Implementation Pattern Il (MOP-AG-Interpreters):
Abstract Interpreters can be Specified by AG

21 Model-Driven Software Development in Technical Spaces (MOST)

» The interpretation functions (transfer functions) of an abstract interpretation may be arranged in the

metaclasses of an attributed grammar M2

= Then, the syntax trees (hierarchic) are described by a grammar

» Then, we call the abstract interpreter a abstract-interpretation attribute grammar

= storing the results in attributes of the tree.

Abstract interpreter functions
in an attributed grammar as MOP

Program

Proc

*

input:AbstractValue
program:list(Proc)
result:AbstractValue

/

input:AbstractValue
Stmts:list(Stmt)
result:AbstractValue

program

run(result <- p:list(Proc)):AbstractValue

result <- interpr(Proc):AbstractValue

* stmts

Petrinet

Stmt

input:AbstractValue
places:Place
transitions: Transition
result:AbstractValue

input:AbstractValue
Left_expr:Expr
Right_expr:Expr
result:AbstractValue

@ © Prof. U. ABmann

result <- interpr(Stmt):AbstractValue

result <- interpr(Stmt):AbstractValue

Q10: The House of a Technical Space

22 Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

Technical Space

(. .
Tool Engineering
Composition, Extension
Mega- and Macromodels
Technical Tracing, Regeneration, Synchronization
Meta-
Space .
modeling

Bridges Model Manage iy,
) Abstract omposition, Mappin 2 Abstract Strac-t
Interpreter P » Viapping, MOP Interpetatio
- — AAG based G
Interprete blysis interpreter
S nalysis, Interpretation

Metapyramid (Metahierarchy)

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultit Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Model-Driven Software Development in Technical Spaces (MOST)

22.3. The Laws of Abstract Interpretation for Deep
Analysis of Programs

zzzzzzzzzzzz

uuuuuuuuu

Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. ABmann

The Iron Law of Abstract Interpretation: Faithfullness

24 Model-Driven Software Development in Technical Spaces (MOST)

The abstract interpretation must be correct (conservative), i.e., faithfully
abstracting the run-time behavior of the program (,reality proof):
f c conc - f@ - abs

» The shadow must be faithful; the corridor of possible values must contain the real value
» abs (abstraction function), conc (concretization function), and f2 (abstract interpretation function) must
form a commuting diagram
= The abstract interpretation should deliver all correct values, but may be more
= They must be "interchangeable", formally: a Gaulois connection

» The interpretation must be a subset of the abstract interpretation:

f c conco f&o abs

= The concrete semantics must be a subset
of the concretization of the abstract semantics f a f a
(conservative approximation) 1 2

" conc-f@oabso f
= The abstract semantic value must be a @ @ l conc
superset of the concrete semantic value abs @ @

after application of the transfer function

»®
= The concrete value of f must be a subset f U f
of the abstracted value after 1 2
application of the transfer function

@ © Prof. U. ABmann

Ex. Concrete and Abstract Values (Equivalence Classes) over
Integers

25 Model-Driven Software Development in Technical Spaces (MOST)

» Aprogram variable v has a value from a concrete domain C (here Integers)
» Atapointinthe program, v can be typed by a subset of C (an equivalence class)
» This concrete domain C is mapped to symbolic abstract domain A

= Here: subsets of C=int to symbolic A="abstract symbolic sets over ints”

= Top means any-concrete-value, bottom means none) Symbolic
wint Equivalence

= Cpo suprenum operation meet: unioning all subsets ~__.---~"
: Classes

Intervals

' "I

Law of Join of Control Flow in an Abstract Interpreter

26 Model-Driven Software Development in Technical Spaces (MOST)

When the abstract interpreter does not know what the type of a variable will be

from 2 or n incoming control-flow paths at a join,
it takes the suprenum (,union®) of the equivalence classes of the abstract

domain

» In ajoin point of the control flow (at the end of an If, Switch, While, Loop, Call), an
abstract interpreter will not know from which incoming path it should select the value
= |f: two paths
= Switch: finitely many paths
= While, Loop: infinitely many paths
= Call: from a return of the called procedure

» Inorder to proceed, the interpreter chooses the suprenum of the equivalence-class
values of all paths (the meet of all values of all incoming paths), i.e. it will choose the
union or the most simple abstraction of all equivalence-class values. non-negative

» Ex.:in a Switch the values of the branches are ZERO, bool, positive.

