
 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Model-Driven Software Development in Technical Spaces (MOST)

14. Layers of M2 in a Technical Space (Language Families
and Composition of Tools)

Prof. Dr. U. Aßmann

Technische Universität Dresden

Institut für Software- und
Multimediatechnik

http://st.inf.tu-dresden.de/
teaching/most

Version 21-1.1, 20.11.21

1) Problem of Tool Composition

2) Data definition languages

3) Query languages

4) Constraint languages

5) Reuse languages

6) Transformation and Restructuring languages

7) Behavior specification languages

8) Language families in several technical spaces

9) .. and all together now...

http://st.inf.tu-dresden.de/
http://st.inf.tu-dresden.de/

 ©
 P

ro
f.

U
. A

ß
m

an
n

2 Model-Driven Software Development in Technical Spaces (MOST)

Obligatory Literature

► http://en.wikipedia.org/wiki/List_of_UML_tools

► [Damm] Werner Damm, Angelika Votintseva, Alexander Metzner, Bernhard Josko,
Thomas Peikenkamp, Eckard Böde. Boosting Re-use of Embedded Automotive
Applications Through Rich Components, Elsevier 2005.

■ https://www.researchgate.net/publication/228628645

http://en.wikipedia.org/wiki/List_of_UML_tools
https://www.researchgate.net/publication/228628645
http://en.wikipedia.org/wiki/List_of_UML_tools
https://www.researchgate.net/publication/228628645

 ©
 P

ro
f.

U
. A

ß
m

an
n

3 Model-Driven Software Development in Technical Spaces (MOST)

References

► [Vered Gafni] Presentation Slides about the Heterogeneous Rich Component Model (HRC).

► †[CSL] The SPEEDS Project. Contract Specification Language (CSL)

■ http://www.speeds.eu.com/downloads/D_2_5_4_RE_Contract_Specification_Language.pdf

► †[HRC-MM] The SPEEDS project. Deliverable D.2.1.5. SPEEDS L-1 Meta-Model, Revision: 1.0.1,
2009

■ http://speeds.eu.com/downloads/SPEEDS_Meta-Model.pdf

■ http://www-verimag.imag.fr/SPEEDS.html?lang=en

► †[HRC-Kit] The SPEEDS project. SPEEDS Training Kit.

■ http://www.speeds.eu.com/downloads/Training_Kit_and_Report.zip

■ Training_Kit_and_Report.pdf: Overview

■ Contract-based System Design.pdf: Overview slide set

■ ADT Services Top level Users view.pdf: Slide set about different relationships between
contracts

► G.Gößler and J.Sifakis. Composition for component-based modeling. Science of Computer
Programming, 55(1-3):161–183, 2005.

► Jendrik Johannes. Component-Based Model-Driven Software Development. PhD thesis,
Technische Universität Dresden, December 2010. http://nbn-resolving.de/urn:nbn:de:bsz:14-
qucosa-63986

http://www.speeds.eu.com/downloads/D_2_5_4_RE_Contract_Specification_Language.pdf
http://speeds.eu.com/downloads/SPEEDS_Meta-Model.pdf
http://www-verimag.imag.fr/SPEEDS.html?lang=en
http://www.speeds.eu.com/downloads/D_2_5_4_RE_Contract_Specification_Language.pdf
http://speeds.eu.com/downloads/SPEEDS_Meta-Model.pdf
http://www-verimag.imag.fr/SPEEDS.html?lang=en

 ©
 P

ro
f.

U
. A

ß
m

an
n

4 Model-Driven Software Development in Technical Spaces (MOST)

Other Literature

► Informatik Forum http://www.infforum.de/

► Data-Flow Diagrams:
■ De Marco, T.: Structured Analysis and System Specification; Yourdon Inc.

1978/1979. Siehe auch Vorlesung ST-2
■ McMenamin, S., Palmer, J.: Strukturierte Systemanalyse; Hanser Verlag 1988

► Workflow languages:
■ ARIS tool (IDS Scheer, now Software AG)

. http://en.wikipedia.org/wiki/
Architecture_of_Integrated_Information_Systems

► Big CASE IDE
■ MID Innovator (insbesondere für Informationssysteme)
– http://www.modellerfolg.de/

■ MagicDraw http://www.nomagic.com/

http://www.nomagic.com/
http://www.nomagic.com/

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Software Development in Technical Spaces

14.1 Basic Techniques of Software Engineering,
Language Families, and Tool Composition

 ©
 P

ro
f.

U
. A

ß
m

an
n

7 Model-Driven Software Development in Technical Spaces (MOST)

Q10: The House of a Technical Space

Mega- and Macromodels
Tracing, Regeneration, Synchronization

Tool Engineering
Composition, Extension

Model Management
Composition, Mapping, Transformation

Technical
Space
Bridges

Technical Space

Meta-
modeling

Model Analysis
Querying, Attribution, Analysis, Interpretation

Metapyramid (Metahierarchy)

 ©
 P

ro
f.

U
. A

ß
m

an
n

8 Model-Driven Software Development in Technical Spaces (MOST)

Metamodel Layering for Language Families

► M2 can systematically be divided into M2 layers (metamodel layer cake)
■ with metamodel packages in language families for:
■ Language engineering by composition
■ Tool construction by composition
■ Method and process engineering by composition of basic techniques

► Improves Tool engineering, Productivity of Process (Process Engineering), Test
engineering, Simulation engineering

► Indirectly: Reliability of Software, Evolvability

► Different forms of Systems need different M2 layers:

Information Systems

Software Systems

 Cyber-Physical Systems

 ©
 P

ro
f.

U
. A

ß
m

an
n

9 Model-Driven Software Development in Technical Spaces (MOST)

M-languages (Modifying)

A-languages (Analysis)

Basic Language Families (Layer Structure of M2, Metamodel
Layer Cake)

DDL CDL
Data definition

languages

DQL CQL
Data and code

query languages

DCL CCL
Data and code

constraint
languages

S-languages (Synthesis)

DTL CTL
Data and code
transformation

languages

DRL CRL
restructuring

languages

DML CML
Data manipulation

languages

BSL
Behavior

specification
languages

DRL CRL
Data and code

reuse
languages

Information Systems

Software Systems

 Cyber-Physical Systems

SIL
Simulation
languages

P
a t

te
rn

 la
ng

ua
ge

s

M2

 ©
 P

ro
f.

U
. A

ß
m

an
n

10 Model-Driven Software Development in Technical Spaces (MOST)

Basic Language Families (Structure of M2)

► Data and code modeling with definition languages (DDL, CDL)
■ DDL form the basic packages of M2 to be imported by all other packages
■ Ex: lifted metamodels, such as EBNF-Grammars, Relational Schema (RS), Entity-

Relationship-Diagrams (ERD), UML-CD, SysML-Component diagrams
■ In the metahierarchy, code covers M3-M0, because M0 is populated by objects of

the dynamic semantics
. Data does not have dynamic semantics, so it only covers M3-M1 (or M2-M0);

however, when data is loaded as code, it changes its nature.

