
  

Fakultät Informatik  -  Institut Software- und Multimediatechnik  -  Softwaretechnologie – Prof. Aßmann – Model-Driven Software Development in Technical Spaces

13. Tool, Automata, Material Methodology and 
Metaclass Role Model (TAM)

Prof. Dr. Uwe Aßmann

Technische Universität Dresden

Institut für Software- und Multimediatechnik

http://st.inf.tu-dresden.de/teaching/most  

WS 21-1.1, 29.01.22

1) Taxonomy of applications, tools and materials

2) TAM as metamodel pattern language

3) TAM for Layering of Applications

4) Basic Functions of Standalone Tools

5) Graph-Fact-Isomorphism



 ©
 P

ro
f. 

U
. A

ß
m

an
n

 

2  Model-Driven Software Development in Technical Spaces (MOST)

Literature

► Züllighoven, Heinz:  Object-Oriented Construction Handbook; dpunkt.verlag 2005

► Riehle, D., Züllighoven, H.: Pattern Languages of Program Design; Reading, 
Massachusetts: Addison Wesley 1995, Chapter 2

► Helmut Balzert. Softwaretechnik I+II. Verlag Spektrum der Wissenschaft

► [GOPPR] J.-P. Tolvanen, P. Marttiin, and K. Smolander. An integrated model for 
information systems modeling. In J. F. Nunamaker and R. H. Sprague, editors, 
Proceedings of the 26th Annual Hawaii International Conference on Systems 
Science, Maui, Hawaii, January 1993. IEEE Computer Society Press. 
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=284345 



  

Fakultät Informatik  -  Institut Software- und Multimediatechnik  -  Softwaretechnologie – Prof. Aßmann – Model-Driven Software Development in Technical Spaces

13.1 Tools, Workflows and Materials as Pattern 
Language for Applications



 ©
 P

ro
f. 

U
. A

ß
m

an
n

 

5  Model-Driven Software Development in Technical Spaces (MOST)

A Tool or a Material?

► With tears in his eyes the violinist Aaron Rosand left his soul behind in a 
London hotel suite last week.

► That is how he described the sale of the instrument he had played for more 
than 50 years, the ex-Kochanski Guarneri del Gesù. The buyer was a Russian 
billionaire whom Mr. Rosand declined to identify and who paid perhaps the 
highest price ever for a violin: about $10 million.

► “I just felt as if I left part of my body behind,” Mr. Rosand said on 
Wednesday, overflowing with metaphors for what the instrument meant to him. 
“It was my voice. It was my career.”

► Daniel J. Wakin. New York Times Oct 21, 2009. 
■ http://www.nytimes.com/2009/10/22/arts/music/22violin.html?_r=0

https://en.wikipedia.org/wiki/Aaron_Rosand



 ©
 P

ro
f. 

U
. A

ß
m

an
n

 

6  Model-Driven Software Development in Technical Spaces (MOST)

Human Beings Use Tools

► SW-machine tools are the basis of all productivity and wealth in a society.

A tool (Werkzeug) is a thing helping to do actions faster as by hand.
An IT-tool is a tool running on a computer. It is active and triggered by humans or 
programs. 
A data tool is an IT-tool working with data.

A software tool is an IT-tool working on software.
A modeling tool is a software tool working on models.
An application contains several data or software tools.
A tool class is a class of an application providing functionality of a tool.
A standalone tool is a software tool persisting its materials.

A machine tool (Werkzeugmaschine) is a tool for production of other tools.

A software machine tool (Software-Werkzeugmaschine) is a software tool for 
production of other software-tools.



 ©
 P

ro
f. 

U
. A

ß
m

an
n

 

7  Model-Driven Software Development in Technical Spaces (MOST)

“Tools and Material”-Metapher  (TAM) for Programming 
Applications

► Tool: A tool(-object, -class) is an active software object (-class) that can be used to 
change materials

■ Tools can be used by humans (interactively, batch) or by other tools, or by 
automata (workflows)

► Material: A material (-object, -class) is a passive object (-class) handled by a tool

► Automaton (Workflow engine):  An automaton is an operational workflow 
orchestrating together several tools

► The collaboration of Tool, Automaton and Material classes can be described by a 
collaboration scheme (role model, Rollenmodell) (see Softwaretechnologie, DPF). 