= The interpreter will choose “non-negative”, to cover all.]
00

positive
ZERO

@ © Prof. U. ABmann

Ubiquituous Abstract Interpretation for Deep Analysis of
Programs and Models

27

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

>

Any program in any programming or specification language can be interpreted
abstractly, if

= Asyntaxtree (link tree, or a graph model) is given

= Anabstract semantics is given, mapping the tree nodes to interpretation
functions over abstract values

The abstract interpreter is an implementation of the metaclasses of the M2 metamodel
Examples:
= |mperative Programs: A.l. of embedded C, C++, Java, C#, Scala programs
= Rule-based Programs: A.l. of Prolog rule sets, A.l. of ECA-rule bases
= Models: A.l. of state machines, A.l. of Petri Nets
Functional analysis
= Value analysis (“data-flow analysis”) for numeric values and pointers
Range check analysis, null check analysis
Heap analysis, alias analysis
Quality analyses:
= Worst case execution time analysis (WCETA)
= Worst case energy analysis (WCENA)
= Security analysis

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultit Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Model-Driven Software Development in Technical Spaces (MOST)

22.4 Iteration Strategy of Abstract Interpreters (Intra-
and Interprocedural Visit Order)

'
)

zzzzzzzzzzzz

uuuuuuuuu

Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. ABmann

Example: Interpretation of a Procedure with a Worklist
Algorithm

29 Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

» |teration can be done forward over a worklist of statements that contains “nodes of the
syntax tree not finished”

» The abstract interpretation functions fa(p) are applied as long as there are changes in
the attributes

» For a AG this means: application of attribution functions is free-choice

worklist := nodes of syntax tree;
WHILE (worklist != NULL) DO
SELECT n:node FROM worklist;
// forward propagation from predecessors to n
FORALL p in n.ControlFlowGraph.predecessors
X := meet(f3(p.abstract_value()));
// test fixpoint condition
IF (X !'= n.abstract_value()) THEN
// reattribution
n.abstract_value() = X;
worklist += n.ControlFlowGraph.successors;

Building Abstract Interpreters on M2

30 Model-Driven Software Development in Technical Spaces (MOST)

» Inthe TAM style, the interpreter works basically with Design Pattern “Interpreter”’,
as from the Gamma book
» What has to be modeled:
= A model of the program (program representation), with Class, Proc, Stmt, Expr,
etc
Most often, this is a syntax tree (with links)
= A model of the analysis information

ControlFlowGraph: has inserted Join nodes representing control
flow joins in If#s and While's

- AbstractValue domains: e.g., abstract integers, abstract intervals
and ranges, abstract heap configurations

Environments binding variables to abstract values

@ © Prof. U. ABmann

A Simple Intraprocedural Program (Code) Model (Schema) in

MOF

Model-Driven Software Development in Technical Spaces (MOST)

Proc

bIocksl

Block

stmts l

Stmt

Analysis information (yellow)

Program representation (green)

statements

predecesso

, CCCESSOrS
I ControlFlowGraph

Assign

Join

Left

Expr

Binary Leaf
/3 p / v\
String
Plus IntConst Const

Q14: A Simple Intraprocedural Program (Code) Model
(Schema) in MOF

32 Model-Driven Software Development in Technical Spaces (MOST)

statements

Analysis inforn

ation (blue)

L

Block A
stmts l
Stmt
If Join

Register

AssReg

UseReg

Program representation (green)
blocksl @ @

ExprEqClass

Plus

IntConst

String
Const

A Simple Program (Code) Model (Schema) in EMOF

33 Model-Driven Software Development in Technical Spaces (MOST)

Program representation (green) With decorators to model
expression tree
Proc and statement control-flow
graph

bIocksl
statements

Block \/
tmts
\\ Stmt

Abstraction expr

| —

kids *

Expr

Stmt
SUcCccessors
Binary Leaf
/gp /qv\
. . String
Assign If Join Plus IntConst Const

An TAM-Design of an Interpreter Family of a Programming

Language

34 Model-Driven Software Development in Technical Spaces (MOST)

» Concrete and abstract interpreters are “twins”, i.e., have the same interface but
working on concrete vs abstract values

Interpreter

input:Value
program:list(Procedure)
result:Value

Concretelnterpreter

input:ConcreteValue
program:list(Proc)
result:ConcreteValue

interpr(Stmt):Value
interpr(Proc):Value
interpr(Expr):Value
interpr(Plus):Value
interpr(Minus):Value
interpr(If):Value
interpr(Join):Value
run(p:list(Proc)):Value

Abstractinterpreter

interpr(Stmt):ConcreteValue
interpr(Proc):ConcreteValue
interpr(Expr):ConcreteValue
interpr(Plus):ConcreteValue
interpr(Minus):ConcreteValue
interpr(If):ConcreteValue
interpr(Join):ConcreteValue
run(p:list(Proc)):ConcreteValue

T

input:AbstractValue
program:list(Proc)
result:AbstractValue

interpr(Stmt):AbstractValue
interpr(Proc):AbstractValue
interpr(Expr):AbstractValue
interpr(Plus):AbstractValue
interpr(Minus):AbstractValue
interpr(If):AbstractValue
interpr(Join):AbstractValue
run(p:list(Proc)):AbstractValue

Example: TAM-Interpretation of a Procedure with a Worklist
Algorithm

36 Model-Driven Software Development in Technical Spaces (MOST)

» Simplified assumption: one value per statement is computed by the abstract
interpreter.