► Analysis languages (A-languages):
■ Queries with query languages (DQL, CQL)
■ Consistency checking with data and code constraint languages (DCL, CCL) on

wellformedness of data and code
■ Reuse languages: Contract languages and composition languages

. Architectural description languages (ADL)

. Template-Sprachen (template languages, TL) course CBSE→

Information Systems

 ©
 P

ro
f.

U
. A

ß
m

an
n

11 Model-Driven Software Development in Technical Spaces (MOST)

Basic Language Families (Structure of M2) (ctd.)

► Synthesis languages (S-languages)
■ Declarative Transformation Languages (DTL, CTL)

. Data flow diagrams (DFD)

. Term- und graph rewrite systems

. XML transformation languages
■ Restructuring Languages (transformation languages retaining semantics, DRL,

CRL)
. Wide Spectrum Languages for refinement (broadband languages,

Breitbandsprachen)
. Data exchange languages (data exchange languages)

► Data and State Manipulation Languages (M-languages)
■ (non-declarative) Data manipulation languages (DML)

. Workflow Languages, Petri Nets, Imperative languages
► Languages for behavior specification language (BSL)

■ Action-based state transition systems (finite automata and transducers)
■ Condition-Action-languages, Event-Condition-Action-languages (ECA)

► Simulation languages (Modelica, Simulink, OpenFoam) for discrete, continuous,
and hybrd systems

Software Systems

 Cyber-Physical Systems

 ©
 P

ro
f.

U
. A

ß
m

an
n

12 Model-Driven Software Development in Technical Spaces (MOST)

CPS and Simulation

Public domain
https://cdn.pixabay.com/photo/2017/05/14/20/11/simulator-2312973_960_720.jpg

 ©
 P

ro
f.

U
. A

ß
m

an
n

13 Model-Driven Software Development in Technical Spaces (MOST)

Software Engineering of Heterogeneous Systems

How to compose languages for a
heterogeneous software factory?

► A software factory uses many base techniques and languages

► There is no homogeneous software construction

► Example: New electric car platform of VW and its design tool

A software factory is an environment to produce software and
CPS product lines

● based on metamodeling, macromodels and pattern languages

● in one technical space or bridging several technical spaces

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Model-Driven Software Development in Technical Spaces (MOST)

14.2 Data Definition Languages (DDL) and
Code Definition Languages (CDL)

The basic layer of M2

Usually lifted to M3 (i.e., self-descriptive)

All materials are shaped by a DDL or CDL

 ©
 P

ro
f.

U
. A

ß
m

an
n

15 Model-Driven Software Development in Technical Spaces (MOST)

Data Dictionaries (Data Catalogues) as Basis for all Tools and
IDE

► A data dictionary (data schema) contains all types of data flowing through a system,
including those stored in a repository (on M1)

■ Scope: local for an application, for several applications, for an entire company or
even for a supply chain

■ A data dictionary is a special kind of model repository
■ If the data are models, it is called metamodel repository

► A homogeneous data dictionary is specified in a DDL
■ EBNF defines text languages (sets of text types)
■ Relational Schema (RS) defines relations and tabels
■ XML Schema (XSD) defines tree languages
■ ERD or UML-CD define graph languages

► A heterogeneous data dictionary is specified in several DDL
■ Usually, software factories maintain heterogeneous metamodel repositories

 ©
 P

ro
f.

U
. A

ß
m

an
n

16 Model-Driven Software Development in Technical Spaces (MOST)

Information Systems are based on DDL

► An information system is a software system conducting data analysis about a
repository

■ Data warehouses, business intelligence, data analytics

► A stream-based information system is a software system conducting data analysis on a
set of data streams

► Every software tool, every IDE, every software factory relies on an information system
– maintaining artefacts (data, programs, models, documents)
– giving information about them
– typed by the types in a data dictionary

► The data dictionary is described in a data definition language (DDL) or code definition
language (CDL)

► The repository and the data streams are queried and analyzed by A-languages

 ©
 P

ro
f.

U
. A

ß
m

an
n

17 Model-Driven Software Development in Technical Spaces (MOST)

Q7: Standalone Tool Architecture with Data Sharing in a
Metamodel-Driven Repository

Tool

Metadata- and
metamodel
repository

Data manipulation and access interfaces
(typed read/write; reflective access observing access)

Tool

<<generates>>

Document/-model-
Repository
(Material)

Loader Exporter

Layer E

Layer D External Data base
(File system, Web)

Layer C

<<generates>>

Query
Engine

Consistency
checker

Workflow Control
„Automaton“

Tool

Information system

DQL

DDL

DCL

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Model-Driven Software Development in Technical Spaces (MOST)

14.3 Query Languages (QL)

DQL – Data Query Languages

CQL – Code Query Languages

All materials are queried by technical tools
shaped by a DQL or CQL.

 ©
 P

ro
f.

U
. A

ß
m

an
n

19 Model-Driven Software Development in Technical Spaces (MOST)

DQL and CQL

► Querying a tool’s internal repository
■ Pattern matching of structural patterns
■ Joining information
■ Reachability queries

► Metrics : counting of patterns

► Analysis: Deeper knowledge (implicit knowledge)
■ Program and model analyses on value and type flow

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Model-Driven Software Development in Technical Spaces (MOST)

14.4 Constraint Languages (DCL,CCL) for Consistency
Checking

All materials are constraint-checked by
techncial tools shaped by a DCL or CCL.

 ©
 P

ro
f.

U
. A

ß
m

an
n

21 Model-Driven Software Development in Technical Spaces (MOST)

Well-formedness of Metamodels and Data Dictionaries

A model is well-formed (consistent), if it
fulfils the context-sensitive constraints
(integrity rules, consistency rules) of its
metamodel.

A metamodel is wellformed, if it fulfils the
context-sensitive constraints of its
metametamodel.

A metamodel repository is wellformed, if it
fulfils all its context-sensitive constraints.

A model repository (data dictionary) is
wellformed, if all contained models fulfil its
context-sensitive constraints.

A multimodel is wellformed, if it fulfils all its context-sensitive
constraints. Then it is called a consistent multi- or macromodel.

 ©
 P

ro
f.

U
. A

ß
m

an
n

22 Model-Driven Software Development in Technical Spaces (MOST)

Examples:

► Visibility languages define constructs for the visibility and reuse of model elements

► Contract languages check whether components, modules, classes, procedures and
methods are applied correctly

► Interface definition languages describe types for interfaces in different languages, for
heterogeneous software

■ see course CBSE

► Component model definition languages define reuse languages and contract
languages [Johannes-PhD]

Reuse Languages and Contract Languages for Modularity

A reuse language is a (sub-)language) controlling the
reuse of program or model elements (modularity).

