TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Prof. ABmann - Model-Driven Softwrae Development in Technical Spaces

32. Macromodels in One Technical Space

1) Model-Driven Architecture (MDA)

2) MDA Toolkits
Prof. Dr. U. ARmann 3) Traceability in Model Transformations
Technische Universitit Dresden %) Direct Model Mappings between
Institut flr Software- und Requirements and Tests
Multimediatechnik 5) RoSIMDA - a Very Simple MDA with
http://st.inf.tu-dresden.de/teaching/ Trace_Mapplngs as Role-Play
most Relations

Version 21-0.2,22.01.22

Literature

2

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

>

[CHO6] Krzysztof Czarnecki, Simon Helsen. Feature-based survey of model transformation approaches. IBM
Systems Journal 2006. DOI:10.1147/sj.453.0621

[Hedin09] Gorel Hedin. Tutorial: Generating Language Tools with JastAdd
= http://fileadmin.cs.Ith.se/sde/people/gorel/misc/gttse-draft-oct-2009-tutorial.pdf

[MID] MID Innovator Tutorial
https://www.mid.de/fileadmin/mid/PDF/Kundenbereich/11_R3/de/Innovator_11.3_Leitfaden.pdf

Birgit Grammel. Automatic Generation of Trace Links in Model-driven Software Development. PhD thesis,
Technische Universitat Dresden, Fakultat Informatik, February 2014.

= http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-155839
Frédéric Jouault and Ivan Kurtev. On the Architectural Alignment of ATL and QVT. In: Proceedings of the 2006
ACM Symposium on Applied Computing (SAC 06). ACM Press, Dijon, France, chapter Model transformation (MT
2006), pages 1188—1195.
= http://atlanmod.emn.fr/bibliography/SACO6a
Tutorial Gber ATL “Families2Persones”
= http://www.eclipse.org/m2m/atl/doc/ATLUseCase_Families2Persons.ppt
ATL Zoo von Beispielen: http://www.eclipse.org/m2m/atl/atITransformations
Kevin Lano. Catalogue of Model Transformations: http://www.dcs.kcl.ac.uk/staff/kcl/tcat.pdf
Implementation in ATL

= http://www.eclipse.org/m2m/atl/atITransformations/EquivalenceAttributesAssociations/
EquivalenceAttributesAssociations.pdf

Literature on MDA

3

Model-Driven Software Development in Technical Spaces (MOST)

(ﬁ © Prof. U. ABmann

> https://www.omg.org/mda/products_success.htm
= https://www.omg.org/mda/mda_files/SuccesStory_DC_TSS_MDO_English.pdf

= https://www.omg.org/mda/mda_files/SuccessStory_DBB_4pages.pdf
» Alan Brown. An introduction to Model Driven Architecture. Part I: MDA and today's systems
> http://www.ibm.com/developerworks/rational/library/3100.html

» Petrasch, R, Meimberg, O.: Model Driven Architecture - eine praxisorientierte Einflihrung in die MDA. Dpunkt-
Verlag. 2006
= Teaser chapter
https://www.researchgate.net/publication/220693090_Model_Driven_Architecture_-_eine_praxisorie
ntierte_Einfuhrung_in_die_MDA

Q10: The House of a Technical Space

4 Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

Technical Space

p
Tool Architectures
Techni Mega- and Macromodels
Meta-
S modelin
Bridges Model Management odeling
apping, Transformation, and Compositio
Model Analysis
Querying, Metrics, and Analysis

l Metapyramid (Metahierarchy) for Token Modeling '

Software Factories

5

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

A software factory schema essentially defines a recipe for building
members of a software product family.

Jack Greenfield

https://www.researchgate.net/publication/213883069_Software_Factories_Assembling_Applications_with_Patterns_Frameworks_Models_and_Tools

In this course:

A software factory combines the languages and tools of several
technical spaces to create software and cyber-physical systems
product families.

Q12: A Software Factory's Heart: the Mg egamodel

6 Model-Driven Software Development in Technical Spaces (MOST)

Software Factory

Multi-TS
Megamodel
..

Technical Space

Method Engineering
Mega- and Macromodels

Technical Space

= =
[]

o i Mega- and Macromodels
Bridges Model Management Languages : Bridges Model Management Languages
dapping, Transf.. Compositiga pping, Transf.. Compositioa

Model Analysis XXX JIII I 4IL

Querying, Interpretation

(__ Metapyramid (Metahierarchy) for Token Modeling)

Model Analysis
Querying, Interpretation

Metapyramid (Metahierarchy) for Token Modeling

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Prof. ABmann - Model-Driven Softwrae Development in Technical Spaces

32.1 Model-Driven Architecture (MDA)
(Modellgetriebene Architektur)

MDA is a trademark of OMG

MDA is an industrial megamodel in the spirit of ReDeCT.
Its instances in software product are multimodels, connecting several model abstraction levels.

Software Factories with Only 1 Technical Space

8 Model-Driven Software Development in Technical Spaces (MOST)

In this chapter:
1-TS Megamodels
MDA, RoSI-MA

Software Factory

Technical Space , .
=0

Tool Engineering _

" Mega- and Macromodels

Space -
Bridges Model Management modeling

Mapping, Transf., Composition D=
RodelBnalysis eseveee (I11171)
Querying, Interpretation T I TIIII 4 T
Metapyramid (Metahierarchy) for Token Modeling

(% © Prof. U. ABmann

Q12: The ReDoDeCT Problem and its Macromodel

9

@ © Prof. U. ABmann

Model-Driven Software Development in Technical Spaces (MOST)

» The ReDoDeCT problem is the problem how requirements, documentation, design,
code, and tests are related (— V model)
> Mappings between the Requirements model, Documentation files, Design model, Code,

Test cases
» A ReDoDeCT macromodel has maintained mappings between all 5 models
Requirements Code Test

Package Bill { H,xkage TestBill {
Uses Order; ses TestOrder;
Class Counting { Proc testCounting
Procedure count IS IS