[Züllighoven, Heinz:  Object-Oriented Construction Handbook; dpunkt.verlag 2005]

All applications consist of tool-objects in workflows working on material. 
(Züllighoven principle)



 ©
 P

ro
f. 

U
. A

ß
m

an
n

 

8  Model-Driven Software Development in Technical Spaces (MOST)

Are “Tools” and “Materials” Natural or Role Types?

► A thing can be a tool, but also a material of another tool

► Therefore, “tool” and “material” are roles.
■ Tool and Material and Workflow/Automaton form metaclasses on M2, 

instantiated from metametaclass roles on M3

► The TAM metaphor is a role type model indicating
■  which naturals can play which TAM role
■ How naturals play together in a TAM collaboration



 ©
 P

ro
f. 

U
. A

ß
m

an
n

 

9  Model-Driven Software Development in Technical Spaces (MOST)

Tool and Material – Metaphor can be Realized in Many 
Designs of Tools

[Züllighoven, H.: Object-Oriented Construction Handbook; dpunkt.verlag Heidelberg 2005, S. 87]

<<active>>
<<role>>

Tool

<<passive>>
<<role>>
Material

works on

<<tool>>
Editor

<<material>>
Document

<<Tool>>
<<role>>

e. g. TextEditor

<<Material>>
Impl

e. g. Requirements

<<Material>>
<<role interface>>

Editable

Conceptual Pattern Design Pattern Implementation

tool and material
collaboration

collaboration

<<active>>

<<passive>>



 ©
 P

ro
f. 

U
. A

ß
m

an
n

 

10  Model-Driven Software Development in Technical Spaces (MOST)

Full TAM Pattern Language Suggests an Architecture for 
Application Integration

Riehle, D., Züllighoven, H.: Pattern Languages of Program Design; Reading, Massachusetts: Addison 
 Wesley 1995, Chapter 2, S. 9-42

Material Administration

<<compartment>>  Environment (Overall System)

<<compartment>> Tool Coordinator (Material Update Dispatcher)

Tool Composition <<compartment>>
Material Container

Constraints

Functional
Part of Tool 

(funTool)
       Collaboration Material

<<read-only>>
World 
Model

<<read-only>>
System 
Model

Automaton



  

Fakultät Informatik  -  Institut Software- und Multimediatechnik  -  Softwaretechnologie – Prof. Aßmann – Model-Driven Software Development in Technical Spaces

13.2. Pattern Languages in a Technical Space

• In a TS, several pattern languages may be used to structure the relationship of models and 
metamodels

• TAM can be used as Pattern Language on all levels in the metahierarchy

• However, there may be more pattern languages associated to a technical space

• Pattern languages can be expressed as stereotypes



  

Fakultät Informatik  -  Institut Software- und Multimediatechnik  -  Softwaretechnologie – Prof. Aßmann – Model-Driven Software Development in Technical Spaces

13.2.1 Roles in Metamodels and Metametamodels



 ©
 P

ro
f. 

U
. A

ß
m

an
n

 

13  Model-Driven Software Development in Technical Spaces (MOST)

► On M2 and M3, not only concepts and relations may be modeled. 
■ It is a big old fight how “thick” M3 should be.

► Some M3 metametamodels have used other concepts:
■ Roles: A role is a context-dependent behavior of an object, a class, a 

metaclass or a metametaclass [GOPPR]
■ Contexts: A context groups many roles throughout an application, activates 

and deactivates them
■ (Hyper-)Graphs:  A (hyper-)graph groups many classes or objects 



 ©
 P

ro
f. 

U
. A

ß
m

an
n

 

14  Model-Driven Software Development in Technical Spaces (MOST)

Role-Based Graph Types in MetaEdit+

► [www.metacase.com] 

► The tool MetaEdit+ uses the graph schema (metalanguage) GOPRR:
 Objects and their Roles; Relationships
 Allowed Bindings between all entities: 

 a binding consists of a relationship with roles and playing objects

Graph

Object

Binding

Role
Relationship

*

*

1

*

2..*

2..*
1

Port 10..1

11

0..*



 ©
 P

ro
f. 