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Model-Driven Software Development in Technical Spaces (MOST)

14.5 Data Transformation Languages (DTL)

Text, XML, Term, and Graph Rewriting

see separate Chapter

 ©
 P

ro
f.

U
. A

ß
m

an
n

24 Model-Driven Software Development in Technical Spaces (MOST)

DTL and DML

► A DML (data manipulation language, Datenmanipulationssprachen) is used to
transform data

► Declarative DTL (Datentransformationssprachen, DTL) consist of declarative rule
systems transforming a repository

– Term rewriting for trees, terms, link trees, and XML trees
– Graph rewriting for graphs

► Imperative DML (general DML) know states and side effects.

 ©
 P

ro
f.

U
. A

ß
m

an
n

25 Model-Driven Software Development in Technical Spaces (MOST)

Restructuring Languages (DRL)

► Restructuring means to transform while to retain invariants.

► A restructuring language is a DTL giving guarantees about the transformed materials.

► A refactoring language restructures code and retains some of its invariants

► Languages for Refinement:
■ Refinement means that a transformed program implies the semantics of the original
■ A wide spectrum language transforms programs by refinement, generating more

and more versions implying the requirements specification (the original)

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Model-Driven Software Development in Technical Spaces (MOST)

14.6. Behavior Specification Languages (BSL)

All automata (workflow engines) in a TS execute
workflows written in a BSL.

 ©
 P

ro
f.

U
. A

ß
m

an
n

27 Model-Driven Software Development in Technical Spaces (MOST)

Automaten, Petri-Nets, DFD and Workflow Languages

► State-oriented Behavior
specification languages enable
the specification of interpreters
(operational dynamic semantics)
and simulators (interpreters with
a specific platform)

► Automata, Transducers,
Statecharts course →
Softwaretechnologie-I

► DFD, Petri-Nets and Workflow
languages course →
Softwaretechnologie-II

► Event-condition-action languages
(ECA languages) course →
Softwaretechnologie-II

Robot 1 free

Piece equipped

Taking
up

Taking
up

Piece
moving

Piece equipped

Piece
available

Piece
ready

Laying
down

Laying
down

Piece
moving

Robot 2 free
[Balzert]

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Model-Driven Software Development in Technical Spaces (MOST)

14.6.1. Simulation Languages (SL)

 ©
 P

ro
f.

U
. A

ß
m

an
n

29 Model-Driven Software Development in Technical Spaces (MOST)

Component/device

• Each Icon represents a physical component.
 (electrical resistance, mechanical device, pump, ...)

Connection

• A connection line represents the actual physical
 coupling (wire, fluid flow, heat flow, ...)

Connector

• A component consists of connected sub-components
 (= hierarchical structure) and/or is described by equations.

• By symbolic algorithms, the high level Modelica description
 is transformed into a set of explicit differential equations:

() ((),)

() ((),)

t t t

t t t





x f x

y f x



0 ((), (), (),)t t t t f x x y

Schematics

Modelica Users View

courtesy to Peter Fritzson

 ©
 P

ro
f.

U
. A

ß
m

an
n

30 Model-Driven Software Development in Technical Spaces (MOST)

Example: Industrial Robots (from Modelica.Mechanics.MultiBody.Examples.Systems.RobotR3.fullRobot)

1000 non-trivial algebraic equations, 80 states.
Faster as real-time on slow PC.

model Resistor
 extends OnePort;
 parameter Real R;
equation
 v = R*i;
end Resistor;

 ©
 P

ro
f.

U
. A

ß
m

an
n

31 Model-Driven Software Development in Technical Spaces (MOST)

Electronic Control Unit
(Hardware)

+ driver + engine
+ 1D vehicle dynamics

(Simulation)

Example: Hardware-in-the-Loop Simulation of automatic
gear boxes (different vehicle manufacturers)

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Model-Driven Software Development in Technical Spaces (MOST)

14.7 Examples of Language Families on the M2 Layers

Every technical space has a language hierarchy
on M2 with a similar, layered structure.

Every IDE has an underlying language family.

All tools have an underlying language family.

Every software factory has several underlying
language family.

 ©
 P

ro
f.

U
. A

ß
m

an
n

33 Model-Driven Software Development in Technical Spaces (MOST)

M-languages (Modifying)

A-languages (Analysis)

Basic Language Families (Layer Structure of M2)

DDL CDL
Data definition

languages

DQL CQL
Data and code

query languages

DCL CCL
Data and code

constraint
languages

S-languages (Synthesis)

DTL CTL
Data and code
transformation

languages

DRSL CRSL
restructuring

languages

DML CML
Data manipulation

languages

BSL
Behavior

specification
languages

DRL CRL
Data and code

reuse
languages

Materials

Tools

Automata

SIL
Simulation
languages

 ©
 P

ro
f.

U
. A

ß
m

an
n

34 Model-Driven Software Development in Technical Spaces (MOST)

UML Language Family in the ModelWare TS

M-languages (Modifying)

A-languages (Analysis)

DDL CDL
UML-CD
UML-OD

UML Comp.D.

DQL CQL
OCL

DCL CCL
OCL

Sequence D.
Commun.D.

S-languages (Synthesis)

DTL CTL
Activity diagrams

DRSL CRSL
Packages,

merge operator

DML CML
 -

BSL
Statecharts

DRL CRL
OCL pre- and
postconditions

SIL
Simulink/

SysML Blocks

 ©
 P

ro
f.

U
. A

ß
m

an
n

35 Model-Driven Software Development in Technical Spaces (MOST)

ERD/RS Language Family in the Relational TS

M-languages (Modifying)

A-languages (Analysis)

DDL CDL
RS, ERD

DQL CQL
SQL

DCL CCL
Integrity

constraints
built into SQL

S-languages (Synthesis)

DTL CTL
Event-Trigger

languages

DRSL CRSL
Packagesr

DML CML
 Update

languages

BSL
-

DRL CRL
-

SIL
-

 ©
 P

ro
f.

U
. A

ß
m

an
n

36 Model-Driven Software Development in Technical Spaces (MOST)

XML Language Family in the Link Tree TS

M-languages (Modifying)

A-languages (Analysis)

DDL CDL
DTD,

XSD, RelaxNG

DQL CQL
Xquery, Xcerpt

DCL CCL
Integrity

constraints
built into SQL

S-languages (Synthesis)

DTL CTL
Xcerpt, XSLT,

XChange

DRSL CRSL
-

DML CML
 -

BSL
-

DRL CRL
XML

namespaces,
WSDL

SIL
-

 ©
 P

ro
f.

