TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Prof. ABmann - Model-Driven Softwrae Development in Technical Spaces

32. Macromodels in One Technical Space

) Model-Driven Architecture (MDA)

2) MDA Toolkits

Prof. Dr. U. ARmann 3) Traceability in Model Transformations
)

Technische Universitat Dresden 4 Direc.t Model Mappings between
Institut fir Software- und Requirements and Tests
Multimediatechnik 5) RoSIMDA - a Very Simple MDA with
http://st.inf.tu-dresden.de/teaching/ Trace Mappings as Role-Play

most Relations

Version 21-0.2,22.01.22

http://st.inf.tu-dresden.de/
http://st.inf.tu-dresden.de/

Literature

2

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

>

[CHO6] Krzysztof Czarnecki, Simon Helsen. Feature-based survey of model transformation approaches. IBM
Systems Journal 2006. DOI:10.1147/sj.453.0621

[Hedin09] Gorel Hedin. Tutorial: Generating Language Tools with JastAdd
= http://fileadmin.cs.lth.se/sde/people/gorel/misc/gttse-draft-oct-2009-tutorial.pdf

[MID] MID Innovator Tutorial
https://www.mid.de/fileadmin/mid/PDF/Kundenbereich/11_R3/de/Innovator_11.3_Leitfaden.pdf

Birgit Grammel. Automatic Generation of Trace Links in Model-driven Software Development. PhD thesis,
Technische Universitat Dresden, Fakultat Informatik, February 2014.

= http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-155839

Frédéric Jouault and Ivan Kurtev. On the Architectural Alignment of ATL and QVT. In: Proceedings of the 2006
ACM Symposium on Applied Computing (SAC 06). ACM Press, Dijon, France, chapter Model transformation (MT

2006), pages 1188—1195.
= http://atlanmod.emn.fr/bibliography/SAC06a

Tutorial Gber ATL “Families2Persones”
= http://www.eclipse.org/m2m/atl/doc/ATLUseCase_Families2Persons.ppt

ATL Zoo von Beispielen: http://www.eclipse.org/m2m/atl/atITransformations
Kevin Lano. Catalogue of Model Transformations: http://www.dcs.kcl.ac.uk/staff/kcl/tcat.pdf

Implementation in ATL

= http://www.eclipse.org/m2m/atl/atITransformations/EquivalenceAttributesAssociations/
EquivalenceAttributesAssociations.pdf

http://fileadmin.cs.lth.se/sde/people/gorel/misc/gttse-draft-oct-2009-tutorial.pdf
https://www.mid.de/fileadmin/mid/PDF/Kundenbereich/11_R3/de/Innovator_11.3_Leitfaden.pdf
http://fileadmin.cs.lth.se/sde/people/gorel/misc/gttse-draft-oct-2009-tutorial.pdf
https://www.mid.de/fileadmin/mid/PDF/Kundenbereich/11_R3/de/Innovator_11.3_Leitfaden.pdf

Literature on MDA

3

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

> https://www.omg.org/mda/products_success.htm
= https://www.omg.org/mda/mda_files/SuccesStory_DC_TSS_MDQO_English.pdf

= https://www.omg.org/mda/mda_files/SuccessStory DBB_4pages.pdf
» Alan Brown. Anintroduction to Model Driven Architecture. Part I: MDA and today's systems
» http://www.ibm.com/developerworks/rational/library/3100.html
» Petrasch, R., Meimberg, O.: Model Driven Architecture - eine praxisorientierte Einfihrung in die MDA. Dpunkt-
Verlag. 2006

= Teaser chapter
https://www.researchgate.net/publication/220693090_Model_Driven_Architecture_-_eine_praxisorie

ntierte_Einfuhrung_in_die_ MDA

https://www.omg.org/mda/products_success.htm
https://www.omg.org/mda/mda_files/SuccesStory_DC_TSS_MDO_English.pdf
https://www.omg.org/mda/mda_files/SuccessStory_DBB_4pages.pdf
https://www.researchgate.net/publication/220693090_Model_Driven_Architecture_-_eine_praxisorientierte_Einfuhrung_in_die_MDA
https://www.researchgate.net/publication/220693090_Model_Driven_Architecture_-_eine_praxisorientierte_Einfuhrung_in_die_MDA
https://www.omg.org/mda/products_success.htm
https://www.omg.org/mda/mda_files/SuccesStory_DC_TSS_MDO_English.pdf
https://www.omg.org/mda/mda_files/SuccessStory_DBB_4pages.pdf
https://www.researchgate.net/publication/220693090_Model_Driven_Architecture_-_eine_praxisorientierte_Einfuhrung_in_die_MDA
https://www.researchgate.net/publication/220693090_Model_Driven_Architecture_-_eine_praxisorientierte_Einfuhrung_in_die_MDA

Q10: The House of a Technical Space

4

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

Technical Space

-
Tool Architectures
Techni Mega- and Macromodels
Meta-
Space modelin
Bridges Model Management odeling
Mapping, Transformation, and Composition
Model Analysis
Querying, Metrics, and Analysis

Metapyramid (Metahierarchy) for Token Modeling

Software Factories

5

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

A software factory schema essentially defines a recipe for building
members of a software product family.

Jack Greenfield

https://www.researchgate.net/publication/213883069_Software Factories_ Assembling_Applications_with_Patterns_Frameworks_Models_and_Tools

In this course:

A software factory combines the languages and tools of several
technical spaces to create software and cyber-physical systems

product families.

https://www.researchgate.net/publication/213883069_Software_Factories_Assembling_Applications_with_Patterns_Frameworks_Models_and_Tools
https://www.researchgate.net/publication/213883069_Software_Factories_Assembling_Applications_with_Patterns_Frameworks_Models_and_Tools

Q12: A Software Factory's Heart: the Mg

Wlegamodel

6

Model-Driven Software Development in Technical Spaces (MOST)

© Prof. U. ABmann

&

Technical Space

Mega- and Macromodels

Model Management
\apping, Transf., Compositiga

Technical
Space
Bridges

Pattern
Languages

Multi-TS
Megamodel

Software Factory

Technical Space

Method Engineering

|

Technical Mega- and Macromodels

Space
Bridges

Pattern
Languages

Model Management
Napping, Transf., Compositiga

(Metapyramid (Metahierarchy) for Token Modeling ’

900000V S S 7 7 Hoeoveee

Model Analysis

Querying, Interpretation

Metapyramid (Metahierarchy) for Token Modeling

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Prof. ABmann - Model-Driven Softwrae Development in Technical Spaces

32.1 Model-Driven Architecture (MDA)
(Modellgetriebene Architektur)

MDA is a trademark of OMG

MDA is an industrial megamodel in the spirit of ReDeCT.
Its instances in software product are multimodels, connecting several model abstraction levels.

Software Factories with Only 1 Technical Space

8 Model-Driven Software Development in Technical Spaces (MOST)

In this chapter:
1-TS Megamodels
MDA, RoSI-MA

Software Factory

e ||

Technical Space

/ Tool Engineering
Technical Mega- and Macromodels
Meta-
Space modelin
Bridges Model Management 4
Mapping, Transf., Composition
Model Analysis @eceoeeer gl soececee

Querying, Interpretation

(Metapyramid (Metahierarchy) for Token Modeling ’

(ﬂs © Prof. U. ABmann

Q12: The ReDoDeCT Problem and its Macromodel

9 Model-Driven Software Development in Technical Spaces (MOST)

» The ReDoDeCT problem is the problem how requirements, documentation, design,
code, and tests are related (— V model)

» Mappings between the Requirements model, Documentation files, Design model, Code,
Test cases
> A ReDoDeCT macromodel has maintained mappings between all 5 models

Requirements Design Code Test

Package Bill {Hkage TestBill {
Uses Order; ses TestOrder;

Class Counting { Proc testCounting

Procedure count IS IS
End;
P }
X ”e Test er{
rder { Uses Bill;
Uses Biir, s TestOrd| ring{
)4 Class Ordering rocedure
X Procedure count IS testCount IS
End;

}
}

“ Documentation

@ © Prof. U. ABmann

Overview Table for Link-Tree Macromodels

10 Model-Driven Software Development in Technical Spaces (MOST)

Cm, © Prof. U. ABmann

The Link-Treeware TS is well apt for macromodel construction in a software factory

» Atree node abstracts a subtree (representant)
= Attributes and attributions are composable partial mappings from treenodes

» RAGs are useful for all kinds of structure- and function-modeling in Link-Tree
Macromodels, because they abbreviate dependencies in several models with cross-

model relations.
= Inamacromodel under an artificial root (rooted macromodel), attributions can
work on the SUM to ensure the constraints

» Relational RAGs (RelRAGS) are useful, because they have bidirectional constraints

(Plain) MDA General SUM Skeleton SUM (partial function extension)

RAGs in Repositories Markings Repository-SUM: get/put as higher-order
attributions of link trees

* Javadoc-SUM

RAGs in Data-flow architectures Needs trace models get/put as model Flow-SUM: Communicating link trees; In-place
transformations (lenses) transformations of SUM

* Google Docs, Stream-Based MDA

Model-Driven Software Development (MDSD) in 1 Technical
Space

11

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

» MDSD in 1-TS falls into several main development methods with a macromodels:

= Engineering with metamodels in ReDeCT-like megamodels (integrated software life-cycle
management tools):
for integrated requirements, documentation, and testing along the life-cycle

Model-Driven Architecture (MDA) (MDA toolkits)

= Engineering with DSL (domain-specific modeling, DSM) (Meta-CASE toolkits)
For simplifying the specification of domain-specific software

> Model mappings correlate models
= capturing reachability informations (path abbreviations)
= defining trace relations between model elements

= From them, model transformations can easily be derived

> Model transformations
= Horizontal model transformations transform a model within a single language
= Vertical model transformations transform a model from a higher-level language to a lower-lewel
language (lowering)
= Broadband model transformations (lowerings) transform a model from a higher-level set into a
lower-level set of a broadband (wide-spectrum) language

» Model compositions compose models with extensions
= Model weavings extend models by other models and weave them together

Model-Driven Architecture (MDA)

12

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

> Model-Driven Architecture (MDA) is a macromodel similar to ReDoDECT, but distinguishes more

models:
= Platform-independent model (architectural)

= Platform-specific model (in modeling language equivalent to coding language)
= Platform-specific implmentation (in coding language)

» On the other hand, documentation is neglected :-(
» MDA uses model mappings, horizontal and vertical model transformations, as well as code generation

What are Model Mappings?

13 Model-Driven Software Development in Technical Spaces (MOST)

<
=

D n U. ABmann

€

MO

Model mappings are link graphs between model elements of different models

Mappings are automatic or semi-automatic:
= A model mapping can be generated from a model difference analysis
= Some are step-wise refinement of the model by transformation (in MDA)

A model mapping is horizontal, if on the same abstraction level (CIM, PIM, PSM, PSI)
= |tis vertical, if abstraction level is crossed (e.g., PIM-2-PSM)
A model transformation is a specific model mapping creating a “create trace mapping” with create links

A morphic model transformation transforms 1 element of a PIM into 1 or n elements on PSM

: Application :Platform :Mapping
:Metamodel ! Metamodel :Technique
-------- e---------- . - '------?----------
<<uses>>
<<instanceOf*>
o source @) Vode!
< farget <@ Mapping
C [|
e Reachability :
Model Diffing Mapping Trace Mapping
Model
Weaving

iTransformationi
: Technique

Model

Horizontal Model
Transformation

Transformation

Broadband Mode
Transformation

Vertical Model
Transformation

{> Model
Composition

Morphic Model
Transformation

The MDA Megamodel, a Specific Variant of ReDoDeCT,
Embedded in the MOF Metapyramid

14 Model-Driven Software Development in Technical Spaces (MOST)

M 3 MOF
TEST-MM ..
A DM-MM CIM-MM ! \
M 2 A A P||V|-|V||V| ‘\\
: ! A o
' PSM-MM
y

Sea
~
-
~
-
-~
-
-~
~a
~
-~
~
~
-
~
-
~
-
~a
~ o
~a .
~
-
-~
~a
~
-~
~
~
-
~
~ o
-
b e

s+ _..~"<<instance-of>>

M O Runtime system instances

© Pv-AF 11 Aow\ﬁv\n

&

Q9: Model Mappings and Model Weavings in the

MDA Megamodel

Domain model (DM) for

1 application domain ent in Technical Spaces (MOST)
| >
'l

T

N
. Platform-Independent
@del EXtenS'D Design Extension (PIE)
\§

Platform-Independent Model (PIM)p—
Design specification ~

\

Model Composition,

Model mappings connect models horizontally (on the same level) or
vertically (crossing levels).