End;
}

e Test
rder { Uses Bill;
Uses B, TestOrd| ring{
Class Orderin; rocedure
Procedure count IS testCount IS

>0

}
}

End;
-\- Documentation

Overview Table for Link-Tree Macromodels

10 Model-Driven Software Development in Technical Spaces (MOST)

The Link-Treeware TS is well apt for macromodel construction in a software factory I

» Atree node abstracts a subtree (representant)
= Attributes and attributions are composable partial mappings from treenodes
» RAGs are useful for all kinds of structure- and function-modelingin Link-Tree
Macromodels, because they abbreviate dependencies in several models with cross-
model relations.
= |namacromodel under an artificial root (rooted macromodel), attributions can
work on the SUM to ensure the constraints
» Relational RAGs (RelRAGS) are useful, because they have bidirectional constraints

(Plain) MDA General SUM Skeleton SUM (partial function extension)

RAGs in Repositories Markings Repository-SUM: get/put as higher-order
attributions of link trees

¢ Javadoc-SUM

c
£
&
£
<
S RAGs in Data-flow architectures Needs trace models get/put as model Flow-SUM: Communicating link trees; In-place
5 transformations (lenses) transformations of SUM
(=%
) * Google Docs, Stream-Based MDA
g\
Gy

Other Examples form

*Olympic ring decomposition (EAI) marks all
modules with “rings” and thereby decomposes
them (course ST-1)

*VSUM (Reussner, Burger et al) generates
dependent parts by create trace links

Model-Driven Software Development (MDSD) in 1 Technical
Space

11 Model-Driven Software Development in Technical Spaces (MOST)

» MDSD in 1-TS falls into several main development methods with a macromodels:
= Engineering with metamodels in ReDeCT-like megamodels (integrated software life-cycle
management tools):
for integrated requirements, documentation, and testing along the life-cycle
Model-Driven Architecture (MDA) (MDA toolkits)
= Engineering with DSL (domain-specific modeling, DSM) (Meta-CASE toolkits)
For simplifying the specification of domain-specific software

> Model mappings correlate models
= capturing reachability informations (path abbreviations)
= defining trace relations between model elements
= Fromthem, model transformations can easily be derived
> Model transformations
= Horizontal model transformations transform a model within a single language
= Vertical model transformations transform a model from a higher-level language to a lower-lewel
language (lowering)
= Broadband model transformations (lowerings) transform a model from a higher-level set into a
lower-level set of a broadband (wide-spectrum) language
> Model compositions compose models with extensions
= Model weavings extend models by other models and weave them together

@ © Prof. U. ABmann

Model-Driven Architecture (MDA)

12 Model-Driven Software Development in Technical Spaces (MOST)

> Model-Driven Architecture (MDA) is a macromodel similar to ReDoDECT, but distinguishes more
models:
= Platform-independent model (architectural)
= Platform-specific model (in modeling language equivalent to coding language)
= Platform-specific implmentation (in coding language)
> Onthe other hand, documentation is neglected :-(
> MDA uses model mappings, horizontal and vertical model transformations, as well as code generation

@ © Prof. U. ABmann

Transformations...

The MDA Megamodel, a Specific Variant of ReDoDeCT,
Embedded in the MOF Metapyramid

14 Model-Driven Software Development in Technical Spaces (MOST)

ARmananp

©Prof it

M3

M2

M1

MO

MOF
-eeecl ':::::::-_-:-:m‘
R
A DM-MM i |
A 4 PIM-MM |
A .
i "
&

| -
: > PIM -
i 4 PSM -
I —e— S|
. 39 > Y =2

.....

. ..-~"<<instance-of>>

Runtime system instances

describing the situation in which the system will
be used

A CIM is a model of a system that shows the
system in the environment in which it will
operate, and thus it helps in presenting exactly
what the system is expected to do.

PIM and PSM and Model Mapping in MID INNOVATOR

16 Model-Driven Software Development in Technical Spaces (MOST)

> Innovator can specify transformations between its models [MID]

INNOVATOR
Element Bearbeiten Ansicht Model Enginesring ‘Wechseln Extras Hilfe
%] iz ﬂ\"\‘\\\“\‘\"\" - NQ@HE‘E ‘Eﬂ\gw\ﬁé
B % TTBib_umL ~|| |status | hame | Tvn | Anderungsdatum
[| =ty P—— 10 a [Fauseihs Sec... 22112003 00:48:02
ci FE5} external object $INOTMP/docs 20 A Kunde_snmelden Koll... 10:11.2003 01:21:54
S Use Case System 30 A [T Ricksbe Sec.. 22412003 00:21:47
@ -[t anslysis system 40 A @ Tortrager_Einkauf Sec.. 10.11.2003 01:23:59
T Java design system 50 A @ Kunden_neu_snlegen Sec.. 10.11.2003 01:26:13
-~ Javai ion system § e 6 0 A [2] AnalysisClassDiagram Kias... 0812003152814
9 systemblodsl management 70 A (O Verwatung &S Kle.. 09.41.2003 152558
B 5 0 4 () Tortréiger S Klas.. 09112003 15:20:08
a0 A Q Hunde_AS Kla:.. 09.11.2003 15:27:32
LU Q : Kunde_AS Ohje... 09.11.2003 13:20:05
[0 A () Tonrager_AS Obj... 03112003 132016
oA KD verwaltungll_as Kla:.. 09:11.2003 15:16:32
0 A HD:verwatungUl_aS Ohj. 03112003 13:23.08
@ LU i © Kunee_UC Ohje... 09.11.2003 14:05:54
0 A i Bibliothek_UC Obj... 08112003 15:44:35
0 & (O Verwatung AS Obj... 09112003 16:14:14