U
. A

ß
m

an
n

37 Model-Driven Software Development in Technical Spaces (MOST)

GrUML Language Family [Ebert, U Koblenz]

M-languages (Modifying)

A-languages (Analysis)

DDL CDL
GrUML-CD

DQL CQL
GReQL

DCL CCL
-

S-languages (Synthesis)

DTL CTL
GReTL

DRSL CRSL
-

DML CML
 -

BSL
-

DRL CRL
-

SIL
-

 ©
 P

ro
f.

U
. A

ß
m

an
n

38 Model-Driven Software Development in Technical Spaces (MOST)

.QL Language Family [Semmle, github]

M-languages (Modifying)

A-languages (Analysis)

DDL CDL
Java

DQL CQL
.QL

DCL CCL
-

S-languages (Synthesis)

DTL CTL
-

DRSL CRSL
-

DML CML
 -

BSL
-

DRL CRL
-

SIL
-

 ©
 P

ro
f.

U
. A

ß
m

an
n

39 Model-Driven Software Development in Technical Spaces (MOST)

M0 object level

M1 model level

M2 metamodel level

M3 metametamodel
level

Metalanguage

Metamodels
(languages)

Models,
Programs

Modelling concepts

The Generic Tools of a Technical Space (TS)

Rewriting
 engine

Analysis
engine

Model
management

Repository
generator

TS-Bridge
generator

Model
mapping

Model
slicing

Model
composition

Logic
engine

Metamodels
steer

Metamodels
control Metamodels

control

Query
engine

 ©
 P

ro
f.

U
. A

ß
m

an
n

40 Model-Driven Software Development in Technical Spaces (MOST)

M0 object level

M1 model level

M2 metamodel level

M3 metametamodel
level

Metalanguage

Metamodels
(languages)

Models,
Programs

Modelling concepts

The Generic Tools of a Technical Space (2)

Rewriting
 engine

Analysis
engine

Metamodel
management

Metamodel
Repository
generator

Metamodel
exchange
generator

Metamodel
mapping

Metamodel
slicing

Metamodel
composition

Logic
engine

Metalanguage
steers

Metalanguage
controls

 ©
 P

ro
f.

U
. A

ß
m

an
n

41 Model-Driven Software Development in Technical Spaces (MOST)

Technical Space Bridges with Exchange TS

M-languages (Modifying)

A-languages (Analysis)

DDL CDL
DTD,

XSD, RelaxNG

DQL CQL
Xquery, Xcerpt

DCL CCL
Integrity

constraints
built into SQL

S-languages (Synthesis)

DTL CTL
Xcerpt, XSLT,

XChange

DRSL CRSL
-

DML CML
 -

BSL
-

DRL CRL
XML

namespaces,
WSDL

SIL
-

M-languages (Modifying)

A-languages (Analysis)

DDL CDL
UML-CD
UML-OD

UML Comp.D.

DQL CQL
OCL

DCL CCL
OCL

Sequence D.
Commun.D.

S-languages (Synthesis)

DTL CTL
Activity diagrams

DRSL CRSL
Packages,

merge operator

DML CML
 -

BSL
Statecharts

DRL CRL
OCL pre- and
postconditions

SIL
Simulink/

SysML Blocks

Complex TS Exchange TS

► Complex technical spaces must be flattened to a textual exchange TS (here XML)

► Due to layering and packaging, language mappings are simpler

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Model-Driven Software Development in Technical Spaces (MOST)

14.8. … and all together now...

 ©
 P

ro
f.

U
. A

ß
m

an
n

43 Model-Driven Software Development in Technical Spaces (MOST)

Example Megamodel:
Composition of Contracts in the HRC (Heterogeneous Rich Components)
MDSD Tool Chain for Complex Embedded Systems

► Within a HRC component, contracts in different views can be synchronized
(synchronized token-based modeling) [Damm]

■ The real-time assertions can be coupled with functional, real-time, safety, physical
movement (dynamics), and energy view

■ Every contract has a different contract language

► Between different components, the contracts of a certain viewpoint can be composed
and checked (viewpoint-specific modeling)

[courtesy to Vered Gafni]

Functionality
Real-Time

Performance Safety
Movement
(dynamics)

Energy

HRC Component with Different Aspects

 ©
 P

ro
f.

U
. A

ß
m

an
n

44 Model-Driven Software Development in Technical Spaces (MOST)

Example Megamodel: HRC Language Family for Safety-
Critical Embedded Software

M-languages (Modifying)

A-languages (Analysis)

DDL CDL
MOF

DQL CQL
OCL

DCL CCL
-

S-languages (Synthesis)

DTL CTL
-

DRSL CRSL
-

DML CML
 -

BSL
Real-time automata

Hybrid automata
Energy automata

DRL CRL
HRC components

HRC contract language
Safety specifications

SIL
Simulation
languages

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Model-Driven Software Development in Technical Spaces (MOST)

14.8.1. Technical Space Bridges and the Metamodel
Layer Cake

 ©
 P

ro
f.

U
. A

ß
m

an
n

46 Model-Driven Software Development in Technical Spaces (MOST)

Why is it Important to Know about the M2-Layers?

► ERD – MOF – XSD – UML-CD
► Xquery – XSLT – SQL – SPARQL
► OCL – SpiderDiagrams – OntologyLanguages
► Java – C++ – C#
► Petrinets – DFD – WorkflowNets – BPMN

The multimodels managed by software factories
combine different languages from

several layers of M2 (M2-Mix)

Domain-specific languages always consist of an M2-Mix

Methods also

 ©
 P

ro
f.

U
. A

ß
m

an
n

47 Model-Driven Software Development in Technical Spaces (MOST)

Why is it Important to Know about the M2-Structure?

► Language families can be arranged in M2 layers
■ Many languages on upper layers can be composed with languages on lower layers

► If everything is in one Technical Space, composition of tools relies on the composition
of languages

■ For that we need Model Composition Systems (forthcoming, course CBSE)→
. Example: UML-Package Merge-Operator

How can we compose metamodels for tool composition?

Language composition: Compose new language constructs
from layers further down

 ©
 P

ro
f.

U
. A

ß
m

an
n

48 Model-Driven Software Development in Technical Spaces (MOST)

How Can We Compose Tools for Base Techniques for
MDSD Tool Chains and Software IDE?

► If we have to treat several Technical Spaces, Bridges between TS have to be built

Language composition in one Technical Space

Mapping between different Technical Spaces

 ©
 P

ro
f.

U
. A

ß
m

an
n

49 Model-Driven Software Development in Technical Spaces (MOST)

The End – Exam Questions

► Where would you position a query tool on M1 – in the tools layer or in the materials
layer? Does the tool’s metamodel in its query language belong then to the tools
metamodel layer of M2 or to the materials metamodel layer?