Model transformations transform models horizontally or vertically.
From a model mapping, a simple transformation can be infered

Model compositions and model weavings compose/weave two input
models to an output model, based on a crosscut specification

Model extensions (model merges, model additions) extend an input
model by an extension (often done by hand)

= Usually, some parts are still hand-written code

Model2Text expansion (code generation by template expansion)

Platform-Specific | ____ p| Platform Description

Weaving, Transformation

V
Platform Specific Model (PSM) <—

\

Extension (PSE) Model (PDM)

'l
Code addition
Template expansion
1

@ © Prof. U. ABmann

PIM and PSM and Model Mapping in MID INNOVATOR

16 Model-Driven Software Development in Technical Spaces (MOST)

> |nnovator can specify transformations between its models [MID]

% UML-Modell "TTBib_UML.ino_prak2’ - INNOVATOR

Elerment Bearbeiten &nsicht Modell Engineering ‘Wechseln Extras Hilfe

o & fhefBae Dl «] Hid OS

- [’i TTBib UML - Satus Marme Typ | Anderungsdstum
@ Ef@ sy;teml'-.ﬂndel 1 0 A |E| Ausleihe Sec... 22112003 004802
@ external object $INOTMP/docs 2 0 A Kunde_anmelden Kall... 1011 20035 01:21:54
[Use Case System 30 004 |E| Riickgabe Sec... 2211 2003 00:21:47
%ﬂ E;} analysiz system 4 0 A |E| Tartréger _Einkauf Sec.. 1011.200301:23:549
EJ Java design system 20 A @ Hunden_neu_anlegen Sec.. 1011.200301:26:149
@ Java implementation system $INOTMP/src E 0O A @ AnalyzisClassDiagram Klas.. 0911 2003 15:29:14
E3'$ systemModsl management T 0 A Q Yerwaltung_AS Klas... 0911 2003 152556
] 8 0 A () Tortréger_AS Wla:.. 09112003 15 20:08
90 A Q Hunde_A% Klas.. 09112003 1527352
oA Q s Kunde_AS Obj.. 0911 2003 13:20:05
@ oA Q : Tortrager_AS Obj.. 0911 2003 1532016
] A HD) werwatungUl_as Klg:... 0911.2003 151632
] A HD) : Werwalungll_as Ohj... 0911.2003 132308
@ oA i : Kunde_UC Obj.. 0911 2003 14:05:54
oA i . Biblicthek_1C Obj.. 0911 2003 15:44:35
] A Q CWerwaltung_AS Obj... 0911.200316:14:14

@ © Prof. U. ABmann

Example: PIM and PSM Extend the CIM in the Janus Toolkit

17 Model-Driven Software Development in Technical Spaces (MOST)

Domain model (DM)and > Inthe MDA, there are
requirements model (CIM, model mappings between
Computation independent model) l the models DM - CIM -
Platform-independent Model --=""" (ﬂ-’ PIM - PSM - PS|

(PIM) ' S

Application architecture

Platform-specific Model (PSM)
Specific applicaiton parts "**-...._
Communicaton e

Weboberfliche

Platform-specific
Implementation (PSI)
Handwriten additions
in programming language

Client/
| senver-
iyt

Gul

Coderahmen

Schnitt Daten-
stellen haltung

© Prof. U. ABmann

elle: Warum JANUS MDA und MDA JANUS ist; Whitepaper der Firma otris Software AG Dortmund; URL: www.otris.de
hitp://pi.informatik.uni-siegen.de/stt/15_3/15_3_weg_01.gif

http://www.otris.de/
http://www.otris.de/

Model Management in Megamodels

18 Model-Driven Software Development in Technical Spaces (MOST)

> |Inthe MDA megamodel,because MDA enriches models from top to bottom, the mappings
between models must be maintained with a model algebra:

= Model difference analysis (Diff, comm of models)
= Version management
= Konfiguration management
= Model composition
* Lookup and query of model elements
= Union, compose, weave, unweave of models

@ © Prof. U. ABmann

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Prof. ABmann - Model-Driven Softwrae Development in Technical Spaces

32.1.2 Different Forms of MDA

Different forms of MDA

20

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

A transformative MDA uses refinement transformations for variation

= introduces trace links (32.3)
An MDA is called component-based (CoMDA) if the variation action is the exchange of
an implementation behind an interface, or if the component model is used for exchange

= RoSIMDA MDA (32.5)
A transformative CoMDA uses point-wise refinement transformations on a model-based
component model

= forinstance, refinements in Petrinets

= combining trace links and component-based MDA (32.3 and 32.5)

A MDA-SUM uses transformative or component-based MDA for realizing views on a
single underlying model (SUM) (next chapter)

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Prof. ABmann - Model-Driven Softwrae Development in Technical Spaces

32.1.3 Morphic Model Mappings and
Transformations

Morphic Mappings and Pointwise Transformations on Marked

PIMs

22

Model-Driven Software Development in Technical Spaces (MOST)

» Morphic mappings (1:1 or 1:n) are
defined by marked PIMs:
= Stereotypes introduce a mapping from 1

element of the PIM to n elements in
the PSM

= Supported by many MDA tools, such as
AndroMDA

> The stereotype creates a mapping
between a PIM class and a set of PSM
classes
= The stereotype tells the MDA system
how to transform the PIM class to the

PSM (stereotype triggers template
extension)

= The stereotypes partition the PSM: The
border of a partition is demarcated by
the PIM stereotype tag

» Example: automatic creation of
interfaces for implementation classes

© Prof. U. ABmann

@ » Easy traceability by morphic mapping

—_— e e e e m == =

-

<<with_interface>>
Loan

~N

-int sum
+withdraw()

J

with_interface:
Template
Class)

LoanIimpl

-int sum
+withdraw()

Loaninterf

~ +withdraw()

Example of a Marked PIM and the Induced Pointwise Model
Transformations

23 Model-Driven Software Development in Technical Spaces (MOST)

> Tags (stereotypes) may denote different class implementations in a PSM or PSI

» Here: mapping of a class and activity diagram to different languages, using different
code generation templates, triggered by stereotype marking

. [<<C#>> mxmd
mz;;ked <<Java>> Loan
Lear amount

<

~N

_ y, . C#:
Java: int -int sum C#-Template
: -INt sum :
Java-Template . | » +withdraw() (Class)
(Class) +withdraw() <«

‘ I ’ <<generate>>

// C# implementation: a partial class
partial class Loan : Account {
private int sum;
public void withdraw (

int amount) {

sum —-= amount;

// Java implementation as a decorator
class Loan extends Account {

// decorator backlink

Account upper;

private int sum;
public void withdraw (
int amount) {
sum —-= amount;

Cartridges are Transformation Libraries for Marked PIMs

24 24 Model-Driven Software Development in Technical Spaces (MOST)

» A Cartridge is a plugin to an MDA tool defining both the model mapping and the model
transformation

= For vertical and horizontal transformations
= Definition of stereotypes for PIM markings in vertical transformations
Manual marking of the PIM
Selective transformation of the marked PIM classes
= Automatic transformation using the mapping and transformations from the
cartridge

No manual specifications of mappings and transformations
necessary

@ BrabUs ABMATD

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Prof. ABmann - Model-Driven Softwrae Development in Technical Spaces

32.1.4 Cartridges (Platform Extensions)
in RAGs and JastAdd

RAG Modules Compose Extensions into CIM or PIM

26 Model-Driven Software Development in Technical Spaces (MOST)

» The basic module can be DM, DM+CIM, DM+CIM+PIM
= Extensions are PSE, PSI

> Due to the declarativeness of attributions, modules can be unified by term (tree
unification)

= Names of the classes serve as unificator

@ © Prof. U. AR~

-
LN
-
~
~

-
-
-
-
--

//J astAc.id Main Tree Spec // JastAdd Additional Tree Spec for
// Domain Model // Requirements Model (cartridge for CIM)
class Loa&e_}gi_:ends Account { aspect CIM {
eq .. T class CIMAcc extends Account {
syn.. T Y e
inh .. eq Loan.funl) =.. i
| [__.syn Savings.fun2) = 7T -l _Intertype declarations
class Saving extends Account { inh
eq .. W e
syn .. +
inh ..

Ex.: JastAdd Aspects are Cartridges

27 Model-Driven Software Development in Technical Spaces (MOST)

» A lJastAdd Aspect, like a cartridge, extends a set of Main Tree Nodes and their attributions with new
attributions [Hedin09]

= [ntertype declarations distribute a class definition over several files of MDA

= (Declarative) aspect files are composed by class unification // JastAdd Additional Tree Spec
aspect TestM {

// Jaitégil\c/ll ?dditional Tree Spec 5 D e ()
aspec .
q ..
eq Loan.funl() syn .
ed - inh ..
// JastAdd Main Tree Spec Sy;l - |// JastAdd Additional Tree Spec
// Domain Model ! Inh .. Jaspect PIM {
class Loan extends Account { eq Loan.fun2()
€q .. eq ..
syn .. syn ..

B inh .. [// JastAdd Additional Tree Spec
Is aspect PSM {

eq Loan.fun3()

inh ..

®d - [// JastAdd Additional Tree Spec
TEEEEEEE syn . Lopect PSI
M eq Loan.fun4()
b eq ..
syn ..

;(' inh ..
% R
: }
o
©

MDA by Composition of RAG Aspects

28 Model-Driven Software Development in Technical Spaces (MOST)

» RAG modules, e.g., JastAdd aspects, can be used as MDA cartridges
= They compose class extensions “around” class names

= Model weaving is done by class composition
= |ntertype declarations introduce “mixins” into classes of main syntax tree

» Model Refinement (in MDA) is done by modular composition (aspect composition) with
intertype declarations
= Model synchronisation is done by re-composition

= RAG-MDA supports composable macromodels
» Model mappings achieved by common class names
= Tracingis easy (common classes for extensions)

RAG modules, e.g., JastAdd aspects, can be used as MDA cartridges

@ © Prof. U. ABmann

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Prof. ABmann - Model-Driven Softwrae Development in Technical Spaces

32.1.5 Morphic Model Transformations in JastAdd

Morphic Transformations on Marked PIMs

——————————————————————————————————

30 Model-Driven Software Development in Technical Spaces (MOST)
Tags: {<<with_interface>>} E
» Morphic mappings (1:1 or 1:n) can be Name: Loan |
realized by JastAdd Rewrite , /U |
operations or Term rewrite operations i FR. withdraw(;
(Stratego, Xcerpt) A { } { } |
= [IfUsers add astereotypetoanodeof Cooommmooommooooomoooomoooooooooos ’
a PIM with_interface:
TemplateT
= Rewrites can reduce them e
» Therewriteis areplace operation of
the marked node by its
“implementation” = EOEENY 2000 {_} _____________
. Tags:
» Rewrite rule transforms redex of i Name: LoanCompound } i
upper model to snippet in lower model /\ i
> Easy traceability by morphic mapping Nameloanimpl | R
> The PIM tree as well as the PSM tree | PxtendsLoanintert smeToanmeny
are represented by the top node | /\ Q
» The PIM tree snippet and the PSM { -int sum H +withdraw() J { +withdraw()]
tree snippet are homomorphic regions R ’

@ © Prof. U. ABmann

TECHNISCHE
UNIVERSITAT

DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Prof. ABmann - Model-Driven Softwrae Development in Technical Spaces

32.2 MDA Toolkits

Some MDA Tools

32 Model-Driven Software Development in Technical Spaces (MOST)

AndroMDA Eclipse http://www.andromda.org/
XText, Xpand Eclipse http://www.eclipse.org/Xtext/
IBM Rational Suite Eclipse

Software Architect

BITplan smart Generator ~ Eclipse http://www.bitplan.com/
Epsilon Eclipse https://www.eclipse.org/epsilon/

[Petrasch, R., Meimberg, O.: Model Driven Architecture - eine praxisorientierte Einfihrung in die MDA;
dpunkt-verlag 2006]