@ ©Prof. U. ABmann

Example: PIM and PSM Extend the CIM in the Janus Toolkit

17 Model-Driven Software Development in Technical Spaces (MOST)

Domain model (DM)and > Inthe MDA, there are
requirements model (CIM, model mappings between
Computation independent model) l the models DM - CIM -
Platform-independent Model _.....--="" (’.’ PIM - PSM - PSI

(PIM) ’ et

Application architecture

Platform-specific Model (PSM)
Specific applicaiton parts
Communication

Wieboberfliche

Platform-specific

Implementation (PSI) e
Handwriten additions =777 —
in programming language il -

© Prof. U. ABmann

elle: Warum JANUS MDA und MDA JANUS ist; Whitepaper der Firma otris Software AG Dortmund; URL: www.otris.de
hitp://pi.informatik.uni-siegen.de/stt/15_3/15_3_weg_01.gif

Model Management in Megamodels

18

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

> Inthe MDA megamodel,because MDA enriches models from top to bottom, the mappings
between models must be maintained with a model algebra:

= Model difference analysis (Diff, comm of models)
= Version management
= Konfiguration management
= Model composition
= |Lookup and query of model elements
= Union, compose, weave, unweave of models

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Prof. ABmann - Model-Driven Softwrae Development in Technical Spaces

32.1.2 Different Forms of MDA

Different forms of MDA

20

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

A transformative MDA uses refinement transformations for variation

= introduces trace links (32.3)
An MDA is called component-based (CoMDA) if the variation action is the exchange of
an implementation behind an interface, or if the component model is used for exchange

= RoSIMDA MDA (32.5)
A transformative CoMDA uses point-wise refinement transformations on a model-based
component model

= forinstance, refinements in Petrinets

= combining trace links and component-based MDA (32.3 and 32.5)

A MDA-SUM uses transformative or component-based MDA for realizing views on a
single underlying model (SUM) (next chapter)

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Prof. ABmann - Model-Driven Softwrae Development in Technical Spaces

32.1.3 Morphic Model Mappings and
Transformations

Morphic Mappings and Pointwise Transformations on Marked
PIMs

22 Model-Driven Software Development in Technical Spaces (MOST)

<<with_interface>>

> Morphic mappings (1:1 or 1:n) are Loan
defined by marked PIMs: P
= Stereotypes introduce a mapping from 1 +withdraw()
element of the PIM to n elements in
the PSM
= Supported by many MDA tools, such as with_interface:
AndroMDA Template
Class
» The stereotype creates a mapping
between a PIM class and a set of PSM
classes

= The stereotype tells the MDA system
how to transform the PIM class to the
PSM (stereotype triggers template
extension)

= The stereotypes partition the PSM: The
border of a partition is demarcated by
the PIM stereotype tag

+withdraw()

+withdraw()

gmm e m e — ey

» Example: automatic creation of
interfaces for implementation classes

(ﬁ © Prof. U. ABmann
v

Easy traceability by morphic mapping

Example: different class implementations of a
connector class in a PIM

Example of a Marked PIM and the Induced Pointwise Model
Transformations

23 Model-Driven Software Development in Technical Spaces (MOST)

» Tags (stereotypes) may denote different class implementations in a PSM or PSI

» Here: mapping of a class and activity diagram to different languages, using different
code generation templates, triggered by stereotype marking

<<C#>> m:n"(ed
L/I;ﬂn(ed <<Java>> Loan
LGER amount

. C#:
— . -int sum C#-Template
T -iInt sum o +withdraw() Class

JavaCTIZr:Splate +withdraw() +—

@\ I <<generate>>

// Java implementation as a decorator
class Loan extends Account {

// decorator backlink

Account upper;

// C# implementation: a partial class
partial class Loan : Account {
private int sum;
public void withdraw (
int amount) {
sum —-= amount;

private int sum;
public void withdraw (
int amount) {

sum -= amount;

1) Umarbeiten auf code models
2)Petri netze zeigen oder statecharts

Cartridges are Transformation Libraries for Marked PIMs

24 24 Model-Driven Software Development in Technical Spaces (MOST)

» ACartridge is a plugin to an MDA tool defining both the model mapping and the model
transformation
= For vertical and horizontal transformations
= Definition of stereotypes for PIM markings in vertical transformations
Manual marking of the PIM
- Selective transformation of the marked PIM classes
= Automatic transformation using the mapping and transformations from the

cartridge
No manual specifications of mappings and transformations

necessary

@ BrahY ARMAND

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Prof. ABmann - Model-Driven Softwrae Development in Technical Spaces

32.1.4 Cartridges (Platform Extensions)
in RAGs and JastAdd

RAG Modules Compose Extensions into CIM or PIM

26 Model-Driven Software Development in Technical Spaces (MOST)

» The basic module can be DM, DM+CIM, DM+CIM+PIM
= Extensions are PSE, PSI

> Due to the declarativeness of attributions, modules can be unified by term (tree
unification)

= Names of the classes serve as unificator

@ © Prof. U. AR

// JastAdd Main Tree/Spec / JastAdd Additional Tree Spec for
// Domain Model / Requirements Model (cartridge for CIM)
class Loaggextends Account { aspect CIM {
eq.. T class CIMAcc extends Account {
sy T R e e
inh .. eq LoanfunlQ =.. e
LT I | __syn Savings.fun2 () = T -l . Intertype declarations
class Saving extends Account { inh
eq ..
syn ..
inh ..

Ex.: JastAdd Aspects are Cartridges

27 Model-Driven Software Development in Technical Spaces (MOST)

> A JastAdd Aspect, like a cartridge, extends a set of Main Tree Nodes and their attributions with new

attributions [Hedin09]

= Intertype declarations distribute a class definition over several files of MDA

= (Declarative) aspect files are composed by class unification

/ JastAdd Main Tree Spec
/ Domain Model

class Loan extends Account {
eq ..
syn ..
inh ..

i

// JastAdd Additional Tree Spec
pect TestM {

// JastAdd Additional Tree Spec
laspect CIM {
eq Loan.funl()

eq ..

eq Loan.test_funl()
eq ..

syn ..

inh ..

inh .. jaspect PIM {

syn .. |// JastAdd Additional Tree Spec

+ eq Loan.fun2()
eq ..
syn ..
B T / JastAdd Additional Tree Spec
T+ laspect PSM {
eq Loan.fun3()
e - / JastAdd Additional Tree Spec
CWRRRRERN| syn .. lspect PSI {
il o eq Loan.fund()
Iy eq ..
syn ..
inh ..

