (MOST)

EMOF Data Types and Packages

[MOF]

 ©
 P

ro
f.

U
. A

ß
m

an
n

27 Model-Driven Software Development in Technical Spaces (MOST)

EMOF Types

[MOF]

 ©
 P

ro
f.

U
. A

ß
m

an
n

28 Model-Driven Software Development in Technical Spaces (MOST)

EMOF Reflection

[MOF]

offers access to the metamodel
(getMetaClass())
provides a Factory, for creation
of a Class from String

 ©
 P

ro
f.

U
. A

ß
m

an
n

29 Model-Driven Software Development in Technical Spaces (MOST)

CMOF Reflection

[MOF]

 ©
 P

ro
f.

U
. A

ß
m

an
n

30 Model-Driven Software Development in Technical Spaces (MOST)

Lcsl

M2

Ex.: Deriving a DSL from EMOF and its Implementation
Eclipse ecore

 ecore

EClassifier ETypedElement

EClass
EParameter

Role

Natural

Component RoleOperation

eType

* eExceptions

* parameters

* roleTypes

* roleOperations

EAttribute

M3
EReference

* eAttributes

* eReferences

* naturalTypes

► Ecore is the Eclipse implementation of EMOF

► lcsl is a domain-specific language for component-based modeling [C. Wende]

► Two new Metaclasses Natural and Role derived from EClass

 ©
 P

ro
f.

U
. A

ß
m

an
n

31 Model-Driven Software Development in Technical Spaces (MOST)

Ex. EMOF/Ecore based Metamodel of Statecharts

► Ecore is the Eclipse implementation
of EMOF, provided by the Eclipse
Modeling Framework (EMF) on M3

► Here: a metamodel of statecharts
(M2), (which is a little DSL)

► a set of states and their transitions
(M1)

32

Chair of Software Technology - Prof. U. Aßmann

 Model-Driven Software Development in Technical Spaces (MOST)

10.2.2 Lifting of a Metamodel to a
Metametamodel

 ©
 P

ro
f.

U
. A

ß
m

an
n

33 Model-Driven Software Development in Technical Spaces (MOST)

Lifting of Metamodels

► Ex. MOF is a simple DDL (Datendefinitionssprache, structural language) for graphs
 It can be used on M2 to define new languages with package merge (see

UML)
 It can be used on M3 to define metamodels on M2 as instances
 MOF is self-descriptive

A Metamodel of a data definition language in M2 is being
lifted (promoted), if it is used as metametamodel on M3

 ©
 P

ro
f.

U
. A

ß
m

an
n

34 Model-Driven Software Development in Technical Spaces (MOST)

Self-Descriptive MOF

M3

M2

► MOF is self-descriptive (selbstbeschreibend), because the structure of MOF (M2) is
defined in the lifted MOF (M3)

► MOF is lifted, because it is used on M2 and M3

► Many other metamodels are also lifted, e.g., EMOF

MOF

MOF

CWMUML

<<instanceOf>> <<instanceOf>> <<instanceOf>>

 ©
 P

ro
f.

U
. A

ß
m

an
n

35 Model-Driven Software Development in Technical Spaces (MOST)

Software objects
describing world objectsM0 Object level

M1 model level

M2 metamodel level

M3 metametamodel
level

Types, programs, models

Language descriptions

Modelling concepts

 UML-CD, UML-SC, UML-
AD, etc.

UML-core < EMOF < MOF

model instances

Metamodelling conceptsM4 level = M3
(self-descriptive)

validInstanceOf describes

validInstanceOf describes

validInstanceOf describes

validInstanceOf describes

The UML-Core/MOF Metahierarchy

► The UML language manual uses UMLcore, a subset of MOF, as metalanguage

UML diagrams

 ©
 P

ro
f.

U
. A

ß
m

an
n

36 Model-Driven Software Development in Technical Spaces (MOST)

Ex.: MOF-Metahierarchy for UML

From: UML 2.0 Infrastructure Specification; OMG Adopted Specification ptc/03-09-15

 ©
 P

ro
f.

U
. A

ß
m

an
n

37 Model-Driven Software Development in Technical Spaces (MOST)

Metamodel
• (Meta-)Modeling of

language constructs
• Definiton of language structure
• Domain specific semantics

• Wellformedness Constraints for detailed

definition of language
• Definition of erroneous states
• Rules to comply with special design guidelines

• Transformationen to repair

 erroneous models
• Conversion of incompatible models into

design compliant models
• Automatic adaption to design guidelines

Model

Abstract Syntax

Constraints

Transformation

Metamodeling – Benefits

[F. Klar, TU Darmstadt]

 ©
 P

ro
f.