@ © Prof. U. ABmann

Important Features of MDA Toolkits

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

> Model-to-Model Mapping bzw. Model-to-Model Transformation (e.g., PIM to PSM) with
cartridges
» User definition of model transformation cartridges with query and transformation languages
= e.g.,with QVT, ATL, Graph writing or XML Rewriting
» Forward- und Reverse-Engineering
= Code generation (Model-to-Code Transformation, PSM to PSI)
= Mapping to a programming language (e.g., with JMI)
> Roundtrip-Engineering between models and code
» Single underlying model (SUM): forming views by get and put operations
> Model-driven Testing: generation of test cases ad test data based on models

[Petrasch, R., Meimberg, O.: Model Driven Architecture - eine praxisorientierte Einfiihrung in die MDA;
dpunkt-verlag 2006]

32.2.1 AndroMDA, a Leading MDA Toolkit Focusing on PIM-
PSM Transformations

'www.androlVIDA.org]

34 34 Model-Driven Software Development in Technical Spaces (MOST)

» AndroMDA defines model mappings in » A cartridge contains a mapping from
platform-specific cartridges. UML toe.g., Java, C# or C++ and a model
transformation

& = UML-CD: Spring, Hibernate

> Model parsing (persistency), XML, Enterprise
< AN > Java Beans (EJB)
|
Platform Independent UML Model (PIM) = UML-AD: Struts, Java Server
in internal representation Pages(JSP), Servlets

Partial Platform Specific Impl tati
[artial Platform Specific mpemenaloan

(PSM)
Handwritten code
_

Platform-Specific Implementation
(PSI, Code)

@ © Prof. U. ABmann

32.2.2 MDA Toolkit ArcStyler

35

Model-Driven Software Development in Technical Spaces (MOST)

© Prof. U. ABmann

&

ArcStyler is a toolkit working with several UML-editors such as MagicDraw or Rational Rose

>

>

>

Cartridges for model mappings and transformations
Object Modeler for requirements modeling; based on CRC-Cards

Pattern Refinement Assistant transforms the domain model interactively into a PIM UML-model
(with MagicDraw or Rational Rose)

= With annotation of design decisions
Refinement of the PIM
= Horizontal refinement on PIM level
= Vertical transformation to PSM or PSI (code generation)
Code completion (Codevervollstandigung) and optimization for an application platform
Component generation for user interface
Generation for build tools

Generation for database persistency

http://www.software-kompetenz.de/serviet/is/27460/?print=true
Versteegen, G.: Wege aus der Plattformabhangigkeit - Hoffnungstrager Model Driven Architecture;

Computerwoche 29(2002) Nr. 5 vom 1. Febr. 2002

http://www.software-kompetenz.de/servlet/is/27460/?print=true
http://www.software-kompetenz.de/servlet/is/27460/?print=true

Process Engineering with ArcStyler

Model-Driven Software Development in Technical Spaces (MOST)

36

URML modeling

. components
s associations
(logical structure;
FIME} The Unified Process
% design assistants
% wizards

ArcStyler Core Modules

Open MDAUML/XML Repositon

MDA Cartridges
- = -

Technical Build, -

Deploy & Test

Process automation according to the UP (default).

JIEEEJB, HET

BEA Webl ogic

IBAWAS NT, 2I0S5

refinemeant of

LML comonent
madel for JZEEFLMET
target platforms

Assistand |] with Meta IDE Suppart

Technical Modeling
C EJB/LMET

I'I"IEI'F‘FE- System Dwlinition [fnalysis, Design) N
= archive »
ipackages Byt darenlppnoe »
components) Modeling physical { Werifiaabinn § Test I Dapluyrmenl
deployiment Urits
ot eractive| (= deployable assembly Automation verify and

components; PSMs) — Generate a deployable infra-

EJE archive structure (+ test/ build env.)

Oracle, 10MA

Build, deploy and test

SUpport

. code customization

. build, depley in container
- serverfDB & client startup

® |DE projects/libs
ANT scripts + properties

(deployment
| packages for EJB
containers), .NET-C.

| % MDA angine code generator
% MDA-Cartridges

Of. U. ABmann

https://www.omg.org/mda/mda_files/P2A_Tutorial.pdf

W

http://www.interactive-objects.com/products/arcstyler/supportdocumentation.html

S http://arcstyler.software.informer.com/

http://www.interactive-objects.com/products/arcstyler/supportdocumentation.html
http://arcstyler.software.informer.com/
https://www.omg.org/mda/mda_files/P2A_Tutorial.pdf
http://www.interactive-objects.com/products/arcstyler/supportdocumentation.html
http://arcstyler.software.informer.com/
https://www.omg.org/mda/mda_files/P2A_Tutorial.pdf

Cartridges and Generated Artifacts

37

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

MDA-Cartridges

EJB11 Acc

WAS EJB20

Z s

MDA-Cartridges
- L -

MDA-Engine
with Meta IDE

Sources

Remote, Home, Bean, PK
Java Classifier

JUnit Test Suites
Default Test Client
WebService Wrapper

Descriptors

ejb-jar.xml, <container>.xml
application.xml
Webservice .wsdl, soap .xml

ANT Support

build.xml, build.properties
Database .sql scripts

JBuilder Support

JPX, ejbgrpx
custom .libraries

Out-of-the-Box
MDA-Engine Fanout

Isolated, Container
Specific Test
Environment

Build l_"

Configuration]
Deployment

=
=

Configuration ‘

Automation verify and

» ArcStyler MDA Details

Generate a deployable infra-
structure (+ test/ build env.)

*% MDA engine code generator
% MDA-Cartridges

Quelle: Butze, D.: Entwicklung eines Praktikums fur die werkzeuggestitzte Softwareentwicklung nach der

Model-Driven-Architecture; GroBer Beleg an der Fakultat Informatik der TU Dresden 2004

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Prof. ABmann - Model-Driven Softwrae Development in Technical Spaces

32.3 Traceability between Models

e Model transformations generate trace mappings

[omitted in 2021/22 J

Advantages of Model Mappings

39 Model-Driven Software Development in Technical Spaces (MOST)

> Error tracing
= When an error occurs during testing or runtime, we want to trace back the error
to a design element or requirements element

> Traceability
= We want to know which requirement (feature) influences which design, code, and
test elements, so that we can demarcate modules in the solution space (product

line development)

» Synchronization in Development:
= Two models are called synchronized, if the change of one of them leads
automatically to a hot-update of the other

» Cohesion of Distributed Information:

= Two related model elements may contain distributed information about a thing.
The relation allows for reconstructing the full information

= Example:
Storing two roles of an object in two different models (See “Amoeba

Object Pattern”)

Splitting the representation of the requirements on an object and
its design in requirements vs design model

@ © Prof. U. ABmann

Different Forms of Model Mappings

40

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

>

Directly specified mappings specify a deterministic mapping function between a
source and target model.

= Direct mappings are specified in GUI or text files
= Direct mappings may be complete or incomplete
Recursive mappings are defined in a functional language
= Denotational semantics is a complete direct mapping of two languages

= The coverage of the source model must be ensured (completeness of
specification)

General mappings may be intensionally specified. Source and target models are
mapped

= With graph reachability expressions (QVT-R, TgreQL, EARS)

= With query expressions (Semmle.QL)

= With expressions in a logic (F-Datalog)
Inter-model mappings are defined between model elements of different models

Lifted inter-model mappings are lifted from intra-model element mappings

Why Traceability in a Macromodel?

41 Model-Driven Software Development in Technical Spaces (MOST) [G ram me”

System Comprehension:
= Trace mappings improve orientation in multimodels by navigating via trace links
along model transformation chains
> Change Impact Analysis:
= toanalyze the impact of a model change on other models

= toanalyze the impact of a model change on existing generated or transformed
output
= Toenable to do model synchronization (hot updating dependent parts)

» Orphan Analysis: finding orphaned elements in models

Validation and Verification:

» System Validation: Connecting the requirements with the customer's goals and
problems (see ZOPP method)

> (Test) Coverage analysis: to determine whether all requirements were covered by
test cases in the development life cycle

> Debugging: To locate bugs when tracing code back to requirements
= Tolocate bugs during the development of transformation programs

@ © Prof. U. ABmann

Traceability Metamodel: CRUD Types of Trace Links between
Model Elements of Different Models

42 Model-Driven Software Development in Technical Spaces (MOST) [G am me”

Source-Target Relations

T~

New Target Model Existing Target Model

Ex. Morphic
PIM-PSM transformation
generating new PSM

Update Transformation In-Place Transformation
Source --update— Target Model--self-update

Ex. Morphic

PSM-PSI template
Xpansion replacing

gaperated hedged code

Ex. Roundtrip on
PSl generated from template
Expansion, replacing

Destructive Extension-Only

Destructive Extension-Only

Create \ Update Create\ Update

Delete
Link

Delete
Link

@ © Prof. U. ABmann

Extensible Traceability Metamodel acc. to Grammel

43

Model-Driven Software Development in Technical Spaces (MOST)

>

New facets for new trace link types can be created

Tracemodel

Granularity

N

Model
(to be traced)

Configuration

A/

*

sourceT 1.* 1..*Ttarget

|

K

Scope

Links
1“*

TraceLink

TraceLinkFacet

N7

/\/\I\

MonotonicLink

—

T

DirectLink

CreateLink

ChangesLink

T~

RetrievelLink

@ © Prof. U.

1

UpdateLink

DeleteLink

ContainmentLink

Traceability in Macromodels

44 Model-Driven Software Development in Technical Spaces (MOST)

» Piecemeal growth of macromodels in the software process:
= Start with requirements, then add more stuff and models

> Add links

= Symmetric “Direct” (auto-drawn) links are drawn between model element MA
from model A and model element MB whenever MB is related to MA

Specified by hand or found by a model difference, model analysis or
a model query

= Create links are drawn between model element MA from model A and model
element MB whenever MB is generated or added because of MA

= Retrieve links are drawn when MB is extracted (queried) from a model A and
added to another model B

= Containment links are drawn, when in a new model B the model element MA is
contained in another model element MB'

= Delete links are drawn if In model B the model element MB should be deleted
= Update links are drawn if MA has changed and MB should be changed too

@ © Prof. U. ABmann

Examples for TracelLinkFacet

45

Model-Driven Software Development in Technical Spaces (MOST)

Grammel

» Facets factorize inheritance hierarchies; new facets extend inheritance hierarchies

TextFacet

JavaCodeFacet

JavaMethod
Values

TextFileValues

TextBlockValues

Location StartPos
Name EndPos
UnknownTextFacet

@ © Prof. U. ABmann

JavaPackage JavaClassValues JavaAttribute
Values Values
Name Name NEE
Type
UnknownJavaFacet

Name
Parameters
returnType

Different Kinds of Trace Models

46 Model-Driven Software Development in Technical Spaces (MOST)

» So far, trace mappings were realized as associations in a simple model mapping
» The trace metamodel can be extended to describe a trace model, a specific form of

connector model
ModelMapping
/v\
ConnectorModel SAlilE :
ModelMapping
TraceModel TraceMapping NameMapping

@ © Prof. U. ABmann

Adding a Trace Link Generator to Tools

47 Model-Driven Software Development in Technical Spaces (MOST) G ram mel

» TracelLinkGenerators for Trace Models must be written by hand

» They can be connected to transformation engines and cartriges in three ways,
following a generic traceability interface:

Transformation Via Generic Traceability TraceLinkGenerator
Engine Interface Engine

Transformation (j’ raceLinkGenerator Transformation engine
Engine Black-box connector Engine must know and call
the generator

Transformation engine
need not know but

Is extended

Invasively or woven

) ByAOP

raceLinkGenerator

Transformation (|) t j’
nvasive connector Engine

Engine

© Prof. U. ABmann

Traceability in Macromodels with Models from Link-Treeware

48 Model-Driven Software Development in Technical Spaces (MOST)

> |In link-tree models, a skeleton tree exists, in which every model element has a unique
tree node number (hierarchical number)

» Trace links can be added with tree node number and stored externally of the model in
the macromodel

In link-treeware, macromodels Hierarchical numbering of the classes
maintain trace(link) models in an inheritance tree:

linking and tracing all models and

thelr elements by referencing the 1 TraceLink
hierarchical numbers of all nodes —