U
. A

ß
m

an
n

 

15  Model-Driven Software Development in Technical Spaces (MOST)

Concept

typeName
typeDescription

NonProperty

decompGraph
(properties added by
types i.e.subclasses)

propertyTypeColl
propertyNameColl
propertyUniquenessColl
defaultProperty

Property

value

dataType
legalValueTest

*

Graph

relationshipSet
roleSet
objectSet
bindingSet
ExplodeSet

relationshipSet
roleSet
objectSet
bindingSet
explodeDict
decompDict
constraintSet
reportSet

Relationship ObjectRole
*

*

*

Binding Connection

relationship
connectionColl

role
objectSet
cardinality

*

*
*

Project

name
graphSet

*

Metalanguage of
MetaEdit+ in EMOF

The GOPRR Metalanguage:
- Graph Objects
- Object Objects
- Property Objects
- Relationship Objects
- Role Objects

Port



  

Fakultät Informatik  -  Institut Software- und Multimediatechnik  -  Softwaretechnologie – Prof. Aßmann – Model-Driven Software Development in Technical Spaces

13.2.2 TAM Pattern Language

• In a TS, several pattern languages may be used to structure the relationship of models and 
metamodels

• TAM can be used as Pattern Language on all levels in the metahierarchy

• However, there may be more pattern languages associated to a technical space

• Pattern languages can be expressed as stereotypes



 ©
 P

ro
f. 

U
. A

ß
m

an
n

 

17  Model-Driven Software Development in Technical Spaces (MOST)

A Pattern Language Useful for all Technical Spaces
TAM Structures on M1

► On M1, application class models need to define (stereotype) tools, automata, and 
materials. 

 Type Level

Tools

Materials

Automata
(Workflows)Applications



 ©
 P

ro
f. 

U
. A

ß
m

an
n

 

18  Model-Driven Software Development in Technical Spaces (MOST)

TAM Structures on M1 Provide Types for Objects in 
Repositories on M0

► On M1, application class models need to define (stereotype) tools, automata, and 
materials. 

 Schema-/Meta-/Type Level

Materials

Applications

Tools

Automata
(Workflows)

Graph-/Base Level

Material RepositoryTool RepositoryAutomaton Repository

M1

M1M1

M0



 ©
 P

ro
f. 

U
. A

ß
m

an
n

 

19  Model-Driven Software Development in Technical Spaces (MOST)

TAM Structures on M2 Provide Language Concepts for 
Stereotypes for Classes in M1

► On M2, TAM forms a DSL for stereotypes on M1
► Other pattern languages can use the same principle

 Type Level

Graph-/Base Level

Material RepositoryTool RepositoryAutomaton Repository

Metamodel Level

Material
Metaclasses

Languages Tool
Metaclasses

Automata
(Workflows)
Metaclasses

Material 
Classes

Languages Tool
Classes

Automata
(Workflows)

Classes

M1

M2

M2

M0

M1



 ©
 P

ro
f. 

U
. A

ß
m

an
n

 

20  Model-Driven Software Development in Technical Spaces (MOST)

TAM in the Metapyramid

M3

M2

M1

► TAM is a pattern language on M2 (metaclass role model)

► Thereby, TAM structures M2, M1, M0

Tool Metamodel

Automata
(Workflows) 

Metamodel

Material 
Metamodel

Tool Classes

Process Classes
Workflows

Material 
Classes

:Tool Objects

:Process Objects
:Workflow instances

:Material 
Objects

World/System 
Metamodel

World/System  
Classes

:World/System 
ObjectsM0

M1

M2



 ©
 P

ro
f. 

U
. A

ß
m

an
n

 

21  Model-Driven Software Development in Technical Spaces (MOST)

 Graph-/Base Level

 Schema-/Meta-/Type Level

<<Material>>
Building

<<Material>>
Room

*1

Type Modeling for Application Types (with TAM Stereotypes 
for Classes)

► On M1, also other sets of the application world can be used as types

► Classes can carry the TAM tags

HSZ

INF

HS 04

Audimax

E023

E008

<<instance_of>> <<schema_of>>

M1

<<Tool>>
Robot

Chuck

Tiffany

Located-in

M0

M1



 ©
 P

ro
f. 

U
. A

ß
m

an
n

 

22  Model-Driven Software Development in Technical Spaces (MOST)

Type Level

 Metalevel

Class has
*1

Objects, their Clabjects in Models and Metamodels and TAM

<<schema_of>>

1 *

M2

Metameta-Level with CROM-like language

Concept Relation

*
1

*

M3

<<Material>>
Building

<<Material>>
Room

*1<<Tool>>
Robot

Located-in

<<role>> Material<<role>> Tool

<<schema_of>>

M1

M2

M3
Role

*

Compartment



 ©
 P

ro
f. 