► Why can we compose different DQL with a given DDL?

► How is it possible to apply a graph query language on XML trees?

► Why is UML such a complex language?

► A MDSD tool chain such as the HRC IDE for embedded systems works with many
languages in different technical spaces. Explain some ingredients of such a complex
IDE.

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Model-Driven Software Development in Technical Spaces (MOST)

14. Layers of M2 in a Technical Space (Language Families
and Composition of Tools)

Prof. Dr. U. Aßmann

Technische Universität Dresden

Institut für Software- und
Multimediatechnik

http://st.inf.tu-dresden.de/
teaching/most

Version 21-1.1, 20.11.21

1) Problem of Tool Composition

2) Data definition languages

3) Query languages

4) Constraint languages

5) Reuse languages

6) Transformation and Restructuring languages

7) Behavior specification languages

8) Language families in several technical spaces

9) .. and all together now...

Die Metasprachen bzw DDL müssen
auseinander aufgebaut werden.

 ©
 P

ro
f.

U
. A

ß
m

an
n

2 Model-Driven Software Development in Technical Spaces (MOST)

Obligatory Literature

► http://en.wikipedia.org/wiki/List_of_UML_tools

► [Damm] Werner Damm, Angelika Votintseva, Alexander Metzner, Bernhard Josko,
Thomas Peikenkamp, Eckard Böde. Boosting Re-use of Embedded Automotive
Applications Through Rich Components, Elsevier 2005.

■ https://www.researchgate.net/publication/228628645

 ©
 P

ro
f.

U
. A

ß
m

an
n

3 Model-Driven Software Development in Technical Spaces (MOST)

References

► [Vered Gafni] Presentation Slides about the Heterogeneous Rich Component Model (HRC).

► †[CSL] The SPEEDS Project. Contract Specification Language (CSL)
■ http://www.speeds.eu.com/downloads/D_2_5_4_RE_Contract_Specification_Language.pdf

► †[HRC-MM] The SPEEDS project. Deliverable D.2.1.5. SPEEDS L-1 Meta-Model, Revision: 1.0.1,
2009

■ http://speeds.eu.com/downloads/SPEEDS_Meta-Model.pdf

■ http://www-verimag.imag.fr/SPEEDS.html?lang=en

► †[HRC-Kit] The SPEEDS project. SPEEDS Training Kit.

■ http://www.speeds.eu.com/downloads/Training_Kit_and_Report.zip

■ Training_Kit_and_Report.pdf: Overview

■ Contract-based System Design.pdf: Overview slide set
■ ADT Services Top level Users view.pdf: Slide set about different relationships between

contracts

► G.Gößler and J.Sifakis. Composition for component-based modeling. Science of Computer
Programming, 55(1-3):161–183, 2005.

► Jendrik Johannes. Component-Based Model-Driven Software Development. PhD thesis,
Technische Universität Dresden, December 2010. http://nbn-resolving.de/urn:nbn:de:bsz:14-
qucosa-63986

 ©
 P

ro
f.

U
. A

ß
m

an
n

4 Model-Driven Software Development in Technical Spaces (MOST)

Other Literature

► Informatik Forum http://www.infforum.de/

► Data-Flow Diagrams:
■ De Marco, T.: Structured Analysis and System Specification; Yourdon Inc.

1978/1979. Siehe auch Vorlesung ST-2
■ McMenamin, S., Palmer, J.: Strukturierte Systemanalyse; Hanser Verlag 1988

► Workflow languages:
■ ARIS tool (IDS Scheer, now Software AG)

. http://en.wikipedia.org/wiki/
Architecture_of_Integrated_Information_Systems

► Big CASE IDE
■ MID Innovator (insbesondere für Informationssysteme)
– http://www.modellerfolg.de/

■ MagicDraw http://www.nomagic.com/

6

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Software Development in Technical Spaces

14.1 Basic Techniques of Software Engineering,
Language Families, and Tool Composition

 ©
 P

ro
f.

U
. A

ß
m

an
n

7 Model-Driven Software Development in Technical Spaces (MOST)

Q10: The House of a Technical Space

Mega- and Macromodels
Tracing, Regeneration, Synchronization

Tool Engineering
Composition, Extension

Model Management
Composition, Mapping, Transformation

Technical
Space
Bridges

Technical Space

Meta-
modeling

Model Analysis
Querying, Attribution, Analysis, Interpretation

Metapyramid (Metahierarchy)

 ©
 P

ro
f.

U
. A

ß
m

an
n

8 Model-Driven Software Development in Technical Spaces (MOST)

Metamodel Layering for Language Families

► M2 can systematically be divided into M2 layers (metamodel layer cake)
■ with metamodel packages in language families for:
■ Language engineering by composition
■ Tool construction by composition
■ Method and process engineering by composition of basic techniques

► Improves Tool engineering, Productivity of Process (Process Engineering), Test
engineering, Simulation engineering

► Indirectly: Reliability of Software, Evolvability

► Different forms of Systems need different M2 layers:

Information Systems

Software Systems

 Cyber-Physical Systems

 ©
 P

ro
f.

U
. A

ß
m

an
n

9 Model-Driven Software Development in Technical Spaces (MOST)

M-languages (Modifying)

A-languages (Analysis)

Basic Language Families (Layer Structure of M2, Metamodel
Layer Cake)

DDL CDL
Data definition

languages

DQL CQL
Data and code

query languages

DCL CCL
Data and code

constraint
languages

S-languages (Synthesis)

DTL CTL
Data and code
transformation

languages

DRL CRL
restructuring

languages

DML CML
Data manipulation

languages

BSL
Behavior

specification
languages

DRL CRL
Data and code

reuse
languages

Information Systems

Software Systems

 Cyber-Physical Systems

SIL
Simulation
languages

P
a

tte
rn

 la
ng

ua
ge

s

M0
M1

M2

M3
M-1

 ©
 P

ro
f.

U
. A

ß
m

an
n

10 Model-Driven Software Development in Technical Spaces (MOST)

Basic Language Families (Structure of M2)

► Data and code modeling with definition languages (DDL, CDL)
■ DDL form the basic packages of M2 to be imported by all other packages
■ Ex: lifted metamodels, such as EBNF-Grammars, Relational Schema (RS), Entity-

Relationship-Diagrams (ERD), UML-CD, SysML-Component diagrams
■ In the metahierarchy, code covers M3-M0, because M0 is populated by objects of

the dynamic semantics
. Data does not have dynamic semantics, so it only covers M3-M1 (or M2-M0);

however, when data is loaded as code, it changes its nature.

► Analysis languages (A-languages):
■ Queries with query languages (DQL, CQL)
■ Consistency checking with data and code constraint languages (DCL, CCL) on

wellformedness of data and code
■ Reuse languages: Contract languages and composition languages

. Architectural description languages (ADL)

. Template-Sprachen (template languages, TL) course CBSE→

Information Systems

 ©
 P

ro
f.