/\/\7\

1.1. MonotonicLink 1.2 ChangesLink

N ST~

1.1.1 DirectLink 1.1.2 CreateLink 1.'1'3 : 1.2.1 UpdateLink || 1.2.2 DeleteLink
Retrievelink

1

1.1.2.1
ContainmentLink

@ © Prof. U. ABmann

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Prof. ABmann - Model-Driven Softwrae Development in Technical Spaces

32.4 Traceability in Practical Requirements
Management Tools

[omitted in 2021/22 J

Introduction to Requirements Management (RM)

50 Model-Driven Software Development in Technical Spaces (MOST)

» RM bridges the needs of the customer to testing, design, coding, and documentation
» RM continuously manages requirements in the entire software life cycle
» RMrelies on inter-model mappings between requirements, test cases, design, and code

Solution
Space ®)
Problem O T
Needs -/ N\
-2 Trace Model 2" The
Product < : Product
Features ' N _CI)_ /' To Be
o v o\ ““\‘:\ Built
Problem Software < . ’,\ ‘,’::: ~~~~~~~~~ N \ @)
Space Requirements VN e ;I:\
j \‘ \ ‘~x .'~,

1
T \J L\
Test <@----""""" Design \j
Code User
/ Docs
/
/

@ © Prof. U. ABmann

Tools in an Integrated Development Environment (IDE)

51 Model-Driven Software Development in Technical Spaces (MOST)

[Requirements Tool] [Coding Tool] [Testing Tool]
[Model mappings] [Model slicing] [Model composition]
[Reachability analysis (traceability)] [Attribute analysis
Reasoning Relational GRS TRS XML
engine engine engine engine engine

Metamodel
Repository
(M2)

Test Case
Repository

Requirements
Repository

Design Implementation
Repository Repository
(PIM, Arch) (PSI, Code)

@ © Prof. U. ABmann

Deficiencies of Current RE Methods

52 Model-Driven Software Development in Technical Spaces (MOST)

> Relationships among requirements are inadequately captured
= Causal relationship between consistency, completeness and correctness
[Zowghi2002]
= Completeness and consistency are not verified
> Requirement problems (e.g. conflicts, incompleteness) are detected too late or not all

» Relationships between requirements and dependent artifacts are insufficiently
managed (test, documentation, design, code)

> Desirable:
= Models for RE need richer and higher-level abstractions (goals, problems, needs)
to validate that they are fulfilled [Mylopoulos1999]

Metamodels can be used to define these concepts
Ontologies deliver reasoning services
= Model mappings (direct and indirect) between the artifacts (design, code) and the
goals, problems, needs of the customer

Based on the model mappings, the requirements are consistently
managed with design, code, and documentation

@ © Prof. U. ABmann

Model Mapping in MID INNOVATOR

53 Model-Driven Software Development in Technical Spaces (MOST)

> |nnovator can be employed simultaneously for requirements, design and
implementation models

» How to relate these models?

% UML-Modell "TTBib_UML.ino_prak2’ - INNOVATOR

Elerment Bearbeiten &nsicht Modell Engineering ‘Wechseln Extras Hilfe

o & fhefBae Dl «] Hid OS

- [’i TTBib UML - Satus Marme Typ | Anderungsdstum
@ Ef@ sy;teml'-.ﬂndel 1 0 A |E| Ausleihe Sec... 22112003 004802
@ external object $INOTMP/docs 2 0 A Kunde_anmelden Kall... 1011 20035 01:21:54
[Use Case System 30 004 |E| Riickgabe Sec... 2211 2003 00:21:47
%ﬂ E;} analysiz system 4 0 A |E| Tartréger _Einkauf Sec.. 1011.200301:23:549
EJ Java design system 20 A @ Hunden_neu_anlegen Sec.. 1011.200301:26:149
@ Java implementation system $INOTMP/src E 0O A @ AnalyzisClassDiagram Klas.. 0911 2003 15:29:14
E3'$ systemModsl management T 0 A Q Yerwaltung_AS Klas... 0911 2003 152556
] 8 0 A () Tortréger_AS Wla:.. 09112003 15 20:08
90 A Q Hunde_A% Klas.. 09112003 1527352
oA Q s Kunde_AS Obj.. 0911 2003 13:20:05
@ oA Q : Tortrager_AS Obj.. 0911 2003 1532016
] A HD) werwatungUl_as Klg:... 0911.2003 151632
] A HD) : Werwalungll_as Ohj... 0911.2003 132308
@ oA i : Kunde_UC Obj.. 0911 2003 14:05:54
oA i . Biblicthek_1C Obj.. 0911 2003 15:44:35
] A Q CWerwaltung_AS Obj... 0911.200316:14:14

@ © Prof. U. ABmann

Direct Traceability

54

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

» With a direct model mapping, a requirements model can be linked
= to atest case specification
= toadocumentation

= toan architectural specification
= viathe architectural specification, to the classes and procedures in the code

Example: imbus TestBench

55 Model-Driven Software Development in Technical Spaces (MOST)

Planung

Analyse
& Design

g

Automatisierung

(

Realisierung &
Durchfiihrung

{

Auswertung & Bericht

O)
=

=

-

)

=

Q

hd
N

(

Abschluss

http://www.imbus.de/produkte/imbus-testbench/hauptfunktionen/

@ © Prof. U. ABmann

Requirements get “red-yellow-green” Test Status Attribute

56 Model-Driven Software Development in Technical Spaces (MOST)

» Test status is an attribute in the requirements tree that contains a direct link to the
result of a corresponding test case

[Anforderungsverwaltung von Car Konfigurator (Version 2.1, Abnahmetest)

Anforderungshaum: girﬂetails Benutzerdefinierte Felder | Erweitert | Wird verwendetin | Alle Versionen
B CarConfiguratar - Version 1.1 (caliber) :
¢ [1. Business Requirements t
[Konfiguration zusammenstellen Name: Handler gewahrt Rabatt
v automatische Rabatte :
%0 Handler gewshrt Rabatt 3 \ersion: 1.1
¢ [2 Uszer Requirements :
M standige Preisanzeige 3
[keine ermwungene Bedienerfolge §§ Status: Reviewy Complete
o [3. Functional Reguirements :
oM sofortige Preisherechnung
¢ %M Quelle der Basisdaten :
5 Import einer Datei | TestStatus: M Getestet PASS
M Impartvom OEM-Host :
o [4. Design Reqguirements
[0 piiltige Konfiguration
[Eingabe der Basizdaten

Eigentiimer:

Prioritat: Essential

Testf]...]: endpreis-berechnen-mit-rabatten_log.xml

el Aktuelle Ansicht : Endpreis berechnen mit Rabatten : [...]Jgurieren : Fahrzeug wahlen CBR

57

Model-Driven Software

@ © Prof. U. ABmann

0. 2.3.2 Endpreis herechnen mit Rahatten
= E]M 1. einfach

43 W CarConfig Starten

% M Preis priifen

43 W CarConfig Beenden

= EM 2. Testfall
B CarCaonfig Starten
=] Fahrzeug kanfigurieren

1 Sondermodell wahlen
£ Zubehdrwihlen
¥ Preis priffen
=] ?l Fahrzeug konfigurieren
L3 W Fahrzeug wihlen CER
3 W Sondermodell wahlen
L3 W Zubehdrwahlen
% B Freis priffen
=] ?l Fahrzeug konfigurieren
L3 W Fahrzeug wihlen CER
3 W Sondermodell wahlen
L3 W Zubehdrwahlen
%5 M Preis priffen
= ?l Endpreis berechnen"ohne" Rabatt
B Carcanfig Starten
= B Fahrzeug konfigurieren
3 W Fahrzeug wihlen CBR

Benutzerdefinierte Felder der Durchfiithrung

Meni 2

Datei Anzeige Mavigstion Zetmessung Fenster Hilfe Ansicht

Irteraktion Details

| Fahrzeug wahlen CER

Parameter

*—'ahrzeug

Interaktion: Fahrzeug wihlen CBR X Bemerkungen

x

~Bezchreiung ~Bemerkungen zur Durchfihring

Fahrzeug aus der Liste der Fahrzeuge wahlen

ok,

~Bemerkungen zur Spezifikation

2 Aufgezeichnete Attribute

|

=filr diezen Knotertyp kénnen Benutzerdefinierte Felder nicht definiert werden=

rTester

Aktueler Benutzer |

Tester |
S, | Letzte Anderung des Ergebni
Liste der Anforderungen X Aktuelles Ergebniz Zu prifen

Ergebniz-Datum (DD MY 07.03.2005

Mame | 0] | Yersion ‘ Eigjentlimer | Status ‘ Priorit&t
Ergebniz-Zet (HH: MM 55 09:34:03

zofortige Preisherechnung YWHAT303 3 Dierk Accepted Ez=ertial
keine erzwungene Bediensrfolge IJSERZ02 1.0 Dierk Submitted E=zzential Zeitmessung
sténdige Preizanzeige JSER3M 1.0 Dierk Submitted Ezzeritial Geplante Durchithrungzzet (DDHH MM S5 555) 00:00:00:00.000

Aktuelle Durchithrungszet (DDHH MM S5 555 00:00:00:00.000
&

Direct Model Mappings between Requirements and Test Tools

58

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

> Most often, these tools are in Link-treeware (hierarchical requirements, hierarchical
test cases and test suites)
» — The trace models can be stored externally in the megamodel
= Every trace link refers to link-tree node numbers in the requirements and test
specifications

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Prof. ABmann - Model-Driven Softwrae Development in Technical Spaces

32.5 The MDA Macromodel of RoSI (RoSI-MDA):
Representing Trace Mappings as Role-Playing

e What happens if contexts and roles are available in models?

e The Megamodel of RoSI and its traceability of model elements is extremely simple, because the
role-based models and metamodels are factorizing objects

e RoSI-MDA is homogeneous Macromodel

Remember: The Steimann Factorization of Natural and Role

Types

60 Model-Driven Software Development in Technical Spaces (MOST)

Splitting a full type into its natural and role-type components
= FullType = Natural x (role-type, role-type, ...)

FullPerson = Person x (Reader, Father, Customer,..)
FullBook

L AR anan
Ea

£1

oD
—an o |

<<compartment>> Nutrition
FullMan |11 Bought Sausage

FullWoman

<<compartment>> Marriage

Woman

Husband

<<compartment>>

Man Respurces

Reader

FullNewsPaper
~ Read

Newspaper

Remember: Full Type is from Inheritance Product Lattice

61 Model-Driven Software Development in Technical Spaces (MOST)

Q: What is a reading buying grandfather person? (A: tuple type)

e Role 1
Natural (entity) — Role 2

—» Role 3
T TS 2 A

LivingBeing

(Contractor)

/N (raver) (varer) i

N/

ted
TR

Mammal | | Dinosaurs T T (Negotiator)
: Grand Grand .
P Chick
ersen eren (Father)(Mother) (Reader)(Vriter) (Buyer)(Seller)

© Prof. U. ABmanI

&
]
)
:
)

Scalable Bindung Time of Contexts with the Factorization

62

Model-Driven Software Development in Technical Spaces (MOST)

» Scalable Binding: Roles can also be bound statically, if mixins are used as
implementation (fixing the context)

» Consequences for object life time, cohesion, allocation, adaptation, reconfiguration

Natural Class ~—_

Thing

1

LivingBeing

N

Dinosaurs

Mammal

1 T

Person Chicken

(ﬂl © Prof. U. ARmann

NS

L

>

Static fixed role type 1

Related

<I\R

Father] [

Child]

[1

Grand] [Grand
Eather Child

role type 2

Accessor

/\

[Acquainted]

N

(resar [vner)

\Z

role type 3

[Customer]

T

{)

Contractor
. J

1

(D

Negotiator

\ J

N
o))

N

N

(& v

(& L J

RoSI Macromodel (RoSI-MDA): Refinement by Role
Allocation

63 Model-Driven Software Development in Technical Spaces (MOST)

> Refinement by allocation of further roles - static roles at design time, dynamic roles at runtime
> In RoSI-MA, the role-play relation is subset of the traceability relation

TN

L L]
IAIIAI

% %

G S S e s T |

L L1] ‘7;?‘

L VAN A A

L 1L | C 1] CICIC
v ' v | \v)\v

@ © Prof. U. ABmann

RoSI-MDA: Traceability in Refinement by Role Allocation

64 Model-Driven Software Development in Technical Spaces (MOST)

> Refinement by allocation of further roles - static roles at design time, dynamic roles at runtime