U
. A

ß
m

an
n

38 Model-Driven Software Development in Technical Spaces (MOST)

Software Objects

car1 car1.colorcar1.drive()

Software Classes
(meta-objects)
(Model)

Car void proc()

Class Method Attribute

Color

Metalanguage concepts
Modelling concepts
(Metametaclasses in the
metametamodel)

Language

A metamodel is a
language specification

Conceptual level

A metametamodel is a
metalanguage

The Metahierarchy for CPS: Objects on M0 are Digital Twins

car driving car color

Modelling
Concept

Language concepts
(Metaclasses in the
metamodel)

Application
concepts

World
concepts

M3

M2

M1

M0

M-1 Real World

► In a CPS, real-world objects on M-1 are causally connected with MO-objects

Digital Twins

causal
connection

World
things

39

Chair of Software Technology - Prof. U. Aßmann

 Model-Driven Software Development in Technical Spaces (MOST)

10.2.3 Metahierarchies for Metaprogramming

 ©
 P

ro
f.

U
. A

ß
m

an
n

40 Model-Driven Software Development in Technical Spaces (MOST)

Software Objects

car1 car1.colorcar1.drive()

Software Classes
(meta-objects)
(Model)

Car void proc()

Class Method Attribute

Color

Metalanguage concepts
Modelling concepts
(Metametaclasses in the
metametamodel)

Language

A metamodel is a
language specification

Conceptual level

A metametamodel is a
metalanguage

Metalevels in Programming Languages
(The Metahierarchy for Metaprogramming)

car driving car color

Modelling
Concept

Language concepts
(Metaclasses in the
metamodel)

Application
concepts

World
concepts

M3

M2

M1

M0

M-1 Real World

► In Metaprogramming, all meta*-concepts are open for programming

World
things

 ©
 P

ro
f.

U
. A

ß
m

an
n

41 Model-Driven Software Development in Technical Spaces (MOST)

Excursion: Metaprogramming with M2

► (Dynamic) Metaprograms (reflective programs) contain code on the basis of the
metamodel of their own language (self model)

■ They permanently run in the application and regenerate its parts
■ Hard to statically analyse on termination and other features
■ Reflection is slow

► Metaprogram-Procedures (Semantic Macros, Hygenic Macros, Programmable Macros
[Weise/Crew], Orchestration Style Sheets) can be typed by a metamodel

■ Parameter types and return types of prodedures are metaclasses
■ → See course CBSE

► Introspective Programs inspect the metamodels or metadata of other programs /
components and adapt to them (-> CBSE)

 ©
 P

ro
f.

U
. A

ß
m

an
n

42 Model-Driven Software Development in Technical Spaces (MOST)

Software Objects

car1:Car car1.colorcar1.drive()

Software Classes
(meta-objects)
(Model)

Car void Car.drive()

Class

Color

Metalanguage concepts
Modelling concepts
(Metametaclasses in the
metametamodel)

Language

A metamodel is a
language specification

Conceptual level

A metametamodel is a
metalanguage

Metalevels in Smalltalk, a Dynamic Metaprogramming
Language

car driving car color

Class

Language concepts
(Metaclasses in the
metamodel)

Application
concepts

World
concepts

M3

M2

M1

M0

M-1 Real World

Method

 ©
 P

ro
f.

U
. A

ß
m

an
n

43 Model-Driven Software Development in Technical Spaces (MOST)

Static Metaprograms

► Codegenerators are metaprograms producing new code or models by introspection

► Static Metaprograms run in the compiler and code-generate a program

 ©
 P

ro
f.

U
. A

ß
m

an
n

44 Model-Driven Software Development in Technical Spaces (MOST)

The End

► Why is lifting an application concept to M2 advantageous?

► Compare MOF and EMOF. Why do many programmers like EMOF more than MOF?

► Explain the advantages that MOF sopports general associations.

► Why is MOF semantically more rich than EMOF and UMLcore?

► What is the purpose of a metametamodel?

► Would it make sense to use Tools-and-Materials Pattern Language (TAM) on the M3
level, i.e., in the metametamodel?

► Explain why TAM stereotypes do not occur on M2.

 ©
 P

ro
f.

U
. A

ß
m

an
n

45 Model-Driven Software Development in Technical Spaces (MOST)

Different Types of Semantics and their Metalanguages
(Description Languages)

► Structure
■ Described by a context-free grammar or a metamodel
■ Does not regard context

► Static Semantics (context conditions on structure), Wellformedness
■ Described by context-sensitive grammar (attribute grammar, denotational

semantics, logic constraints), or a metamodel with context constraints
■ Describes context constraints, context conditions, meaning of names
■ Can describe consistency conditions on the specifications

. “If I use a variable here, it must be defined elsewhere”

. “If I use a component here, it must be alive”

► Dynamic Semantics (Behavior)
■ Interpreter in an interpreter language (e.g., lambda calculus), or a metaobject

protocol
■ A dynamic semantics consists of sets of run-time states or run-time terms
■ In an object-oriented language, the dynamic semantics can be specified in the

language itself. Then it is called a meta-object protocol (MOP).