U
. A

ß
m

an
n

 

23  Model-Driven Software Development in Technical Spaces (MOST)

Law of Pattern Languages for M2

A pattern language on M2 requires the Role concept on M3.

Different pattern languages on M2 requires the Compartment 
concept on M3.

Compartments structure their metaclass role models on M2.

CROM is a good metalanguage for technical spaces with 
pattern languages on M2.



  

Fakultät Informatik  -  Institut Software- und Multimediatechnik  -  Softwaretechnologie – Prof. Aßmann – Model-Driven Software Development in Technical Spaces

13.3 Identification of Tools, Materials for Layering 
of Applications

Representing TAM as stereotype profile in UML diagrams – 
marking up special kinds of tools, workflows, materials

Shown only in part



 ©
 P

ro
f. 

U
. A

ß
m

an
n

 

25  Model-Driven Software Development in Technical Spaces (MOST)

Perspektive Model TAM: Separation of active and passive 
Components

Tools-and-Materials [Züllighoven] is a 
perspektive model with the following aspects:

1) Tools (active processes)

2) Ressources (allocatable)

3) Materials (passive data)

4) TAM-Collaboration 

5) Workflows (Automata) coordinate Tools

● All program units, such as classes, modules, 
components, packages can be attributed with 
these aspects as stereotypes

Material

Ressource

Application
Workflow

<<TAM>>
TAM-Collaboration

Tool

<<R>>

<<M>>

<<W>>

<<T>>



 ©
 P

ro
f. 

U
. A

ß
m

an
n

 

26  Model-Driven Software Development in Technical Spaces (MOST)

Material-Classes and Interfaces

► Material objects (M0) are passive, e.g., are called from outside

► Material objects can be composite (Pattern Composite or Bureacracy)

► Materials have a CRUD-interface 

Order

pack()
sumUp()

Order Item

int position
int price

singularPrice();
specialPrice();

<<material>>

<<role>>
Material

Material create();
read();
update();
delete();



 ©
 P

ro
f. 

U
. A

ß
m

an
n

 

27  Model-Driven Software Development in Technical Spaces (MOST)

The Material Hierarchy

<<role>>
Material

Material create();
read();
update();
delete();

Artefact
(Persisted)

Document

Code Model

Data

Free-Form Text

Form



 ©
 P

ro
f. 

U
. A

ß
m

an
n

 

28  Model-Driven Software Development in Technical Spaces (MOST)

Material-Classes and Interfaces

► Material Classes can appear as interfaces in Ports of UML-components

AmazoneOrder



 ©
 P

ro
f. 

U
. A

ß
m

an
n

 

29  Model-Driven Software Development in Technical Spaces (MOST)

Tool-Classes and Interfaces

► Tool-objects have an interactive Teil (intTool, boundary) 
und a functional partl (funTool, control), derived from the 
Command Pattern

► Interactive Tools are the Commands behind the menu 
entries of interactive applications

Buchung

durchfuehren()
reservieren()
stornieren();

<<tool>
>

<<role>>
Tool

run();
restart();
stop();
destroy();

           <<role>> 
intTool

runButtonPressed();
restartButtonPressed();
stopButtonPressed();
destroyButtonPressed();

<<role>> 
funTool

<<role>>
Command

[Züllighoven]



 ©
 P

ro
f. 

U
. A

ß
m

an
n

 

30  Model-Driven Software Development in Technical Spaces (MOST)

Workflow-Engine-Classes and Interfaces

► Workflow-Engines are special tools, automata objects organizing a workflow. 
■ Workflow-engines interpret the workflow

► Workflow-Engines call other tools

► Their workflows are specified by a behavioral language (action diagrams, statechart, 
BPMN)

<<workflow engine>>
SalaryPayment

calculateSalary()
paySalary()

<<role>> Workflow Engine

work();

<<role>> Interpreter

<<client>>
WebClient

<<role>> Tool

<<role>> Workflow

ActionDiagram



 ©
 P

ro
f. 