U
. A

ß
m

an
n

11 Model-Driven Software Development in Technical Spaces (MOST)

Basic Language Families (Structure of M2) (ctd.)

► Synthesis languages (S-languages)
■ Declarative Transformation Languages (DTL, CTL)

. Data flow diagrams (DFD)

. Term- und graph rewrite systems

. XML transformation languages
■ Restructuring Languages (transformation languages retaining semantics, DRL,

CRL)
. Wide Spectrum Languages for refinement (broadband languages,

Breitbandsprachen)
. Data exchange languages (data exchange languages)

► Data and State Manipulation Languages (M-languages)
■ (non-declarative) Data manipulation languages (DML)

. Workflow Languages, Petri Nets, Imperative languages
► Languages for behavior specification language (BSL)

■ Action-based state transition systems (finite automata and transducers)
■ Condition-Action-languages, Event-Condition-Action-languages (ECA)

► Simulation languages (Modelica, Simulink, OpenFoam) for discrete, continuous,
and hybrd systems

Software Systems

 Cyber-Physical Systems

 ©
 P

ro
f.

U
. A

ß
m

an
n

12 Model-Driven Software Development in Technical Spaces (MOST)

CPS and Simulation

Public domain
https://cdn.pixabay.com/photo/2017/05/14/20/11/simulator-2312973_960_720.jpg

 ©
 P

ro
f.

U
. A

ß
m

an
n

13 Model-Driven Software Development in Technical Spaces (MOST)

Software Engineering of Heterogeneous Systems

How to compose languages for a
heterogeneous software factory?

► A software factory uses many base techniques and languages

► There is no homogeneous software construction

► Example: New electric car platform of VW and its design tool

A software factory is an environment to produce software and
CPS product lines

● based on metamodeling, macromodels and pattern languages

● in one technical space or bridging several technical spaces

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Model-Driven Software Development in Technical Spaces (MOST)

14.2 Data Definition Languages (DDL) and
Code Definition Languages (CDL)

The basic layer of M2

Usually lifted to M3 (i.e., self-descriptive)

All materials are shaped by a DDL or CDL

 ©
 P

ro
f.

U
. A

ß
m

an
n

15 Model-Driven Software Development in Technical Spaces (MOST)

Data Dictionaries (Data Catalogues) as Basis for all Tools and
IDE

► A data dictionary (data schema) contains all types of data flowing through a system,
including those stored in a repository (on M1)

■ Scope: local for an application, for several applications, for an entire company or
even for a supply chain

■ A data dictionary is a special kind of model repository
■ If the data are models, it is called metamodel repository

► A homogeneous data dictionary is specified in a DDL
■ EBNF defines text languages (sets of text types)
■ Relational Schema (RS) defines relations and tabels
■ XML Schema (XSD) defines tree languages
■ ERD or UML-CD define graph languages

► A heterogeneous data dictionary is specified in several DDL
■ Usually, software factories maintain heterogeneous metamodel repositories

 ©
 P

ro
f.

U
. A

ß
m

an
n

16 Model-Driven Software Development in Technical Spaces (MOST)

Information Systems are based on DDL

► An information system is a software system conducting data analysis about a
repository

■ Data warehouses, business intelligence, data analytics

► A stream-based information system is a software system conducting data analysis on a
set of data streams

► Every software tool, every IDE, every software factory relies on an information system
– maintaining artefacts (data, programs, models, documents)
– giving information about them
– typed by the types in a data dictionary

► The data dictionary is described in a data definition language (DDL) or code definition
language (CDL)

► The repository and the data streams are queried and analyzed by A-languages

 ©
 P

ro
f.

U
. A

ß
m

an
n

17 Model-Driven Software Development in Technical Spaces (MOST)

Q7: Standalone Tool Architecture with Data Sharing in a
Metamodel-Driven Repository

Tool

Metadata- and
metamodel
repository

Data manipulation and access interfaces
(typed read/write; reflective access observing access)

Tool

<<generates>>

Document/-model-
Repository
(Material)

Loader Exporter

Layer E

Layer D External Data base
(File system, Web)

Layer C

<<generates>>

Query
Engine

Consistency
checker

Workflow Control
„Automaton“

Tool

Information system

DQL

DDL

DCL

A microtool is a function in a tool
usually implemented as a Command
Object.

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Model-Driven Software Development in Technical Spaces (MOST)

14.3 Query Languages (QL)

DQL – Data Query Languages

CQL – Code Query Languages

All materials are queried by technical tools
shaped by a DQL or CQL.

 ©
 P

ro
f.

U
. A

ß
m

an
n

19 Model-Driven Software Development in Technical Spaces (MOST)

DQL and CQL

► Querying a tool’s internal repository
■ Pattern matching of structural patterns
■ Joining information
■ Reachability queries

► Metrics : counting of patterns

► Analysis: Deeper knowledge (implicit knowledge)
■ Program and model analyses on value and type flow

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Model-Driven Software Development in Technical Spaces (MOST)

14.4 Constraint Languages (DCL,CCL) for Consistency
Checking

All materials are constraint-checked by
techncial tools shaped by a DCL or CCL.

 ©
 P

ro
f.

U
. A

ß
m

an
n

21 Model-Driven Software Development in Technical Spaces (MOST)

Well-formedness of Metamodels and Data Dictionaries

A model is well-formed (consistent), if it
fulfils the context-sensitive constraints
(integrity rules, consistency rules) of its
metamodel.

A metamodel is wellformed, if it fulfils the
context-sensitive constraints of its
metametamodel.

A metamodel repository is wellformed, if it
fulfils all its context-sensitive constraints.

A model repository (data dictionary) is
wellformed, if all contained models fulfil its
context-sensitive constraints.

A multimodel is wellformed, if it fulfils all its context-sensitive
constraints. Then it is called a consistent multi- or macromodel.

Das hier muss eigentlich nach der
DCL gelehrt werden

 ©
 P

ro
f.

U
. A

ß
m

an
n

22 Model-Driven Software Development in Technical Spaces (MOST)

Examples:

► Visibility languages define constructs for the visibility and reuse of model elements

► Contract languages check whether components, modules, classes, procedures and
methods are applied correctly

► Interface definition languages describe types for interfaces in different languages, for
heterogeneous software

■ see course CBSE

► Component model definition languages define reuse languages and contract
languages [Johannes-PhD]

Reuse Languages and Contract Languages for Modularity

A reuse language is a (sub-)language) controlling the
reuse of program or model elements (modularity).

Das hier muss eigentlich nach der
DCL gelehrt werden

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Model-Driven Software Development in Technical Spaces (MOST)

14.5 Data Transformation Languages (DTL)

Text, XML, Term, and Graph Rewriting

see separate Chapter

 ©
 P

ro
f.