_}

MDA by Composition of RAG Aspects

28 Model-Driven Software Development in Technical Spaces (MOST)

» RAG modules, e.g., JastAdd aspects, can be used as MDA cartridges
= They compose class extensions “around” class names
= Model weaving is done by class composition
= Intertype declarations introduce “mixins” into classes of main syntax tree
» Model Refinement (in MDA\) is done by modular composition (aspect composition) with
intertype declarations
= Model synchronisation is done by re-composition
= RAG-MDA supports composable macromodels
» Model mappings achieved by common class names
= Tracingis easy (common classes for extensions)

RAG modules, e.g., JastAdd aspects, can be used as MDA cartridges

(ﬁ © Prof. U. ABmann

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Prof. ABmann - Model-Driven Softwrae Development in Technical Spaces

32.1.5 Morphic Model Transformations in JastAdd

Morphic Transformations on Marked PIMs

30 Model-Driven Software Development in Technical Spaces (MOST)

Tags: {<<with_interface>>}]

» Morphic mappings (1:1 or 1:n) can be Name: Loan
realized by JastAdd Rewrite / R‘ i
operations or Term rewrite operations e withdramd
(Stratego, Xcerpt) . J ‘ ’ j
If Users add a stereotype to a node of N ’
aPIM with_interface:

TemplateTree
Class

Rewrites can reduce them

» Therewriteis areplace operation of
the marked node by its
“implementation”

» Rewrite rule transforms redex of
upper model to snippet in lower model

» Easy traceability by morphic mapping
> The PIM tree as well as the PSM tree
are represented by the top node

» The PIM tree snippet and the PSM : 1 -int sum
tree snippet are homomorphic regions ™

+withdraw() J

+withdraw()

(ﬁ © Prof. U. ABmann

Example: different class implementations of a
connector class in a PIM

TECHNISCHE
UNIVERSITAT

DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Prof. ABmann - Model-Driven Softwrae Development in Technical Spaces

32.2 MDA Toolkits

Some MDA Tools

32 Model-Driven Software Development in Technical Spaces (MOST)

AndroMDA Eclipse http://www.andromda.org/
XText, Xpand Eclipse http://www.eclipse.org/Xtext/
IBM Rational Suite Eclipse

Software Architect

BlTplan smart Generator ~ Eclipse http://www.bitplan.com/
Epsilon Eclipse https://www.eclipse.org/epsilon/

[Petrasch, R., Meimberg, O.: Model Driven Architecture - eine praxisorientierte Einflihrung in die MDA;
dpunkt-verlag 2006]

@ © Prof. U. ABmann

Important Features of MDA Toolkits

Model-Driven Software Development in Technical Spaces (MOST)

33

@ © Prof. U. ABmann

Model-to-Model Mapping bzw. Model-to-Model Transformation (e.g., PIM to PSM) with

cartridges
User definition of model transformation cartridges with query and transformation languages

= e.g.,with QVT, ATL, Graph writing or XML Rewriting
> Forward- und Reverse-Engineering
= Code generation (Model-to-Code Transformation, PSM to PSI)
= Mapping to a programming language (e.g., with JMI)
> Roundtrip-Engineering between models and code
> Single underlying model (SUM): forming views by get and put operations
» Model-driven Testing: generation of test cases ad test data based on models

[Petrasch, R., Meimberg, O.: Model Driven Architecture - eine praxisorientierte Einflihrung in die MDA;
dpunkt-verlag 2006]

32.2.1 AndroMDA, a Leading MDA Toolkit Focusing on PIM-
PSM Transformations

34

[www.androMDA .org]

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

> AndroMDA defines model mappings in > A cartridge contains a mapping from
platform-specific cartridges. UML to e.g., Java, C# or C++ and a model
transformation

(Platform Independent UML Model (PIM)] > AndroMDA defines cartridges for
& = UML-CD: Spring, Hibernate

> (persistency), XML, Enterprise
Java Beans (EJB)
N

J = UML-AD: Struts, Java Server

Pages(JSP), Servlets

in internal representation

N

i

Partial Platform Specific Impl tati
[artial Platform Specific mpemenalon]ZD

(PSM)

L Platform Independent UML Model (PIM)

A\
Platform-Specific Implementation
(PSI, Code)

32.2.2 MDA Toolkit ArcStyler

35

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

ArcStyler is a toolkit working with several UML-editors such as MagicDraw or Rational Rose

>

>

>

Cartridges for model mappings and transformations
Object Modeler for requirements modeling; based on CRC-Cards

Pattern Refinement Assistant transforms the domain model interactively into a PIM UML-model
(with MagicDraw or Rational Rose)

= With annotation of design decisions
Refinement of the PIM
= Horizontal refinement on PIM level
= Vertical transformation to PSM or PSI (code generation)
Code completion (Codevervollstindigung) and optimization for an application platform
Component generation for user interface
Generation for build tools

Generation for database persistency

http://www.software-kompetenz.de/servlet/is/27460/?print=true
Versteegen, G.: Wege aus der Plattformabhangigkeit - Hoffnungstrager Model Driven Architecture;

Computerwoche 29(2002) Nr. 5 vom 1. Febr. 2002

Process Engineering with ArcStyler

36 Model-Driven Software Development in Technical Spaces (MOST)

- components
+ associations
{logical structure;

PlMs) The Unified Process.
design assistants

e ArcStyler Core Modules

| Open MDAUML/XML Repositary

Technical Business DM pattem P9 umL

Object Refinement Refincment
refinement of Modeler Assistant Assistant
UML comonent

model for J2EE/.NET F m

target platforms

Technical Modeling = e

UML modeling Process automation according to the UP (default).