U
. A

ß
m

an
n

 

31  Model-Driven Software Development in Technical Spaces (MOST)

M0 Layers and TAM-Classification

► Die TAM-classification enables to position objects in the layer cake of the 
application (M0 layer cake)



 ©
 P

ro
f. 

U
. A

ß
m

an
n

 

32  Model-Driven Software Development in Technical Spaces (MOST)

Application logic 
(business logic)

Q3: M0-Layer Cake

Database Layer (repository)

Graphical user 
interface (GUI)

Controller

<<intTool>

<<control>>

<<data>>

Context model

Application Tools

Top-level Architecture

Architecture

Other 
systems

<<material>>
Material Layer (memory)Data

Repository

<<tool ressource>>
<<funTool>>

<<workflow engine>>

Platform Frameworks

<<funTool>>

<<funTool>>

Technical Tools <<technical Tool>>



  

Fakultät Informatik  -  Institut Software- und Multimediatechnik  -  Softwaretechnologie – Prof. Aßmann – Model-Driven Software Development in Technical Spaces

13.4 Basic Functions of Standalone Tools, their 
internal Tools and Materials

• „Tools and Materials“ mark objects
• The pattern is also applied to Standalone Tools in an Integrated Development Environment (IDE)



 ©
 P

ro
f. 

U
. A

ß
m

an
n

 

34  Model-Driven Software Development in Technical Spaces (MOST)

Standalone Tools and Artefacts

Standalone Tools on Different Kinds of Materials (Artefacts):
► Code-centered standalone tools:  

■ Software tools are programs with documentation and test architecture

► Document-centered standalone tools

■ Document tools are needed for software development

► Model-centered standalone tools (Modeling Tools)

■ Basic components for MDSD IDE

Def.: A Standalone Tool is a persistent tool object wrapped with 
externalization of its input and output data

Def.: An artefact is a persisted material. 

Artefacts can be documents, models, or code.



 ©
 P

ro
f. 

U
. A

ß
m

an
n

 

35  Model-Driven Software Development in Technical Spaces (MOST)

Standalone Tools are Deterministic Functions

Processing
+

Validation

Standalone Persistent Tool

Artefact/
Document/

Model

Artefact/
Document/

Model

Input (I) Output (O)

Data base (DB)
Repository

sttool: I x DB  DB x O→

► Standalone Tools analyze an input and produce an artefact as output

► Standalone Tools transform an input to an output

Sowieso klar. Automat besser erklären



 ©
 P

ro
f. 

U
. A

ß
m

an
n

 

36  Model-Driven Software Development in Technical Spaces (MOST)

Aspects of Materials and Artefacts (Persisted Documents, 
Models, Code)

Structure (A)
of concrete syntax

(logical view)

Content (C)

Layout (D)
(layout view)

Context-free Structure (ctf)

context-sensitive Structure (cts)
(static semantics, well-formedness, 

Wohlgeformtheit)

Behavior 
(Dynamic Semantics) (B)

► Structure of concrete syntax: log. Units of the model, conform to a metamodel
■ Context-free:  Hierarchic structure
■ Links: cross links, references
■ Context-sensitive structure mit consistency conditions for well-formedness 

(static semantics)

► Content: Text, grafics, images, videos

► Layout: Placement of content

► Dynamic Semantics: Programs have a meaning (behavior)

Das ist eine gute Folie, aber bitte 
ausbauen in Richtung dynamische 
Semantik



 ©
 P

ro
f. 

U
. A

ß
m

an
n

 

37  Model-Driven Software Development in Technical Spaces (MOST)

Wellformedness is checked by static semantic analysis (context analysis):

► Name analysis (Namensanalyse) finds the meaning of a name
■ Type analysis (Typananalyse) finds the meaning of a type
■ Type checking checks the use of types with their definition
■ Links are not pointing into Nirwana

► Invariant checks (Invariantenprüfung)
■ Range checks (Bereichsprüfungen) test the validity of variables in ranges
■ Structuring of data structures: Acyclicity, layering, connected components, 

reducibility

► Forbidden combinations of constructs

► Replicated definitions of variables and objects

Well-Formedness of Artefacts and Materials (Models, 
Documents, Code) 

An artefact is well-formed (consistent), if it fulfils 
context-sensitive constraints (integrity rules, 

consistency rules) of its metamodel.  



 ©
 P

ro
f. 