' Designtime <> K pme

NS S NS
Ay L /<\>\ T
® 5T K

O
LN
Np%

@ © Prof. U. ABmann °
|
.l>

RoSI Macromodel (RoSI-MDA): Cross-Layer Role-Based
Refinement in the Software Life Cycle

66 Model-Driven Software Development in Technical Spaces (MOST)

» Refinement by allocation of roles provides simple traceability because Natural objects STAY the same

» Trace mapping is role-play relation joined with context-role matrix

» Platform properties are ,technical® roles of the objects

= Technical plattforms are static contexts

= Dynamic contexts (place, time, service quality)

Natural
Domain Model Person
. Person
Requirements
Person
Design
Person
PSM

. Person

Implementation
Person

Run time context 1
= Person

Run time context 2
Run time context 3 Person

&

Fixed Role

1

Customer

Customer

Customer

Customer

Customer

Customer

Customer

Fixed Role

2

Customer
Design

Customer
Design

Customer
Design

Customer
Design

Customer
Design

Customer
Design

Fixed Role 3

Platform-specific
Behavior

Platform-specific
Behavior

Platform-specific
Behavior

Platform-specific
Behavior

Platform-specific
Behavior

Fixed
Role 4

Full static
behavior

Full static
behavior

Full static
behavior

Full static
behavior

Dynamic
role 1

Behavior in
Context 1

Behavior in
Context 1

Behavior in
Context 1

Dynamic Dynamic
role 2 role 3
Behavior in

Context 2

Behavior in Behavior in
Context 2 Context 3

Advantages of RoSI-MDA (Role-Based MDA)

67

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

» Very simple, component MDA with easy traceability:
= Cores of objects map 1:1 from CIM via PIM and PSM into the application PSI
(context-role matrix)

= Variability via new roles for PIM, PSM, PSI
= “object fattening” through the MDA
> Projection (get) and reintegration (put) is simple for MDA-SUM

End

68

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

> Why do the models of MDA form a macromodel, while MDA is a megamodel?
» Which trace link types are important for MDA?
> Why is a context-role-based model better for traceability?
» How does JastAdd aspects achieve MDA refinement?
= How is traceability achieved?
= How model synchronisation?
» How does RoSI-MDA achieve global traceability from requirements to run time?

» How will megamodel look like that provides Link-tree-based models and Role-based
factorization of objects?

= How does atrace link look like?
= Where are the trace links stored?
= Why can XML be used as simple exchange format in these megamodels?

TECHNISCHE
UNIVERSITAT
DRESDEN

Fakultét Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Prof. ABmann - Model-Driven Softwrae Development in Technical Spaces

32. Macromodels in One Technical Space

1) Model-Driven Architecture (MDA)

2) MDA Toolkits
Prof. Dr. U. ARmann 3) Traceability in Model Transformations
Technische Universit4t Dresden 4) Direct Model Mappings between
Institut fur Software- und Requirements and T?sts .
Multimediatechnik 5) RoSIMDA - a Very Simple MDA with
http://st.inf.tu-dresden.de/teaching/ Trace_Mapplngs 2 Rl Py
.y Relations

Version 21-0.2,22.01.22

Literature

2

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof.U. ABmann

>

[CHO6] Krzysztof Czarnecki, Simon Helsen. Feature-based survey of model transformation approaches. IBM
Systems Journal 2006. DOI:10.1147/sj.453.0621

[Hedin09] Gérel Hedin. Tutorial: Generating Language Tools with JastAdd
= http://fileadmin.cs.Ith.se/sde/people/gorel/misc/gttse-draft-oct-2009-tutorial.pdf

[MID] MID Innovator Tutorial
https://www.mid.de/fileadmin/mid/PDF/Kundenbereich/11_R3/de/Innovator_11.3_Leitfaden.pdf

Birgit Grammel. Automatic Generation of Trace Links in Model-driven Software Development. PhD thesis,
Technische Universitdt Dresden, Fakultat Informatik, February 2014.

= http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-155839
Frédéric Jouault and Ivan Kurtev. On the Architectural Alignment of ATL and QVT. In: Proceedings of the 2006
ACM Symposium on Applied Computing (SAC 06). ACM Press, Dijon, France, chapter Model transformation (MT
2006), pages 1188—1195.
= http://atlanmod.emn.fr/bibliography/SAC06a
Tutorial tber ATL “Families2Persones”
= http://www.eclipse.org/m2m/atl/doc/ATLUseCase_Families2Persons.ppt
ATL Zoo von Beispielen: http://www.eclipse.org/m2m/atl/atI Transformations
Kevin Lano. Catalogue of Model Transformations: http://www.dcs.kcl.ac.uk/staff/kcl/tcat.pdf
Implementation in ATL

= http://www.eclipse.org/m2m/atl/atITransformations/EquivalenceAttributesAssociations/
EquivalenceAttributesAssociations.pdf

Literature on MDA

3

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof.U. ABmann

> https://www.omg.org/mda/products_success.htm
= https://www.omg.org/mda/mda_files/SuccesStory_DC_TSS_MDO_English.pdf
= https://www.omg.org/mda/mda_files/SuccessStory_DBB_4pages.pdf

> Alan Brown. Anintroduction to Model Driven Architecture. Part I: MDA and today's systems
> http://www.ibm.com/developerworks/rational/library/3100.html
> Petrasch, R., Meimberg, O.: Model Driven Architecture - eine praxisorientierte Einfihrung in die MDA. Dpunkt-
Verlag. 2006

= Teaser chapter
https://www.researchgate.net/publication/220693090_Model_Driven_Architecture_-_eine_praxisorie

ntierte_Einfuhrung_in_die_MDA

Q10: The House of a Technical Space

4

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof.U. ABmann

Technical Space

p
Tool Architectures
Techni Mega- and Macromodels
Meta-
R modelin
Bridges Model Management 8
apping, Transformation, and Compositio
Model Analysis
Querying, Metrics, and Analysis

Metapyramid (Metahierarchy) for Token Modeling '

Software Factories

5

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof.U. ABmann

A software factory schema essentially defines a recipe for building
members of a software product family.

Jack Greenfield

https://www.researchgate.net/publication/213883069_Software_Factories_Assembling_Applications_with_Patterns_Frameworks_Models_and_Tools

In this course:

A software factory combines the languages and tools of several
technical spaces to create software and cyber-physical systems
product families.

Q12: A Software Factory's Heart: the Ma¢ Whiegamodel

6 Model-Driven Software Development in Technical Spaces (MOST)

Software Factory

Multi-TS
Megamodel

Technical Space

(" Method Engineering

(Method Engineering
Mega- and Macromodels

Model Management
dapping, Transf., Compositioa

Mega-and Macromodels '
Pattern

Technical
Space
Bridges

Pattern
Languages

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Prof. ABmann - Model-Driven Softwrae Development in Technical Spaces

32.1 Model-Driven Architecture (MDA)
(Modellgetriebene Architektur)

MDA is a trademark of OMG

MDA is an industrial megamodel in the spirit of ReDeCT.
Its instances in software product are multimodels, connecting several model abstraction levels.

Software Factories with Only 1 Technical Space

8 Model-Driven Software Development in Technical Spaces (MOST)

In this chapter:
1-TS Megamodels
MDA, RoSI-MA

Software Factory

Multi-TS Megamodel

@,
,\..'
a® -

(Tool Engincering G
Mega- and Macromodels l
Technical Meta-

Space 2
Bridges Model Management modeling
i

Mapping, Transf., Compositio

@ooeoee g I III®

(% © Prof.U. ABmann

Q12: The ReDoDeCT Problem and its Macromodel

9

@ © Prof. U. ABmann

Model-Driven Software Development in Technical Spaces (MOST)

> The ReDoDeCT problem is the problem how requirements, documentation, design,
code, and tests are related (— V model)

> Mappings between the Requirements model, Documentation files, Design model, Code,
Test cases

> A ReDoDeCT macromodel has maintained mappings between all 5 models

Code Test
Package Bill { Hﬁkage TestBill {
Uses Order; ses TestOrder;

Class Counting { Proc testCounting
Procedure count IS 1S

Requirements

End;
}

o
X e TestQ der {
Uses Bill;
Uses B, TestOrd ring{
Class Ordering, rocedure
k Procedure count IS testCount IS
B End;

}
}

-\- Documentation

Overview Table for Link-Tree Macromodels

10 Model-Driven Software Development in Technical Spaces (MOST)

The Link-Treeware TS is well apt for macromodel construction in a software factory I

> Atree node abstracts a subtree (representant)
= Attributes and attributions are composable partial mappings from treenodes
» RAGs are useful for all kinds of structure- and function-modeling in Link-Tree
Macromodels, because they abbreviate dependencies in several models with cross-
model relations.
= |namacromodel under an artificial root (rooted macromodel), attributions can
work on the SUM to ensure the constraints
> Relational RAGs (RelRAGS) are useful, because they have bidirectional constraints

(Plain) MDA General SUM Skeleton SUM (partial function extension)

Repository-SUM: get/put as higher-order
attributions of link trees

* Javadoc-SUM

RAGs in Repositories Markings

RAGs in Data-flow architectures Needs trace models get/put as model Flow-SUM: Communicating link trees; In-place
transformations (lenses) transformations of SUM

* Google Docs, Stream-Based MDA

Cm’ © Prof.U. ABmann

Other Examples form

Olympic ring decomposition (EAI) marks all
modules with “rings” and thereby decomposes
them (course ST-1)

*VSUM (Reussner, Burger et al) generates
dependent parts by create trace links

Model-Driven Software Development (MDSD) in 1 Technical
Space

11 Model-Driven Software Development in Technical Spaces (MOST)

> MDSD in 1-TS falls into several main development methods with a macromodels:
= Engineering with metamodels in ReDeCT-like megamodels (integrated software life-cycle
management tools):
for integrated requirements, documentation, and testing along the life-cycle
Model-Driven Architecture (MDA) (MDA toolkits)
= Engineering with DSL (domain-specific modeling, DSM) (Meta-CASE toolkits)
For simplifying the specification of domain-specific software

> Model mappings correlate models
= capturing reachability informations (path abbreviations)
= defining trace relations between model elements
= From them, model transformations can easily be derived
> Model transformations
= Horizontal model transformations transform a model within a single language
= Vertical model transformations transform a model from a higher-level language to a lower-lewel
language (lowering)
= Broadband model transformations (lowerings) transform a model from a higher-level set into a
lower-level set of a broadband (wide-spectrum) language
» Model compositions compose models with extensions
= Model weavings extend models by other models and weave them together

@ © Prof.U. ABmann

Model-Driven Architecture (MDA)

12 Model-Driven Software Development in Technical Spaces (MOST)

> Model-Driven Architecture (MDA) is a macromodel similar to ReDoDECT, but distinguishes more
models:
= Platform-independent model (architectural)
= Platform-specific model (in modeling language equivalent to coding language)
= Platform-specific implmentation (in coding language)
» Onthe other hand, documentation is neglected :-(
> MDA uses model mappings, horizontal and vertical model transformations, as well as code generation

@ © Prof.U. ABmann

Transformations...

The MDA Megamodel, a Specific Variant of ReDoDeCT,
Embedded in the MOF Metapyramid

14 Model-Driven Software Development in Technical Spaces (MOST)

M3

M2

M1

MO

©Praf Il ARmanp

6,

TEST-MM
4 DM-MM CIM-MM
: R A

D'\:" "'Clélvl L o ¥
™ l;IM "PSEM o

U “ PSI
. R § " - P

s+ _.-s"<<instance-of>>

Runtime system instances

describing the situation in which the system will
be used

A CIM is a model of a system that shows the
system in the environment in which it will
operate, and thus it helps in presenting exactly
what the system is expected to do.