= EJBLMET
marks System Dulnition [Anshysis, Desigal
. archive
(packages Sreem =
components) phy Wesi Test ! Daplayment
g
deployment units
K defaults jeractive] (= deployable assembly Automation verify and
Obie .) L -
comporents: PSiis) Generate a deployable infra-
» EJB archive structure {+ test/ build env.)
(deployment
| packages for EJB 1 % MDA engine code generator
containers), NET-C % MDA-Cartridges

>f. U. ABmann

https://www.omg.org/mda/mda_files/P2A_Tutorial.pdf

Build. deploy and test

support
= code customization
o build, deploy in container

- server/DB & client startup

|| % IDE projects/libs

%% ANT scripts + properties

>

http://www.interactive-objects.com/products/arcstyler/supportdocumentation.html

EEttp://arcstyler.software.informer.com/

Cartridges and Generated Artifacts

37 Model-Driven Software Development in Technical Spaces (MOST)

MDA-Cartridges Out-of-the-Box

Sources MDA-Engine Fanout
Remote, Home, Bean, PK
Java Classifier
JUnit Test Suites
Default Test Client

Isolated, Container
Specific Test
Environment

WebService Wrapper
Build
Descriptors Configuration
Deployment.

ejb-jar.xml, <container>.xml
application.xml
Webservice .wsdl, soap .xml

ANT Support

build.xml, build.properties
Database .sql scripts

MDA-Cartridges
- - -

Configuration ‘

MDA-Engine
with Meta IDE

JBuilder Su

-jpx, ejbgrpx
custom .libraries

Automation verify and
Generate a deployable infra-
structure (+ test/ build env.)

% MDA engine code generator
%« MDA-Cartridges

Quelle: Butze, D.: Entwicklung eines Praktikums fiir die werkzeuggestiitzte Softwareentwicklung nach der
Model-Driven-Architecture; GroBer Beleg an der Fakultat Informatik der TU Dresden 2004

@ © Prof. U. ABmann

32.3 Traceability between Models

e Model transformations generate trace mappings

[omitted in 2021/22]

Advantages of Model Mappings

39

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

v

Error tracing
= When an error occurs during testing or runtime, we want to trace back the error
to adesign element or requirements element

v

Traceability
= We want to know which requirement (feature) influences which design, code, and
test elements, so that we can demarcate modules in the solution space (product
line development)
» Synchronization in Development:
= Two models are called synchronized, if the change of one of them leads
automatically to a hot-update of the other
Cohesion of Distributed Information:

= Two related model elements may contain distributed information about a thing.
The relation allows for reconstructing the full information

v

= Example:
Storing two roles of an object in two different models (See “Amoeba
Object Pattern”)
Splitting the representation of the requirements on an object and
its design in requirements vs design model

Different Forms of Model Mappings

40 Model-Driven Software Development in Technical Spaces (MOST)

> Directly specified mappings specify a deterministic mapping function between a
source and target model.

= Direct mappings are specified in GUI or text files
= Direct mappings may be complete or incomplete
» Recursive mappings are defined in a functional language
= Denotational semantics is a complete direct mapping of two languages
= The coverage of the source model must be ensured (completeness of
specification)
> General mappings may be intensionally specified. Source and target models are
mapped
= With graph reachability expressions (QVT-R, TgreQL, EARS)
= With query expressions (Semmle.QL)
= With expressions in a logic (F-Datalog)
> Inter-model mappings are defined between model elements of different models
» Lifted inter-model mappings are lifted from intra-model element mappings

@ © Prof. U. ABmann

Why Traceability in a Macromodel?

41 Model-Driven Software Development in Technical Spaces (MOST) [G ramme ”

System Comprehension:
= Trace mappings improve orientation in multimodels by navigating via trace links
along model transformation chains
» Change Impact Analysis:
= toanalyze the impact of a model change on other models
= toanalyze the impact of a model change on existing generated or transformed
output
= To enable to do model synchronization (hot updating dependent parts)
» Orphan Analysis: finding orphaned elements in models

Validation and Verification:
» System Validation: Connecting the requirements with the customer's goals and
problems (see ZOPP method)
> (Test) Coverage analysis: to determine whether all requirements were covered by
test cases in the development life cycle
> Debugging: To locate bugs when tracing code back to requirements
= Tolocate bugs during the development of transformation programs

@ © Prof. U. ABmann

Traceability Metamodel: CRUD Types of Trace Links between
Model Elements of Different Models

42 Model-Driven Software Development in Technical Spaces (MOST) [G ram mel]

Source-Target Relations

T~

New Target Model Existing Target Model

Ex. Morphic
PIM-PSM transformation

Create generating new PSM

Link
Update Transformation In-Place Transformation
Source --update— Target Model--self-update
Ex. Morphic Ex. Roundtrip on

PSl generated from template
Expansion, replacing
erated hedged code

PSM-PSI template
Xpansion replacing
gaperated hedged code

Destructive Extension-Only . .
Destructive Extension-Only
Delete Update Delete Update
Link Link Link Link

@ © Prof. U. ABmann

Extensible Traceability Metamodel acc. to Grammel

43 Model-Driven Software Development in Technical Spaces (MOST)

>

New facets for new trace link types can be created

Granularity

Configuration

4

TracelLinkFacet

Tracemodel >
Model
(to be traced)
0..*
source 1.* 1.**target
Links
1.x TraceLink
MonotonicLink ChangesLink

T

TTT—

Scope

DirectLink

CreateLink

RetrieveLink

UpdateLink

DeleteLink

@ © Prof. U.