» The value at the return statement of the interpreted procedure is the final result of the
abstract interpretation

CLASS AbstractInterpreter EXTENDS Interpreter {

FUNCTION interpr(p:Proc):Abstractvalue {
worklist:list(Statement) := p.statements;
WHILE (worklist != NULL) {
SELECT current:Statement FROM worklist;
// forward propagation from current.predecessors to current
FORALL pred in current.ControlFlowGraph.predecessors {
NewValue := meet(pred.abstract_value());
}
// test whether fixpoint is reached
IF (NewvValue != current.abstract_value()) {
current.abstract_value() := NewValue;
worklist += current.ControlFlowGraph.successors;

}

}
RETURN p.statements.last.abstract_value;

¥
}

@ © Prof. U. ABmann

22.2.2 Free-Choice Visit Theorem (Intraprocedural Coincidence
Theorem) for Abstract Interpreters

37

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

[Kam/Ullman] Intraprocedural Coincidence Theorem:

The maximum fixpoint of an iterative evaluation of the system of abstract-
interpretation functions f at a node n

Is equal
to the value of the meet-over-all-

aths to the node n (MOP(n)).

» Foralln:Node: MFP(n,f) = MOP(n,f)

» Thetheorem means, that no matter how the abstract-interpretation functions are

iterated over a procedure (free-choice visit), if they stop at a fixpoint, they stop at the
meet-over-all-paths
= Any iteration algorithm can be used to reach the abstract values at each node
(i.e., the maximal fixpoint of the function system)
= The paths through a procedure need not be formed (there may be infinitely
many), instead, free iteration can be used until the fixpoint is found (until
termination of the iteration)

» The application of an attribution function is similar to a free rewriting step

Example: Backward TAM-Interpretation with Worklist
Algorithm

38 Model-Driven Software Development in Technical Spaces (MOST)

» Iteration can be done with many strategies
» E.g.,iterating backward over a worklist that contains “nodes not finished”

» Other alternatives: innermost-outermost, lazy, etc.

CLASS AbstractInterpreter EXTENDS Interpreter {

FUNCTION interpr(p:Procedure):Abstractvalue {
worklist:list(Statement) := p.statements;
WHILE (worklist != NULL) {
SELECT current:Statement FROM worklist;
// backward propagation from current.successors to current
FORALL succ in current.ControlFlowGraph.successors {
NewValue := meet(succ.abstract_value());
¥
// test whether fixpoint is reached
IF (NewvValue != current.abstract_value()) {
current.abstract_value() := NewValue;
worklist += current.ControlFlowGraph.predecessors;

b
3

RETURN p.statements.last.abstract_value();
}

@ © Prof. U. ABmann

Interprocedural Control Flow Graphs and Valid Paths

39 Model-Driven Software Development in Technical Spaces (MOST)

» Transfer Functions f# can be defined on Nodes f#(n), or even on Edges f#(e)

» Interprocedural edges are call edges from caller to callee

» Local edges are within a procedure from "call" to "return”

» Problem: not all interprocedural paths will be taken at the run time of the program
Call and return are symmetric
From whereever | enter a procedure, to there | leave

» Aninterprocedurally valid path respects the symmetry of call/return

» Important in program graphs sequence diagrams, communication diagrams, Petri-net
procedures :

""""

.......................

@ © Prof. U. ABmann

Interprocedural Problems

40 Model-Driven Software Development in Technical Spaces (MOST)

» Non-valid interprocedural paths invalidate the coincidence for the interprocedural
case
» Knoop found a restricted one [CC92]:
No global parameters of functions

Restricted return behavior

@ © Prof. U. ABmann

The End

42

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

» Explain the differences of an interpreter and an abstract interpreter!

» Why areinterpreters and abstract interpreters specified on an abstract syntax tree
specified by an RTG?

» Can models be interpreted?
» What are the differences of an abstract interpreter and an attributed grammar?

» Why is areference attributed grammar (RAG) more expressive than a pure AG?
» What happens at a control-flow join during an abstract interpretation?
» Explain abstract domains and the iron law of abstract interpretation.