PIM and PSM and Model Mapping in MID INNOVATOR

16 Model-Driven Software Development in Technical Spaces (MOST)

> Innovator can specify transformations between its models [MID]

rak?' - INNOVATOR

Element Bearbeiten Ansicht Modell Engineering ‘Wechseln Extras Hife

|5} & 64 B2 | ID m Lo da O&

B2 02 TTBib_UML = Status Name Typ | Anderungsdatum
79} E| J— 10 A [T susteine Sec.. 22.11.2003 00:48:02
o BB} external object $IMOTMP/docs 20 A Kunde_anmelen Holl.. 10.11.2003 01:21:54
i[53 Use Case System 30 A [T Ruckyabe Sec.. 2211.2003 00:21:47
£l [anelysis system 4 0 A [T Tontrager_Einkaut Sec... 10.11.2003 01:23:53
] 50 & [P Kunden_neu_snlegen Sec.. 10112003 01:2619
L[} Java implementation system $HOTMP/src E 0 & [8] AnalysisClassDiagram Kiae.. 0911 2003152914
99 svstemodel managemert 70 A () Verwahtung_sS Wlas. 09.11.200315:25:56
(=] 50 A () Tontriger_as Wise.. 09.11.200315:20:08
30 A& (D Kunde AS Wlae.. 03.11.200315:27:32
o A Q Hunde_AS Obj... 0811 .200313:20:05
[0 A (O Tontrager_as Obi. 09.11.200313:20:16
0 A KD VerwatungU_AS Wlas 09.11.20031516:32
0 A KD :verwatungll_AS Obj. 09.11.200313:23:08
=] 0 A R Hunds UC Obj.. 03.11.200314:05:54
o A i Bibliothek_LIC Cbj... 09112003 15:44:35
0 A (O verwaltung_AS Obi. 09.11.200316:14:14

@ © Prof. U. ABmann

Example: PIM and PSM Extend the CIM in the Janus Toolkit

17 Model-Driven Software Development in Technical Spaces (MOST)

Domain model (DM)and > Inthe MDA, there are
requirements model (CIM, model mappings between
Computation independent model) l the models DM - CIM -
Platform-independent Model ... ‘ﬁ) PIM - PSM - PS|

(PIM) ' mas

Application architecture

Platform-specific Model (PSM)
Specific applicaiton parts)
Communication

Weboberliche

Platform-specific
Implementation (PSI) P
Handwriten additions ==ttt

in programming language schnit-

stellen

© Prof. U. ABmann

elle: Warum JANUS MDA und MDA JANUS ist; Whitepaper der Firma otris Software AG Dortmund; URL: www.otris.de
hitp://pi.informatik.uni-siegen.de/stt/15_3/15_3_weg_01.gif

Model Management in Megamodels

18

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof.U. ABmann

> Inthe MDA megamodel,because MDA enriches models from top to bottom, the mappings
between models must be maintained with a model algebra:

= Model difference analysis (Diff, comm of models)
= Version management
= Konfiguration management

= Model composition
= Lookup and query of model elements
= Union, compose, weave, unweave of models

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Prof. ABmann - Model-Driven Softwrae Development in Technical Spaces

32.1.2 Different Forms of MDA

Different forms of MDA

20

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof.U. ABmann

A transformative MDA uses refinement transformations for variation

= introduces trace links (32.3)
An MDA is called component-based (CoMDA) if the variation action is the exchange of
an implementation behind an interface, or if the component model is used for exchange

= RoSIMDA MDA (32.5)
A transformative CoOMDA uses point-wise refinement transformations on a model-based
component model

= forinstance, refinements in Petrinets

= combining trace links and component-based MDA (32.3 and 32.5)

A MDA-SUM uses transformative or component-based MDA for realizing views on a
single underlying model (SUM) (next chapter)

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Prof. ABmann - Model-Driven Softwrae Development in Technical Spaces

32.1.3 Morphic Model Mappings and
Transformations

Morphic Mappings and Pointwise Transformations on Marked
PIMs

22 Model-Driven Software Development in Technical Spaces (MOST)

<<with_interface>>
> Morphic mappings (1:1 or 1:n) are Loan

defined by marked PIMs: P
= Stereotypes introduce a mapping from 1 +withdraw()
element of the PIM to n elements in
the PSM
= Supported by many MDA tools, such as with_interface:
AndroMDA U
ass,

> The stereotype creates a mapping
between a PIM class and a set of PSM
classes
= The stereotype tells the MDA system P SRR

how to transform the PIM class to the \ N
PSM (stereotype triggers template
extension)

= The stereotypes partition the PSM: The ; vithdcav()
border of a partition is demarcated by +withdraw() a
the PIM stereotype tag

T EE LT TN

» Example: automatic creation of
interfaces for implementation classes

Easy traceability by morphic mapping

@ © Prof.U. ABmann
v

Example: different class implementations of a
connector class in a PIM

Example of a Marked PIM and the Induced Pointwise Model
Transformations

23 Model-Driven Software Development in Technical Spaces (MOST)

» Tags (stereotypes) may denote different class implementations in a PSM or PSI

Here: mapping of a class and activity diagram to different languages, using different

code generation templates, triggered by stereotype marking e
e &
Loan

>

<<Java>>

- amount

i C#:
Tava: - -int sum C#-Template
3 -Int sum] i
Java-Template X « I » +withdraw() Class
Class +withdraw()

\ l <<generate>>
PSI
Java

// Java implementation as a decorator // C# implementation: a partial class
class Loan extends Account { partial class Loan : Account {
// decorator backlink private int sum;
Account upper; public void withdraw (
int amount) {
private int sum; sum -= amount;
public void withdraw (}
int amount) {
sum —-= amount;

1) Umarbeiten auf code models
2)Petri netze zeigen oder statecharts

Cartridges are Transformation Libraries for Marked PIMs

24 24 Model-Driven Software Development in Technical Spaces (MOST)

» AcCartridge is a plugin to an MDA tool defining both the model mapping and the model
transformation

= For vertical and horizontal transformations

= Definition of stereotypes for PIM markings in vertical transformations
Manual marking of the PIM

- Selective transformation of the marked PIM classes
= Automatic transformation using the mapping and transformations from the
cartridge

No manual specifications of mappings and transformations
necessary

@ Brbil ABmAIn

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Prof. ABmann - Model-Driven Softwrae Development in Technical Spaces

32.1.4 Cartridges (Platform Extensions)
in RAGs and JastAdd

RAG Modules Compose Extensions into CIM or PIM

26 Model-Driven Software Development in Technical Spaces (MOST)

> The basic module can be DM, DM+CIM, DM+CIM+PIM
= Extensions are PSE, PSI
> Due to the declarativeness of attributions, modules can be unified by term (tree

unification)

= Names of the classes serve as unificator

// JastAdd Main Tree Spec
// Domain Model

eq o TT—
oo T
inh ..

eq ..
syn ..
inh ..

@ © Prof. U. AR

/ JastAdd Additional Tree Spec for
/ Requirements Model (cartridge for CIM)
aspect CIM {
class CIMAcc extends Account {
eq Loan.funl() = ..
..syn Savings.fun2 () = .
inh ..

Ex.: JastAdd Aspects are Cartridges

27 Model-Driven Software Development in Technical Spaces (MOST)

> AJastAdd Aspect, like a cartridge, extends a set of Main Tree Nodes and their attributions with new
attributions [Hedin09]

= Intertype declarations distribute a class definition over several files of MDA

= (Declarative) aspect files are composed by class unification // JastAdd Additional Tree Spec
pect TestM {

// JastAdd Additional Tree Spec eq Loan.test_funl()
aspect CIM { oq -
eq Loan.fun1() syn ..
€q - inh ..
/7 JastAdd Main Tree Spec Syn .- l// JastAdd Additional Tree Spec
// Domain Model inh .. jaspect PIM {
class Loan extends Account { r eq Loan.fun20)
eq .. eq ..
syn .. syn ..
inh .. L T / JastAdd Additional Tree Spec
b I3 laspect PSM {
eq Loan.fun3()
eq - / JastAdd Additional Tree Spec

I syn .
inh ..

laspect PSIT {

eq Loan.fun4()
eq ..

syn ..

inh ..

I

__}

MDA by Composition of RAG Aspects

28 Model-Driven Software Development in Technical Spaces (MOST)

> RAG modules, e.g., JastAdd aspects, can be used as MDA cartridges
= They compose class extensions “around” class names
= Model weaving is done by class composition
= Intertype declarations introduce “mixins” into classes of main syntax tree
» Model Refinement (in MDA) is done by modular composition (aspect composition) with
intertype declarations
= Model synchronisation is done by re-composition
= RAG-MDA supports composable macromodels
» Model mappings achieved by common class names
= Tracingis easy (common classes for extensions)

RAG modules, e.g., JastAdd aspects, can be used as MDA cartridges

@ © Prof.U. ABmann

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Prof. ABmann - Model-Driven Softwrae Development in Technical Spaces

32.1.5 Morphic Model Transformations in JastAdd

Morphic Transformations on Marked PIMs

30 Model-Driven Software Development in Technical Spaces (MOST)

Name: Loan

> Morphic mappings (1:1 or 1:n) can be
realized by JastAdd Rewrite
operations or Term rewrite operations

Tags: {<<with_interface>>} J

-int sum +withdraw()

(Stratego, Xcerpt)
= |f Users add a stereotype to a node of R SODNEETEE B
aPIM with_interface:
. TemplateTree
= Rewrites can reduce them Class

> Therewrite is a replace operation of
the marked node by its
“implementation” [

. Tags: {}
» Rewrite rule transforms redex of

upper model to snippet in lower model

» Easy traceability by morphic mapping
> The PIM tree as well as the PSM tree
are represented by the top node

> The PIM tree snippet and the PSM
tree snippet are homomorphic regions

1
1
1
1
1
1
|
1
1
1
1
'
1
1
1
1
1
|
1
1
1
'

L e — J[+withdraw()} [+withdraw() l

@ © Prof.U. ABmann

Example: different class implementations of a
connector class in a PIM

TECHNISCHE
@ UNIVERSITAT

DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Prof. ABmann - Model-Driven Softwrae Development in Technical Spaces

32.2 MDA Toolkits

Some MDA Tools

32 Model-Driven Software Development in Technical Spaces (MOST)

AndroMDA Eclipse http://www.andromda.org/
XText, Xpand Eclipse http://lwww.eclipse.org/Xtext/
IBM Rational Suite Eclipse

Software Architect

BlTplan smart Generator ~ Eclipse http://www.bitplan.com/
Epsilon Eclipse https://www.eclipse.org/epsilon/

© Prof.U. ABmann

[Petrasch, R., Meimberg, O.: Model Driven Architecture - eine praxisorientierte Einflihrung in die MDA;
dpunkt-verlag 2006]

6,

Important Features of MDA Toolkits

33 Model-Driven Software Development in Technical Spaces (MOST)

Model-to-Model Mapping bzw. Model-to-Model Transformation (e.g., PIM to PSM) with

cartridges
> User definition of model transformation cartridges with query and transformation languages

= e.g,with QVT, ATL, Graph writing or XML Rewriting
> Forward- und Reverse-Engineering
= Code generation (Model-to-Code Transformation, PSM to PSI)
= Mapping to a programming language (e.g., with JMI)
» Roundtrip-Engineering between models and code
> Single underlying model (SUM): forming views by get and put operations
> Model-driven Testing: generation of test cases ad test data based on models

[Petrasch, R., Meimberg, O.: Model Driven Architecture - eine praxisorientierte Einfihrung in die MDA;
dpunkt-verlag 2006]

@ © Prof. U. ABmann

32.2.1 AndroMDA, a Leading MDA Toolkit Focusing on PIM-
PSM Transformations

3434

Model-Driven Software Development in Technical Spaces (MOST)

[www.androMDA.org]

@ © Prof.U. ABmann

AndroMDA defines model mappings in > A cartridge contains a mapping from

platform-specific cartridges. UMLto e.g., Java, C# or C++ and a model
transformation
latform Independent UML Model (PIM) } » AndroMDA defines cartridges for

[P
& = UML-CD: Spring, Hibernate
S (persistency), XML, Enterprise
Java Beans (EJB)
N

Platform Independent UML Model (PIM)
in internal representation

= UML-AD: Struts, Java Server
] Pages(JSP), Servlets

- e |
|
[Partial Platform Specific Implementation]p

(PSM)
A"

Platform-Specific Implementation
(PSI, Code)

Handwritten code
S

32.2.2 MDA Toolkit ArcStyler

35

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

ArcStyler is a toolkit working with several UML-editors such as MagicDraw or Rational Rose

>

>

>

Cartridges for model mappings and transformations
Object Modeler for requirements modeling; based on CRC-Cards

Pattern Refinement Assistant transforms the domain model interactively into a PIM UML-model
(with MagicDraw or Rational Rose)

= With annotation of design decisions
Refinement of the PIM
= Horizontal refinement on PIM level
= Vertical transformation to PSM or PSI (code generation)
Code completion (Codevervolistindigung) and optimization for an application platform
Component generation for user interface
Generation for build tools
Generation for database persistency

http://www.software-kompetenz.de/servlet/is/27460/?print=true
Versteegen, G.: Wege aus der Plattformabhangigkeit - Hoffnungstrager Model Driven Architecture;

Computerwoche 29(2002) Nr. 5 vom 1. Febr. 2002

Process Engineering with ArcStyler

36

Model-Driven Software Development in Technical Spaces (MOST)

UML modesling

- components
e associations
ilogical structure;
PIhs}

% wizards

Technical
refinement of
UNML comonent

target platforms

& EJB{MET
marks

= archive

(packages

components)

#* defaults

of. U. ABmann

® design assistants

I Open MOAUMLIXML Repository

model for J2EE/NET

Technical Modeling

Process automation according to the UP'(default).