1

ContainmentLink

Traceability in Macromodels

44 Model-Driven Software Development in Technical Spaces (MOST)

> Piecemeal growth of macromodels in the software process:
= Start with requirements, then add more stuff and models
» Add links

= Symmetric “Direct” (auto-drawn) links are drawn between model element MA
from model A and model element MB whenever MB is related to MA

Specified by hand or found by a model difference, model analysis or
amodel query
= Create links are drawn between model element MA from model A and model
element MB whenever MB is generated or added because of MA
= Retrieve links are drawn when MB is extracted (queried) from a model A and
added to another model B
= Containment links are drawn, when in a new model B the model element MA is
contained in another model element MB'
= Delete links are drawn if In model B the model element MB should be deleted

= Update links are drawn if MA has changed and MB should be changed too

@ © Prof. U. ABmann

Examples for TraceLinkFacet

45

Model-Driven Software Development in Technical Spaces (MOST)

[Grammel]

» Facets factorize inheritance hierarchies; new facets extend inheritance hierarchies

TextFacet

JavaCodeFacet

//Wmmthod

Values

TextFileValues

TextBlockValues

@ © Prof. U. ABmann

Location StartPos
Name EndPos
UnknownTextFacet

JavaPackage JavaClassValues JavaAttribute
Values Values
Name Name e
Type
UnknownJavaFacet

Name
Parameters
returnType

Different Kinds of Trace Models

46 Model-Driven Software Development in Technical Spaces (MOST)

» So far, trace mappings were realized as associations in a simple model mapping
» The trace metamodel can be extended to describe a trace model, a specific form of

connector model
ModelMapping
Simple
ConnectorModel ModelMapping
TraceModel TraceMapping NameMapping

@ © Prof. U. ABmann

Adding a Trace Link Generator to Tools

47 Model-Driven Software Development in Technical Spaces (MOST) [Grammel]

© Prof. U. ABmann

» TracelLinkGenerators for Trace Models must be written by hand

» They can be connected to transformation engines and cartriges in three ways,
following a generic traceability interface:

Transformation Via Generic Traceability TraceLinkGenerator
Engine Interface Engine

Transformation (Blackh ; j raceLinkGenerator Transformation engine
Engine ack-box connector Engine must know and call
the generator

Transformation engine
need not know but

is extended

Invasively or woven
By AOP

raceLinkGenerator

Transformation (| : t j
nvasive connector Engine

Engine

Traceability in Macromodels with Models from Link-Treeware

48 Model-Driven Software Development in Technical Spaces (MOST)

> Inlink-tree models, a skeleton tree exists, in which every model element has a unique
tree node number (hierarchical number)

> Trace links can be added with tree node number and stored externally of the model in
the macromodel

In link-treeware, macromodels Hierarchical numbering of the classes
maintain trace(link) models in an inheritance tree:

linking and tracing all models and
thelr elements by referencing the 1. TraceLink
hierarchical numbers of all nodes

1.1. MonotonicLinkj 1.2 ChangesLink

1.1.1 DirectLink 1.1.2 CreateLink 1.'1'3 . 1.2.1 UpdateLink || 1.2.2 DeleteLink
RetrievelLink

1.1.2.1
ContainmentLink

(ﬁ © Prof. U. ABmann

32.4 Traceability in Practical Requirements
Management Tools

[omitted in 2021/22]

Introduction to Requirements Management (RM)

50 Model-Driven Software Development in Technical Spaces (MOST)

> RM bridges the needs of the customer to testing, design, coding, and documentation
> RM continuously manages requirements in the entire software life cycle
> RMrelies on inter-model mappings between requirements, test cases, design, and code

Solution
Space
Problem /
AN
..-=322=--1| Trace Model AN The
Product C Product
Features To Be
Problem EUlt
Software
Space Requirements ™~ /%\

/ Test <@------="77" \ Design

@ © Prof. U. ABmann
N
N

Tools in an Integrated Development Environment (IDE)

51 Model-Driven Software Development in Technical Spaces (MOST)

[Requirements Tool] Coding Tool Testing Tool

[Model mappings][Model slicing] [Model composition]

[Reachability analysis (traceability)] [Attribute analysis
Reasoning Relational GRS TRS XML
engine engine engine engine engine

Metamodel

Repository
(M2)

Requirements
Repository

Test Case
Repository

Design Implementation
Repository Repository
(PIM, Arch) (PSI, Code)

@ © Prof. U. ABmann

Deficiencies of Current RE Methods

52 Model-Driven Software Development in Technical Spaces (MOST)

» Relationships among requirements are inadequately captured

= Causal relationship between consistency, completeness and correctness
[Zowghi2002]

= Completeness and consistency are not verified
» Requirement problems (e.g. conflicts, incompleteness) are detected too late or not all

» Relationships between requirements and dependent artifacts are insufficiently
managed (test, documentation, design, code)
» Desirable:

= Models for RE need richer and higher-level abstractions (goals, problems, needs)
to validate that they are fulfilled [Mylopoulos1999]

- Metamodels can be used to define these concepts
- Ontologies deliver reasoning services
= Model mappings (direct and indirect) between the artifacts (design, code) and the
goals, problems, needs of the customer
- Based on the model mappings, the requirements are consistently
managed with design, code, and documentation

@ © Prof. U. ABmann

Requirement knowledge is not sufficiently covered:
Intentions, risks, obstacles and decisions are not
documented during RE and thus, are not available at later
stages during software development.

_Relationships among requirements are inadequately covered: requirements
instead of defining which kind of relation is meant (e.g. excluding, alternative,
generalization).

vicious circle of completeness, correctness and consistency (Zowghi et. Al)

Zowghi et. al. ([3])

describes this vicious circle as a causal relationship between consistency,
completeness and correctness. From a formal point of view, correctness is usually
meant to be the combination of consistency and completeness. Therefore, the
ability to detect and repair inconsistent and incomplete requirements is crucial
to the successful development of requirements specications

Complete metadata for requirements, that is data about

that requirement rather than data listed in the requirement [6]), ensure
completeness.