U
. A

ß
m

an
n

 

38  Model-Driven Software Development in Technical Spaces (MOST)

Artefact Types

► Documents: 
■ Free text  
■ Word documents, requirement specifications, user stories, comments

► Models 
■ Textual models

. Forms, Templates, Canvases

. Trees  and ordered trees (terms)
 S-Expressions (Lisp, Scheme)
 Link trees (XML-trees, JSON-trees), Feature terms

. Ontologies
■ Diagrammatic models, usually specific graphs

. Analysis documents and design specifications (UML-diagrams), 
Petri-Nets, statecharts

■ Tables: Relations, test case tables

► Graphics: Visualizations in 2-D or 3-D

► Code: e.g.,  Pseudocode, code templates, source code

after: Denert, E.: Dokumentenorientierte Software-Entwicklung; Informatik-Spektrum 16(1993) H. 3, S. 159 - 164



 ©
 P

ro
f. 

U
. A

ß
m

an
n

 

39  Model-Driven Software Development in Technical Spaces (MOST)

Q4: Logic View of Standalone Tool Architecture

User Interface (tool – interactive part)

Standalone Tool – functional part

Metamodell of artefacts
in repository

Repository

Import

Export

Interactive call of tools

After: [Bal-II, S. 604]

Validation -  Consistency checking

Interactive Call of Functions
Layouting

Controller

Functionality 

Structuring and Wellformedness Rules 

Materials

Wellformedness Checking

Connection to other tools

Sowieso klar. Automat besser erklären



 ©
 P

ro
f. 

U
. A

ß
m

an
n

 

40  Model-Driven Software Development in Technical Spaces (MOST)

MDSD Applications

► An  MDSD application is also structured with TAM, but uses heterogeneous models. 
and persisted artefacts.

An Model-driven application consists of a structured set of integrated 
Standalone Tools working on a integrated set of artefacts, possibly in 
a world model.



 ©
 P

ro
f. 

U
. A

ß
m

an
n 

42  Model-Driven Software Development in Technical Spaces (MOST)

Q2: Tool-Objects and Materials in an Integrated 
Development Environment (IDE, SEU) for MDSD

Requirements
Repository

Design
Repository
(PIM, Arch)

Implementation
Repository
(PSI, Code)

Test Case
Repository

Requirements 
Tool Testing Tool

Material 
Metamodel

Repository (M2)

Reasoning
engine

GRS
engine

TRS
engine

XML
engine

Relational
engine

Coding Tool

Reachability analysis Attribution analysis

Model mappings Model transformation Model composition

Materials

Technical Tools

Application-Oriented Tools Tool Metamodel
Repository

(M2)Design Tool

Querying

Documentation
Repository

Documentation
Tool



  

Fakultät Informatik  -  Institut Software- und Multimediatechnik  -  Softwaretechnologie – Prof. Aßmann – Model-Driven Software Development in Technical Spaces

13.3.2 The Graph-Fact-Isomorphism for Materials



 ©
 P

ro
f. 

U
. A

ß
m

an
n

 

44  Model-Driven Software Development in Technical Spaces (MOST)

The Graph-Fact-Isomorphism

► Every graphbase can be represented as a fact base of a logic inference engine 
(reasoner)

► Every fact base (with material) can be interpreted as graph base 
– binary: Graph
– n-ary: Hypergraph

► Therefore, logic inferencers and graph transformation tools can be used on the same 
data and artefacts

► Materials can be seen as facts of a reasoner or graphs of a modeling environment

► Metamodeling uses both kinds of technologies



 ©
 P

ro
f. 

U
. A

ß
m

an
n 

45  Model-Driven Software Development in Technical Spaces (MOST)

Graph tools Tree tools

Logic based
tools

Interpretation as facts

Special
Tools

Trees and 
graphs in memory

Persistent trees and graphs (artefacts)

IDE with Logic-based and Graph-based Tools



 ©
 P

ro
f. 

U
. A

ß
m

an
n

 

46  Model-Driven Software Development in Technical Spaces (MOST)

The End 

► Explain the consequences of the Züllighoven principle for the construction of 
heterogeneous applications

► Why does the TAM pattern language cross the metapyramid?

► Which concepts belong to a process metamodel in contrast to a tool or material 
metamodel?

► Why is static semantics divided into context-free structure and context-sensitive 
wellformedness conditions?

► Why is it possible to store a model in a database or an inferencer?