The Unified Process

ArcStyler Core Modules

Business
Object
Modeler

e

Assistant

Unabysds, Dusigeil

= uML
Refinement Refinement
Assistant

JIEEEIB, HET

BEA WebLogic

:uau:m:s m: .p;s

Build, deploy and test
suppent
> code customization

Veeilieation | Test § Deployment

°© build, depley in container

phy
] deployment units
eractive. (= deployable assembly
ObeS components; PSMs)
EJB archive
(deployment
+ packages for EJB
containers), MET-C

https://www.omg.org/mda/mda_files/P2A_Tutorial.pdf

- server/DB & client startup

Automation verify and
T Generate a deployable infra-
structure (+ test/ build env.)

7 % MDA engine code generator

% MDA-Cartridges

4 |DE projectsilibs
® ANT scripts + properties

»

http://www.interactive-objects.com/products/arcstyler/supportdocumentation.htmi
Sbttp://arcstyler.software.informer.com/

Cartridges and Generated Artifacts

37

Model-Driven Software Development in Technical Spaces (MOST)

(ﬁ © Prof. U. ABmann

MDA-Cartridges

MDA-Cartridges
- - o

MDA-Engine
with Meta IDE

Sources

Remote, Home, Bean, PK
Java Classifier

JUnit Test Suites
Default Test Client

WebService Wrapper
Build
Descriptors Configuration
Deployment

ejb-jar.xml, <container>.xml
application.xml
Webservice .wsdl, soap .xml

ANT Support

build.xml, build.properties
Database .sql scripts

JBuilder Support
-ipXx, ejbgrpx

custom .libraries

» ArcStyler MDA Details

Out-of-the-Box
MDA-Engine Fanout

Isolated, Container
Specific Test
Environment

Configuration ‘

Automation verify and
Generate a deployable infra-
structure (+ test/ build env.)

%« MDA engine code generator
% MDA-Cartridges

Quelle: Butze, D.: Entwicklung eines Praktikums fir die werkzeuggestutzte Softwareentwicklung nach der

Model-Driven-Architecture; GroBer Beleg an der Fakultét Informatik der TU Dresden 2004

&

11N
NIVERS
)

32.3 Traceability between Models

e Model transformations generate trace mappings

[omitted in 2021/22 J

Advantages of Model Mappings

39 Model-Driven Software Development in Technical Spaces (MOST)

> Error tracing
= When an error occurs during testing or runtime, we want to trace back the error
to adesign element or requirements element

> Traceability
= We want to know which requirement (feature) influences which design, code, and
test elements, so that we can demarcate modules in the solution space (product
line development)

» Synchronization in Development:
= Two models are called synchronized, if the change of one of them leads
automatically to a hot-update of the other
> Cohesion of Distributed Information:
= Two related model elements may contain distributed information about a thing.
The relation allows for reconstructing the full information
= Example:
Storing two roles of an object in two different models (See “Amoeba
Object Pattern”)
Splitting the representation of the requirements on an object and
its design in requirements vs design model

@ © Prof.U. ABmann

Different Forms of Model Mappings

40 Model-Driven Software Development in Technical Spaces (MOST)

> Directly specified mappings specify a deterministic mapping function between a
source and target model.
= Direct mappings are specified in GUI or text files
= Direct mappings may be complete or incomplete
> Recursive mappings are defined in a functional language
= Denotational semantics is a complete direct mapping of two languages
= The coverage of the source model must be ensured (completeness of
specification)
» General mappings may be intensionally specified. Source and target models are
mapped
= With graph reachability expressions (QVT-R, TgreQL, EARS)
= With query expressions (Semmle.QL)
= With expressions in a logic (F-Datalog)
> Inter-model mappings are defined between model elements of different models
> Lifted inter-model mappings are lifted from intra-model element mappings

@ © Prof.U. ABmann

Why Traceability in a Macromodel?

41 Model-Driven Software Development in Technical Spaces (MOST) [G ram me”

System Comprehension:
= Trace mappings improve orientation in multimodels by navigating via trace links
along model transformation chains
> Change Impact Analysis:
= toanalyze the impact of a model change on other models
= to analyze the impact of a model change on existing generated or transformed
output
= To enable to do model synchronization (hot updating dependent parts)
> Orphan Analysis: finding orphaned elements in models

Validation and Verification:
» System Validation: Connecting the requirements with the customer's goals and
problems (see ZOPP method)
> (Test) Coverage analysis: to determine whether all requirements were covered by
test cases in the development life cycle
> Debugging: To locate bugs when tracing code back to requirements
= Tolocate bugs during the development of transformation programs

@ © Prof.U. ABmann

Traceability Metamodel: CRUD Types of Trace Links between
Model Elements of Different Models

42 Model-Driven Software Development in Technical Spaces (MOST) [Grammel]

Source-Target Relations

_— T~

New Target Model Existing Target Model

Ex. Morphic
PIM-PSM transformation

Create generating new PSM

Link
Update Transformation In-Place Transformation
Source --update— Target Model--self-update
Ex. Morphic Ex. Roundtrip on

PSl generated from template
Expansion, replacing
erated hedged code

PSM-PSI template
xpansion replacing
gdperated hedged code

Destructive Extension-Only . .
Destructive Extension-Only

Delete Update Delete Update
Link Link Link Link

@ © Prof.U. ABmann

Extensible Traceability Metamodel acc. to Grammel

43 Model-Driven Software Development in Technical Spaces (MOST)

> New facets for new trace link types can be created

Granularity

Tracemodel

\

Model

(to be traced)

Configuration

A/

0.*

i

D\

Scope

sourced 1.* 1.*Ptarget
Links
1> TraceLink

/\'7\/;\

MonotonicLink

T

TracelLinkFacet
D/O.:

ChangesLink

T

DirectLink CreateLink RetrieveLink

UpdateLink

DeleteLink

1

ContainmentLink

@ ©Prof.U.

Traceability in Macromodels

44 Model-Driven Software Development in Technical Spaces (MOST)

> Piecemeal growth of macromodels in the software process:
= Start with requirements, then add more stuff and models
> Add links

= Symmetric “Direct” (auto-drawn) links are drawn between model element MA

from model A and model element MB whenever MB is related to MA
- Specified by hand or found by a model difference, model analysis or
amodel query

= Create links are drawn between model element MA from model A and model
element MB whenever MB is generated or added because of MA

= Retrieve links are drawn when MB is extracted (queried) from a model A and
added to another model B

= Containment links are drawn, when in a new model B the model element MA is
contained in another model element MB'

= Delete links are drawn if In model B the model element MB should be deleted

= Update links are drawn if MA has changed and MB should be changed too

@ © Prof.U. ABmann

Examples for TraceLinkFacet

45

Model-Driven Software Development in Technical Spaces (MOST)

[Grammel]

> Facets factorize inheritance hierarchies; new facets extend inheritance hierarchies

TextFacet

JavaCodeFacet

JavaMethod
Values

TextFileValues

TextBlockValues

Location StartPos
Name EndPos
UnknownTextFacet

@ © Prof.U. ABmann

JavaPackage avaClassValues JavaAttribute
Values Values
Name Name AET
Type
UnknownJavaFacet

Name
Parameters
returnType

Different Kinds of Trace Models

46 Model-Driven Software Development in Technical Spaces (MOST)

> So far, trace mappings were realized as associations in a simple model mapping
> The trace metamodel can be extended to describe a trace model, a specific form of

connector model
ModelMapping
Simple
ConnectorModel ModelMapping
TraceModel TraceMapping NameMapping

@ © Prof.U. ABmann

Adding a Trace Link Generator to Tools

Model-Driven Software Development in Technical Spaces (MOST) [G ramme |]

© Prof.U. ABmann

» TracelinkGenerators for Trace Models must be written by hand

» They can be connected to transformation engines and cartriges in three ways,
following a generic traceability interface:

Transformation Via Generic Traceability TracelLinkGenerator
Engine Interface Engine

Transformation (j’ raceLinkGenerator Transformation engine
Engine Black-box connector Engine must know and call
k the generator

Transformation engine
need not know but

is extended

Invasively or woven
By AOP

Transformation (I - : j’ raceLinkGenerator
Engine nvasive connector Engine

(

Traceability in Macromodels with Models from Link-Treeware

48

Model-Driven Software Development in Technical Spaces (MOST)

In link-tree models, a skeleton tree exists, in which every model element has a unique

the macromodel

tree node number (hierarchical number)
Trace links can be added with tree node number and stored externally of the model in

@ © Prof.U. ABmann

In link-treeware, macromodels
maintain trace(link) models
linking and tracing all models and
their elements by referencing the
hierarchical numbers of all nodes

/\/\\

1.1. Mo

notonicLink|

T

Hierarchical numbering of the classes
in an inheritance tree:

1. TraceLink

1.2 ChangesLink

ST

1.1.1 DirectLink

1.1.2 CreateLink

1.1.3
RetrieveLink

1.2.1 UpdateLink

1.2.2 DeleteLink

1.1.2.1
ContainmentLink

U

)

11N
VER
R)

32.4 Traceability in Practical Requirements
Management Tools

[omitted in 2021/22]

Introduction to Requirements Management (RM)

50 Model-Driven Software Development in Technical Spaces (MOST)

» RM bridges the needs of the customer to testing, design, coding, and documentation
> RM continuously manages requirements in the entire software life cycle
> RMrelies on inter-model mappings between requirements, test cases, design, and code

Solution
Space
Problem 9
— L\
Product Product
Features To Be
Probl Built
el = Software QO
Space Requir /T\

/ Test -7 \ Design

@ © Prof. U. ABmann
N
N

Tools in an Integrated Development Environment (IDE)

51 Model-Driven Software Development in Technical Spaces (MOST)

[Requirements Tool] [Coding Tool] [Testing Tool]
[Model mappings] [Model slicing] [Model composition]
[Reachability analysis (traceability)] [Attribute analysis
Reasoning Relational GRS TRS XML
engine engine engine engine engine
Metamodel
- Repository
Requirements Test Case (M2)
Repository Repository

Design Implementation
Repository Repository
(PIM, Arch) (PSI, Code)

@ ©Prof. U. ABmann

Deficiencies of Current RE Methods

52 Model-Driven Software Development in Technical Spaces (MOST)

> Relationships among requirements are inadequately captured
= Causal relationship between consistency, completeness and correctness
[Zowghi2002]
= Completeness and consistency are not verified
» Requirement problems (e.g. conflicts, incompleteness) are detected too late or not all
> Relationships between requirements and dependent artifacts are insufficiently
managed (test, documentation, design, code)
> Desirable:

= Models for RE need richer and higher-level abstractions (goals, problems, needs)
to validate that they are fulfilled [Mylopoulos1999]

- Metamodels can be used to define these concepts
- Ontologies deliver reasoning services
= Model mappings (direct and indirect) between the artifacts (design, code) and the
goals, problems, needs of the customer

- Based on the model mappings, the requirements are consistently
managed with design, code, and documentation

@ © Prof. U. ABmann

Requirement knowledge is not sufficiently covered:
Intentions, risks, obstacles and decisions are not
documented during RE and thus, are not available at later
stages during software development.