Though current RE tools provide means for capturing requirements, they fail in
providing sufficient support for metadata about requirements and leave it to the
requirements engineer to define them. Another shortcoming of RE tools is the
lack of tests for completeness, that is, checking whether all important metadata
are available. This way, the requirement engineer would detect missing but

relevant information easily.

Model Mapping in MID INNOVATOR

53

Model-Driven Software Development in Technical Spaces (MOST)

@ ©Prof. U. ABmann

Element Bearbeiten Ansicht Model

G EAEEB0Q

> Innovator can be employed simultaneously for requirements, design and

implementation models
> How torelate these models?

INNOVATOR

Enginesring Wechseln Extras Hife

EEa6|EERG heBe Dl 2o G4 0
f,i TTBib_UML = ‘Stalus ‘ Mame ‘ Tvp ‘ Anderungsciatum
EHZY systemmodel 10 a [Fauseihs Sec.. 22:11.2003 00:48:02
FE5} external object $INOTMP/docs 20 A Kunde_snmelden Koll... 10:11.2003 01:21:54
S Use Case System 30 A [T Ricksbe Sec... 22112003 00:21:47
-[t anslysis system 40 A @ Tortrager_Einkauf Sec.. 10.11.2003 01:23:59
T Java design system 50 A @ Kunden_neu_snlegen Sec.. 10.11.2003 01:26:13
-~ Javai ion system § e 6 0 A [2] AnalysisClassDiagram Hlae.. 09112003 152814
9 systemblodsl management 70 A (O Verwatung &S Klas... 09112003 152556
50 A Q Tortréger_AS Kz 09.11.2003 15:20:08
90 A Q Kunde_AS Kz 09.11.2003 15:27:32
oA Q * Kunde_AS Obj... 09.11.2003 13:20:05
0 A () Tonrager_AS Obj... 03112003 132016
oA KD verwatungUl_AS Kz 09.11.2003 15:16:32
0 A HD:verwatungUl_aS Ohj. 03112003 13:23.08
oA i * Kunde_UC Ohbj... 09.11.2003 14:05:54
0 A i Bibliothek_UC Obj... 08112003 15:44:35
0 & (O Verwatung AS Obji... 09412003 161414

Direct Traceability

54

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

» With a direct model mapping, a requirements model can be linked
= toatest case specification
= toadocumentation
= to an architectural specification
= viathe architectural specification, to the classes and procedures in the code

Example: imbus TestBench

55

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

(@)
=

-

.

Q

=

Q

o
(/p)

http://www.imbus.de/produkte/imbus-testbench/hauptfunktionen/

Planung

(

Analyse
& Design

|

Automatisierung

|

Realisierung &
Durchfithrung

|

Auswertung & Bericht

|

Abschluss

Requirements get “red-yellow-green” Test Status Attribute

56 Model-Driven Software Development in Technical Spaces (MOST)

» Test status is an attribute in the requirements tree that contains a direct link to the
result of a corresponding test case

[anforderungsverwaltung von Car Konfigurator (Version 2.1, Abnahmetest)

Anforderungshaum:

m CarConfigurator - Yersion 1.1 {caliber)
¢ [1. Business Requiremeants
[» Konfiguration zusammenstellen
¢ [vM Rabatt gewahren
%M automatische Rabatte
[y M Handler gewahr Rabatt
o [2. User Requirements
2 standige Preisanzeige
[y keine erzwungens Bedienerfolge
¢ B 3. Functional Requirements
[y M sofortige Preisherechnung
¢ M Guelle der Basisdaten
%M Impart einer Datei
oM Impart vam OEM-Host
¢ [4. Design Requirements
G0 giittige Konfiguration
v Eingabe der Basisdaten

Details r Benutzerdefinierte Felder r Erweitert r Wird verwendet in r Alle Versionen |

Name:
1D:

Yersion:

Eigentiimer:

Status:
Prioritét:

Test-Status:

Handler gewahrt Rabatt
WHY162
1.1

Review Complete

Es=zential

M Getestet PASS

Testi[...; endpreis-berechnen-mit-rabatten_log.cmi

Aktuelle Ansi : Endpreis berechnen mit Rabatten :

57 Model-Driven Software

0. 2.3.2 Endpreis herechnen mit Rabatien

=-EM 1 einfach

CarConfig Starten

&M Preis prifen

CarConfiy Beenden

= EIM 2 Testal

CarConfig Starten

=] QFahlzeug konfigurieren

Fahizeug wahlen CBR

£} Sondermodell wéhlen
1} Zubehdrwahlen
€ Preis prifan

=] ’ W Fahrzeug konfigurieren
13 M Fahrzeug wanlen CBR
4§ M Sondermodell wahlen

£ M Preis priien

=] Pl Fahrzeug konfigurieren
13 M Fahrzeug wahlen CBR
il

43 M Zubehorwahlen
&M Preis prafen
=] Pl Endpreis berechnen "ohne" Rabatt
W carconfiy Starten
=] M Fahizeug konfigurieren
13 M Fahrzeug wahlen CBR

Datei Anzeige Mavigation Zetmessung Fenster Hife

Meni & ? o X

ahrzeug wahlen CBR

Interaktion

| Farzeug wahlen CBR

Parameter \ Wert

Faromg

Interaktion: Fahrzeug wiahlen CBR

e ¥

X Bemerkungen x

zur D

Fahrzeug aus der Liste der Fahrzeuge wihlen

X Aufgezeichnete Atiribute X

<filr diesen Knotentyp kinnen Benutzerdefinierts Felder nicht definiert werden=

Tester

Liste der Anforderungen Alktuelles Ergebnis Zu prifen
Ergebris-Cetum (DD M YY)
Mame [} Wersion Eigertiimer | Status Prioritat
Ergebris-Tet (HHVMSS)
soforfige Preisherschnung WHAT303 34 Dierk Accepted Essential
keine erzwungene Bedienerfolge. USER302 10 Dierk Submitted Es=ential 4
sténdige Preisanzeige LSER30 10 Dierkc Submitted Essertial Geplants Durchfihrungszet (DDHAMM 55.555) | 00:00:00:00.000