U
. A

ß
m

an
n

24 Model-Driven Software Development in Technical Spaces (MOST)

DTL and DML

► A DML (data manipulation language, Datenmanipulationssprachen) is used to
transform data

► Declarative DTL (Datentransformationssprachen, DTL) consist of declarative rule
systems transforming a repository

– Term rewriting for trees, terms, link trees, and XML trees
– Graph rewriting for graphs

► Imperative DML (general DML) know states and side effects.

 ©
 P

ro
f.

U
. A

ß
m

an
n

25 Model-Driven Software Development in Technical Spaces (MOST)

Restructuring Languages (DRL)

► Restructuring means to transform while to retain invariants.

► A restructuring language is a DTL giving guarantees about the transformed materials.

► A refactoring language restructures code and retains some of its invariants

► Languages for Refinement:
■ Refinement means that a transformed program implies the semantics of the original
■ A wide spectrum language transforms programs by refinement, generating more

and more versions implying the requirements specification (the original)

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Model-Driven Software Development in Technical Spaces (MOST)

14.6. Behavior Specification Languages (BSL)

All automata (workflow engines) in a TS execute
workflows written in a BSL.

 ©
 P

ro
f.

U
. A

ß
m

an
n

27 Model-Driven Software Development in Technical Spaces (MOST)

Automaten, Petri-Nets, DFD and Workflow Languages

► State-oriented Behavior
specification languages enable
the specification of interpreters
(operational dynamic semantics)
and simulators (interpreters with
a specific platform)

► Automata, Transducers,
Statecharts course →
Softwaretechnologie-I

► DFD, Petri-Nets and Workflow
languages course →
Softwaretechnologie-II

► Event-condition-action languages
(ECA languages) course →
Softwaretechnologie-II

Robot 1 free

Piece equipped

Taking
up

Taking
up

Piece
moving

Piece equipped

Piece
available

Piece
ready

Laying
down

Laying
down

Piece
moving

Robot 2 free
[Balzert]

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Model-Driven Software Development in Technical Spaces (MOST)

14.6.1. Simulation Languages (SL)

29

 ©
 P

ro
f.

U
. A

ß
m

an
n

29 Model-Driven Software Development in Technical Spaces (MOST)

Component/device

• Each Icon represents a physical component.
 (electrical resistance, mechanical device, pump, ...)

Connection

• A connection line represents the actual physical
 coupling (wire, fluid flow, heat flow, ...)

Connector

• A component consists of connected sub-components
 (= hierarchical structure) and/or is described by equations.

• By symbolic algorithms, the high level Modelica description
 is transformed into a set of explicit differential equations:

() ((),)

() ((),)

t t t

t t t





x f x

y f x



0 ((), (), (),)t t t t f x x y

Schematics

Modelica Users View

courtesy to Peter Fritzson

30

 ©
 P

ro
f.

U
. A

ß
m

an
n

30 Model-Driven Software Development in Technical Spaces (MOST)

Example: Industrial Robots (from Modelica.Mechanics.MultiBody.Examples.Systems.RobotR3.fullRobot)

1000 non-trivial algebraic equations, 80 states.
Faster as real-time on slow PC.

model Resistor
 extends OnePort;
 parameter Real R;
equation
 v = R*i;
end Resistor;

31

 ©
 P

ro
f.

U
. A

ß
m

an
n

31 Model-Driven Software Development in Technical Spaces (MOST)

Electronic Control Unit
(Hardware)

+ driver + engine
+ 1D vehicle dynamics

(Simulation)

Example: Hardware-in-the-Loop Simulation of automatic
gear boxes (different vehicle manufacturers)

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Model-Driven Software Development in Technical Spaces (MOST)

14.7 Examples of Language Families on the M2 Layers

Every technical space has a language hierarchy
on M2 with a similar, layered structure.

Every IDE has an underlying language family.

All tools have an underlying language family.

Every software factory has several underlying
language family.

 ©
 P

ro
f.

U
. A

ß
m

an
n

33 Model-Driven Software Development in Technical Spaces (MOST)

M-languages (Modifying)

A-languages (Analysis)

Basic Language Families (Layer Structure of M2)

DDL CDL
Data definition

languages

DQL CQL
Data and code

query languages

DCL CCL
Data and code

constraint
languages

S-languages (Synthesis)

DTL CTL
Data and code

transformation
languages

DRSL CRSL
restructuring

languages

DML CML
Data manipulation

languages

BSL
Behavior

specification
languages

DRL CRL
Data and code

reuse
languages

Materials

Tools

Automata

SIL
Simulation
languages

 ©
 P

ro
f.

U
. A

ß
m

an
n

34 Model-Driven Software Development in Technical Spaces (MOST)

UML Language Family in the ModelWare TS

M-languages (Modifying)

A-languages (Analysis)

DDL CDL
UML-CD
UML-OD

UML Comp.D.

DQL CQL
OCL

DCL CCL
OCL

Sequence D.
Commun.D.

S-languages (Synthesis)

DTL CTL
Activity diagrams

DRSL CRSL
Packages,

merge operator

DML CML
 -

BSL
Statecharts

DRL CRL
OCL pre- and
postconditions

SIL
Simulink/

SysML Blocks

 ©
 P

ro
f.

U
. A

ß
m

an
n

35 Model-Driven Software Development in Technical Spaces (MOST)

ERD/RS Language Family in the Relational TS

M-languages (Modifying)

A-languages (Analysis)

DDL CDL
RS, ERD

DQL CQL
SQL

DCL CCL
Integrity

constraints
built into SQL

S-languages (Synthesis)

DTL CTL
Event-Trigger

languages

DRSL CRSL
Packagesr

DML CML
 Update

languages

BSL
-

DRL CRL
-

SIL
-

 ©
 P

ro
f.

U
. A

ß
m

an
n

36 Model-Driven Software Development in Technical Spaces (MOST)

XML Language Family in the Link Tree TS

M-languages (Modifying)

A-languages (Analysis)

DDL CDL
DTD,

XSD, RelaxNG

DQL CQL
Xquery, Xcerpt

DCL CCL
Integrity

constraints
built into SQL

S-languages (Synthesis)

DTL CTL
Xcerpt, XSLT,

XChange

DRSL CRSL
-

DML CML
 -

BSL
-

DRL CRL
XML

namespaces,
WSDL

SIL
-

 ©
 P

ro
f.

U
. A

ß
m

an
n

37 Model-Driven Software Development in Technical Spaces (MOST)

GrUML Language Family [Ebert, U Koblenz]

M-languages (Modifying)

A-languages (Analysis)

DDL CDL
GrUML-CD

DQL CQL
GReQL

DCL CCL
-

S-languages (Synthesis)

DTL CTL
GReTL

DRSL CRSL
-

DML CML
 -

BSL
-

DRL CRL
-

SIL
-

 ©
 P

ro
f.