_Relationships among requirements are inadequately covered: requirements
instead of defining which kind of relation is meant (e.g. excluding, alternative,
generalization).

vicious circle of completeness, correctness and consistency (Zowghi et. Al)

Zowghi et. al. ([3])

describes this vicious circle as a causal relationship between consistency,
completeness and correctness. From a formal point of view, correctness is usually
meant to be the combination of consistency and completeness. Therefore, the
ability to detect and repair inconsistent and incomplete requirements is crucial
to the successful development of requirements specications

Complete metadata for requirements, that is data about

that requirement rather than data listed in the requirement [6]), ensure
completeness.

Though current RE tools provide means for capturing requirements, they fail in
providing sufficient support for metadata about requirements and leave it to the
reqluwements engineer to define them. Another shortcoming of RE tools is the
lack of tests for completeness, that is, checking whether all important metadata
are available. This way, the requirement engineer would detect missing but

relevant information easily.

Model Mapping in MID INNOVATOR

53

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

>

>

implementation models

rak?' - INNOVATOR

How to relate these models?

Innovator can be employed simultaneously for requirements, design and

Element Bearbeiten Ansicht Modell Engineering Wechseln Extras Hife
& BEBe DD -l @S O

2, TTBib_UML Al |status Name Typ | Anderungsdatun
B systemviodel 10 4 [susiene Sec.. 22112003 00:48:02
BB} external object $IMOTMP/docs 20 & Kunde_snmelden Holl.. 10.11.2003 01:21:54
i[53 Use Case System 30 & [Rockgabe Sec.. 22112003 00:21:47
Bk analyais system 40 & [F] Tortrager Einkaut Sec... 10,11 2003 01:23:59
5 0 & [FKunden_neu_aniegen Sec... 10.11 2003 01:26:19
L&} Java implementation system $INOTMPisre 6 0 A [&) AnalysisClassDiagram Mlas.. 0911 2003 15,2314
99 svstemodel managemert 70 & () Verwaung_8S Mlac.. 09.11.2003 15,2556
g0 & (O Tortrager_AS Mlae.. 0911 2003 15:20:08
30 A& (D Kunde AS Wlae.. 03.11.200315:27:32
0 A (O :Hunde_aS Obi.. 08.11.200313:20:05
0 & (J:Tontrager a5 O 09.11.200313:20:18
0 & KD Verwatungll_as Mg 09,11 2005 1516132
0 & KO vVerwatungUl_as Ol 09,11 2003 13:23:08
0 A R Hunds UC Obj.. 03.11.200314:05:54
0 A} :Bblothek UC Obij.. 09.11.200315:44:35
0 & (J:verwalung_aS .. 09.11.2003 16:14:14

AoupEdEEEESEB0Q

Direct Traceability

54

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof.U. ABmann

> With a direct model mapping, a requirements model can be linked
= toatest case specification
= toadocumentation

= toan architectural specification
= viathe architectural specification, to the classes and procedures in the code

Example: imbus TestBench

55

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof.U. ABmann

(@)
e
-
-
Q
=]
(¢}
]
(/p)

http://www.imbus.de/produkte/imbus-testbench/hauptfunktionen/

Planung

4

Analyse
& Design

1

Automatisierung

|

Realisierung &
Durchflihrung

|

Auswertung & Bericht

|

Abschluss

Requirements get “red-yellow-green” Test Status Attribute

56 Model-Driven Software Development in Technical Spaces (MOST)

> Test status is an attribute in the requirements tree that contains a direct link to the
result of a corresponding test case

[Anforder

I} g won Car gurator (Yersion 2.1, Abnahmetest)

\Anforderungshaum: Details rBenutzerdeﬁnierte Felder rErweiterl rWird verwendet in rnlle Versionen |
L) CarConfiguratar - Version 1.1 {caliber) !

¢ [@ 1. Business Requirements

0v Konfiguration zusammenstellen | - Name: Handler gewahrt Rabatt
+ Gl Rabatt gewshren D: W B2
[y M automatische Rabatta :
VM Hancler gewshrt Rabat | version: 1.1

¢ [2 User Reguirements
LM standige Preisanzeige :
[keine ermwungene Bedienerfolge : Status: Review Complate
¢ [@ 3. Functional Requirements 1
VM sofortige Preisberechnung
¢ DM Quelle der Basisdaten ;
B Import einer Datel TestStatus: [l Getestet PASS
M Impartvam OEM-Hast
¢ [4 Desion Requirements
10 giltige Konfiguration
M Eingabe der Basisdaten

Eigentiimer:

Prioritat: Essential

Testf]..: endpreis-berechnen-mit.rabatten_log.xmi

’ﬁ 2.3.2 Endpreis berechnen mit Rabatten
=-EM 1.einfach

LW carConfiy Starten

&M Preis prifen

43 M carConfig Beenden

57

Model-Driven Software |

2. Testfall

@ © Prof.U. ABmann

M CarConfig Starten
=] Fahrzeun konfigurieren

Sondermodell wahlen
Zubehdr wahlen
Preis prifen

=] ?l Fahrzeug konfigurieren
M Fahrzeug wihlen CBR
W sondermodell wihlen
W Zubehirwihlen

M Preis priffen

& & W Fahrzeug konfigurieren
M Fahrzeug wihlen CBR
W sondermodell wahlen
W Zubehirwahlen

W Freis prifen

=] ?l Endpreis berechnen "ohne' Rabatt
W CarConfig Starten

B Fahrzeug konfigurieren
13M Fahrzeug wahlen CBR

Felder der

Aktuelle Ansicht : Endpreis berechnen mit Rabatten

Detei Anzeige Mewigation Zetmessung Fenster Hife

jgurieren : Fahrzeug wahlen CBR

Interaktion

\ Fahrzeug wahlen CBR

Parameter ‘ Wert

Fatrzeu Is

e ¥ | ‘oo

Interaktion: Fahrzeug wiihlen CBR X

Bemerkungen X

ur D

Fahizeuy aus oer Liste der Fahrzeuge wahlen

X Aufgezeichnete Attribute x

fir diesen Hnotentyp kinnen Benutzerdefinierte Felder nict definiert werden= Tester

Letzte Anderung des
Liste der Anforderungen x AHueles Ergebnis Zuprisfen
Ergebnis-Datum (DD MM YY)
Naie D Version Eigertimer | Status Frioritét
Ergsbris-Zeit (FHMMSS)
soforige Preisherechnung WHATHG 34 Dierk Sooepted Essertiel
feine erzwungene Bedienertolye USER30Z 10 Dierk Submited Essentiel
sténcige Preisanzzige USRI 10 Dieric Submited Essertiel ©ginial (CCLDeL) [ooonon00on |
Aituelle D (DD:HHMM,) [00000000 000

il

Direct Model Mappings between Requirements and Test Tools

58

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof.U. ABmann

> Most often, these tools are in Link-treeware (hierarchical requirements, hierarchical
test cases and test suites)
» — Thetrace models can be stored externally in the megamodel
= Every trace link refers to link-tree node numbers in the requirements and test
specifications

)

11N
NIVERS
)

32.5 The MDA Macromodel of RoSI (RoSI-MDA):
Representing Trace Mappings as Role-Playing

e What happens if contexts and roles are available in models?

e The Megamodel of RoSI and its traceability of model elements is extremely simple, because the
role-based models and metamodels are factorizing objects

e RoSI-MDA is homogeneous Macromodel

Remember: The Steimann Factorization of Natural and Role
Types

60 Model-Driven Software Development in Technical Spaces (MOST)

Splitting a full type into its natural and role-type components
= FullType = Natural x (role-type, role-type, ...)
= FullPerson = Person x (Reader, Father, Customer, ..)

FullBook

<<compartment>> Nutrition

Diofll AD,

FullMan = Bought Sausage

<<compartment>> Mafriage FullWoman

Husband\ @«-\
Woman
mpartment>>
Man purces
FullNewsPaper
o)

Newspaper

Remember: Full Type is from Inheritance Product Lattice

61 Model-Driven Software Development in Technical Spaces (MOST)

Q: What is a reading buying grandfather person? (A: tuple type)

Natural (entity)

- Role 1

—» Role 2

Thing

i

LivingBeing

NN

Ancestor
TR

— Role 3

Customer
A\

Accessor
A\

Contractor
A

ted

Mammal | | Dinosaurs o A R Negotiator
f T S \K
: Grand Grand .

P Chick
_ erson icken [Father)(Mother) (Reader)(Wnter] (Buyer) Seller)
g
<
S
5\;@3 L 1 i i

Scalable Bindung Time of Contexts with the Factorization

62 Model-Driven Software Development in Technical Spaces (MOST)

> Scalable Binding: Roles can also be bound statically, if mixins are used as
implementation (fixing the context)
» Consequences for object life time, cohesion, allocation, adaptation, reconfiguration

H |

Natural Class 4 v N\

e Static fixed role type 1 e e 2
SR JAY
LivingBeing
VAV
Mammal | Dinosaurs xR

| Person Chicken Grand Grand [Reader] [Writer]

&L &L S = A = A

(& © Prof. U. ARmann

OPTIONAL

RoSI Macromodel (RoSI-MDA): Refinement by Role
Allocation

63 Model-Driven Software Development in Technical Spaces (MOST)

> Refinement by allocation of further roles - static roles at design time, dynamic roles at runtime
> InRoSI-MA, the role-play relation is subset of the traceability relation

-

@ © Prof.U. ABmann
-
-

Die Faktorisierung hilft, die Traceability von natiirlichen Objekten zu
verbessern, denn sie konnen nun von Rollen unterschieden werden

63

RoSI-MDA: Traceability in Refinement by Role Allocation

64 Model-Driven Software Development in Technical Spaces (MOST)

> Refinement by allocation of further roles - static roles at design time, dynamic roles at runtime

@ © Prof. U.AIZmann°

Die Faktorisierung hilft, die Traceability von natiirlichen Objekten zu
verbessern, denn sie konnen nun von Rollen unterschieden werden

64

RoSI Macromodel (RoSI-MDA): Cross-Layer Role-Based
Refinement in the Software Life Cycle

66 Model-Driven Software Development in Technical Spaces (MOST)

» Refinement by allocation of roles provides simple traceability because Natural objects STAY the same
» Trace mapping is role-play relation joined with context-role matrix
» Platform properties are ,technical” roles of the objects

= Technical plattforms are static contexts

= Dynamic contexts (place, time, service quality)

Natural Fixed Role Fixed Role Fixed Role 3 Fixed Dy i Dy i Dy
1 2 Role 4 role 1 role 2 role 3

Person
Person Customer

Person Customer Customer
Design

Person Customer Customer Platform-specific
Design Behavior

Person Customer Customer Platform-specific Full static
Design Behavior behavior

Person Customer Customer Platform-specific Full static Behavior in
Design Behavior behavior Context 1

Run time context 1

c
<

- Person Customer Customer Platform-specific Full static Behavior in Behavior in

Run time context 2 Design Behavior behavior Context 1 Context 2
Run time context 3 Person Customer Customer Platform-specific Full static Behavior in Behavior in Behavior in
Design Behavior behavior Context 1 Context 2 Context 3

O

Die Faktorisierung hilft, die Traceability von natiirlichen Objekten zu
verbessern, denn sie konnen nun von Rollen unterschieden werden

Advantages of RoSI-MDA (Role-Based MDA)

67 Model-Driven Software Development in Technical Spaces (MOST)

> Very simple, component MDA with easy traceability:
= Cores of objects map 1:1 from CIM via PIM and PSM into the application PSI
(context-role matrix)
= Variability via new roles for PIM, PSM, PSI
= “object fattening” through the MDA
> Projection (get) and reintegration (put) is simple for MDA-SUM

@ © Prof.U. ABmann

End

68

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof.U. ABmann

Why do the models of MDA form a macromodel, while MDA is a megamodel?
Which trace link types are important for MDA?
Why is a context-role-based model better for traceability?
How does JastAdd aspects achieve MDA refinement?

= How is traceability achieved?

= How model synchronisation?
How does RoSI-MDA achieve global traceability from requirements to run time?
How will megamodel look like that provides Link-tree-based models and Role-based
factorization of objects?

= Howdoes atrace link look like?

= Where are the trace links stored?

= Why can XML be used as simple exchange format in these megamodels?