Aftuglle Durchfivungszet (DD HHMMS5.555)
LAY

@ © Prof. U. ABmann

Direct Model Mappings between Requirements and Test Tools

58

Model-Driven Software Development in Technical Spaces (MOST)

(ﬁ © Prof. U. ABmann

» Most often, these tools are in Link-treeware (hierarchical requirements, hierarchical
test cases and test suites)
» — Thetrace models can be stored externally in the megamodel
= Everytrace link refers to link-tree node numbers in the requirements and test
specifications

32.5 The MDA Macromodel of RoSI (RoSI-MDA):
Representing Trace Mappings as Role-Playing

e What happens if contexts and roles are available in models?

o The Megamodel of RoSI and its traceability of model elements is extremely simple, because the
role-based models and metamodels are factorizing objects

e RoSI-MDA is homogeneous Macromodel

Remember: The Steimann Factorization of Natural and Role
Types

60 Model-Driven Software Development in Technical Spaces (MOST)

Splitting a full type into its natural and role-type components
= FullType = Natural x (role-type, role-type, ...)
= FullPerson = Person x (Reader, Father, Customer, ..)

FullBook
<<compartment>> Nutrition

FullMan = Bought Sausage

<<compartment>> Mafriage FullWoman
Woman
<<cpmpartment>>
Man Respurces
FullNewsPaper
:
Newspaper

Remember: Full Type is from Inheritance Product Lattice

61 Model-Driven Software Development in Technical Spaces (MOST)

Q: What is a reading buying grandfather person? (A: tuple type)

" Role 1
—»> Role 2

Natural (entity)

—» Role 3
Thing Accessor
T = a I

LivingBeing

/<] v\ T
(Father)
Mammal Dinosaurs

Mother)
Negotiator
f Zf ST\R
: Grand Grand .
P Chick
erson icken (Fatherj (Motherj (Reader] (Writer] (Buyer (Seller]

)

@ © Prof. U. ABman|

Scalable Bindung Time of Contexts with the Factorization

62 Model-Driven Software Development in Technical Spaces (MOST)
> Scalable Binding: Roles can also be bound statically, if mixins are used as
implementation (fixing the context)
» Consequences for object life time, cohesion, allocation, adaptation, reconfiguration
e ———— U i
L o v ™
Static fixed role type 1 role type 2
SR /\
o) (o)
| Mammal | Dinosaurs| T T SR
|
< | Person Chicken Grand Grand [Reader][Writer } [Buyer][Seller]
2 :
[®
STl L i N\ L N L Y,
'z

OPTIONAL

RoSI Macromodel (RoSI-MDA): Refinement by Role
Allocation

63 Model-Driven Software Development in Technical Spaces (MOST)

> Refinement by allocation of further roles - static roles at design time, dynamic roles at runtime
> In RoSI-MA, the role-play relation is subset of the traceability relation

O s

@ © Prof. U. ABmann

Die Faktorisierung hilft, die Traceability von natirlichen Objekten zu
verbessern, denn sie konnen nun von Rollen unterschieden werden

63

RoSI-MDA: Traceability in Refinement by Role Allocation

64 Model-Driven Software Development in Technical Spaces (MOST)

> Refinement by allocation of further roles - static roles at design time, dynamic roles at runtime

@ © Prof. U. ABmann °

Die Faktorisierung hilft, die Traceability von natirlichen Objekten zu
verbessern, denn sie konnen nun von Rollen unterschieden werden

64

RoSI Macromodel (RoSI-MDA): Cross-Layer Role-Based
Refinement in the Software Life Cycle

66 Model-Driven Software Development in Technical Spaces (MOST)

> Refinement by allocation of roles provides simple traceability because Natural objects STAY the same
» Trace mapping is role-play relation joined with context-role matrix
> Platform properties are ,technical” roles of the objects

= Technical plattforms are static contexts

= Dynamic contexts (place, time, service quality)

Natural Fixed Role Fixed Role Fixed Role 3 Fixed D i D i Dy

J J J
1 2 Role 4 role 1 role 2 role 3
Person
Person Customer
Person Customer Customer
Design
Person Customer Customer Platform-specific
Design Behavior
Person Customer Customer Platform-specific Full static
Design Behavior behavior
Person Customer Customer Platform-specific Full static Behavior in
R e Ganied 1 Design Behavior behavior ~ Context 1
c
2 Person Customer Customer Platform-specific Full static Behavior in Behavior in
Run time context 2 Design Behavior behavior Context 1 Context 2
Run time context 3 Person Customer Customer Platform-specific Full static Behavior in Behavior in Behavior in
Design Behavior behavior Context 1 Context 2 Context 3

)

Die Faktorisierung hilft, die Traceability von natirlichen Objekten zu
verbessern, denn sie konnen nun von Rollen unterschieden werden

66

Advantages of RoSI-MDA (Role-Based MDA)

67 Model-Driven Software Development in Technical Spaces (MOST)

> Very simple, component MDA with easy traceability:
= Cores of objects map 1:1 from CIM via PIM and PSM into the application PSI
(context-role matrix)
= Variability via new roles for PIM, PSM, PSI
= “object fattening” through the MDA
» Projection (get) and reintegration (put) is simple for MDA-SUM

@ © Prof. U. ABmann

End

68

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

Why do the models of MDA form a macromodel, while MDA is a megamodel?
Which trace link types are important for MDA?
Why is a context-role-based model better for traceability?
How does JastAdd aspects achieve MDA refinement?

= How is traceability achieved?

= How model synchronisation?
How does RoSI-MDA achieve global traceability from requirements to run time?
How will megamodel look like that provides Link-tree-based models and Role-based
factorization of objects?

= How does atrace link look like?

= Where are the trace links stored?

= Why can XML be used as simple exchange format in these megamodels?