U
. A

ß
m

an
n

38 Model-Driven Software Development in Technical Spaces (MOST)

.QL Language Family [Semmle, github]

M-languages (Modifying)

A-languages (Analysis)

DDL CDL
Java

DQL CQL
.QL

DCL CCL
-

S-languages (Synthesis)

DTL CTL
-

DRSL CRSL
-

DML CML
 -

BSL
-

DRL CRL
-

SIL
-

 ©
 P

ro
f.

U
. A

ß
m

an
n

39 Model-Driven Software Development in Technical Spaces (MOST)

M0 object level

M1 model level

M2 metamodel level

M3 metametamodel
level

Metalanguage

Metamodels
(languages)

Models,
Programs

Modelling concepts

The Generic Tools of a Technical Space (TS)

Rewriting
 engine

Analysis
engine

Model
management

Repository
generator

TS-Bridge
generator

Model
mapping

Model
slicing

Model
composition

Logic
engine

Metamodels
steer

Metamodels
control Metamodels

control

Query
engine

 ©
 P

ro
f.

U
. A

ß
m

an
n

40 Model-Driven Software Development in Technical Spaces (MOST)

M0 object level

M1 model level

M2 metamodel level

M3 metametamodel
level

Metalanguage

Metamodels
(languages)

Models,
Programs

Modelling concepts

The Generic Tools of a Technical Space (2)

Rewriting
 engine

Analysis
engine

Metamodel
management

Metamodel
Repository
generator

Metamodel
exchange
generator

Metamodel
mapping

Metamodel
slicing

Metamodel
composition

Logic
engine

Metalanguage
steers

Metalanguage
controls

 ©
 P

ro
f.

U
. A

ß
m

an
n

41 Model-Driven Software Development in Technical Spaces (MOST)

Technical Space Bridges with Exchange TS

M-languages (Modifying)

A-languages (Analysis)

DDL CDL
DTD,

XSD, RelaxNG

DQL CQL
Xquery, Xcerpt

DCL CCL
Integrity

constraints
built into SQL

S-languages (Synthesis)

DTL CTL
Xcerpt, XSLT,

XChange

DRSL CRSL
-

DML CML
 -

BSL
-

DRL CRL
XML

namespaces,
WSDL

SIL
-

M-languages (Modifying)

A-languages (Analysis)

DDL CDL
UML-CD
UML-OD

UML Comp.D.

DQL CQL
OCL

DCL CCL
OCL

Sequence D.
Commun.D.

S-languages (Synthesis)

DTL CTL
Activity diagrams

DRSL CRSL
Packages,

merge operator

DML CML
 -

BSL
Statecharts

DRL CRL
OCL pre- and
postconditions

SIL
Simulink/

SysML Blocks

Complex TS Exchange TS

► Complex technical spaces must be flattened to a textual exchange TS (here XML)

► Due to layering and packaging, language mappings are simpler

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Model-Driven Software Development in Technical Spaces (MOST)

14.8. … and all together now...

 ©
 P

ro
f.

U
. A

ß
m

an
n

43 Model-Driven Software Development in Technical Spaces (MOST)

Example Megamodel:
Composition of Contracts in the HRC (Heterogeneous Rich Components)
MDSD Tool Chain for Complex Embedded Systems

► Within a HRC component, contracts in different views can be synchronized
(synchronized token-based modeling) [Damm]

■ The real-time assertions can be coupled with functional, real-time, safety, physical
movement (dynamics), and energy view

■ Every contract has a different contract language

► Between different components, the contracts of a certain viewpoint can be composed
and checked (viewpoint-specific modeling)

[courtesy to Vered Gafni]

Functionality
Real-Time

Performance Safety
Movement
(dynamics)

Energy

HRC Component with Different Aspects

 ©
 P

ro
f.

U
. A

ß
m

an
n

44 Model-Driven Software Development in Technical Spaces (MOST)

Example Megamodel: HRC Language Family for Safety-
Critical Embedded Software

M-languages (Modifying)

A-languages (Analysis)

DDL CDL
MOF

DQL CQL
OCL

DCL CCL
-

S-languages (Synthesis)

DTL CTL
-

DRSL CRSL
-

DML CML
 -

BSL
Real-time automata

Hybrid automata
Energy automata

DRL CRL
HRC components

HRC contract language
Safety specifications

SIL
Simulation
languages

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Model-Driven Software Development in Technical Spaces (MOST)

14.8.1. Technical Space Bridges and the Metamodel
Layer Cake

 ©
 P

ro
f.

U
. A

ß
m

an
n

46 Model-Driven Software Development in Technical Spaces (MOST)

Why is it Important to Know about the M2-Layers?

► ERD – MOF – XSD – UML-CD
► Xquery – XSLT – SQL – SPARQL
► OCL – SpiderDiagrams – OntologyLanguages
► Java – C++ – C#
► Petrinets – DFD – WorkflowNets – BPMN

The multimodels managed by software factories
combine different languages from

several layers of M2 (M2-Mix)

Domain-specific languages always consist of an M2-Mix

Methods also

 ©
 P

ro
f.

U
. A

ß
m

an
n

47 Model-Driven Software Development in Technical Spaces (MOST)

Why is it Important to Know about the M2-Structure?

► Language families can be arranged in M2 layers
■ Many languages on upper layers can be composed with languages on lower layers

► If everything is in one Technical Space, composition of tools relies on the composition
of languages

■ For that we need Model Composition Systems (forthcoming, course CBSE)→
. Example: UML-Package Merge-Operator

How can we compose metamodels for tool composition?

Language composition: Compose new language constructs
from layers further down

 ©
 P

ro
f.

U
. A

ß
m

an
n

48 Model-Driven Software Development in Technical Spaces (MOST)

How Can We Compose Tools for Base Techniques for
MDSD Tool Chains and Software IDE?

► If we have to treat several Technical Spaces, Bridges between TS have to be built

Language composition in one Technical Space

Mapping between different Technical Spaces

 ©
 P

ro
f.

U
. A

ß
m

an
n

49 Model-Driven Software Development in Technical Spaces (MOST)

The End – Exam Questions

► Where would you position a query tool on M1 – in the tools layer or in the materials
layer? Does the tool’s metamodel in its query language belong then to the tools
metamodel layer of M2 or to the materials metamodel layer?

► Why can we compose different DQL with a given DDL?

► How is it possible to apply a graph query language on XML trees?

► Why is UML such a complex language?

► A MDSD tool chain such as the HRC IDE for embedded systems works with many
languages in different technical spaces. Explain some ingredients of such a complex
IDE.

