
Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Softwrae Development in Technical Spaces

32. Macromodels in One Technical Space

Prof. Dr. U. Aßmann

Technische Universität Dresden

Institut für Software- und
Multimediatechnik

http://st.inf.tu-dresden.de/teaching/
most

Version 21-0.2, 22.01.22

1) Model-Driven Architecture (MDA)

2) MDA Toolkits

3) Traceability in Model Transformations

4) Direct Model Mappings between
Requirements and Tests

5) RoSIMDA – a Very Simple MDA with
Trace Mappings as Role-Play
Relations

 ©
 P

ro
f.

U
. A

ß
m

an
n

2 Model-Driven Software Development in Technical Spaces (MOST)

Literature

► [CH06] Krzysztof Czarnecki, Simon Helsen. Feature-based survey of model transformation approaches. IBM
Systems Journal 2006. DOI:10.1147/sj.453.0621

► [Hedin09] Görel Hedin. Tutorial: Generating Language Tools with JastAdd

■ http://fileadmin.cs.lth.se/sde/people/gorel/misc/gttse-draft-oct-2009-tutorial.pdf

► [MID] MID Innovator Tutorial
https://www.mid.de/fileadmin/mid/PDF/Kundenbereich/11_R3/de/Innovator_11.3_Leitfaden.pdf

► Birgit Grammel. Automatic Generation of Trace Links in Model-driven Software Development. PhD thesis,
Technische Universität Dresden, Fakultät Informatik, February 2014.

■ http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-155839

► Frédéric Jouault and Ivan Kurtev. On the Architectural Alignment of ATL and QVT. In: Proceedings of the 2006
ACM Symposium on Applied Computing (SAC 06). ACM Press, Dijon, France, chapter Model transformation (MT
2006), pages 1188—1195.

 http://atlanmod.emn.fr/bibliography/SAC06a

► Tutorial über ATL “Families2Persones”
■ http://www.eclipse.org/m2m/atl/doc/ATLUseCase_Families2Persons.ppt

► ATL Zoo von Beispielen: http://www.eclipse.org/m2m/atl/atlTransformations

► Kevin Lano. Catalogue of Model Transformations: http://www.dcs.kcl.ac.uk/staff/kcl/tcat.pdf

► Implementation in ATL
 http://www.eclipse.org/m2m/atl/atlTransformations/EquivalenceAttributesAssociations/

EquivalenceAttributesAssociations.pdf

 ©
 P

ro
f.

U
. A

ß
m

an
n

3 Model-Driven Software Development in Technical Spaces (MOST)

Literature on MDA

► https://www.omg.org/mda/products_success.htm
■ https://www.omg.org/mda/mda_files/SuccesStory_DC_TSS_MDO_English.pdf
■ https://www.omg.org/mda/mda_files/SuccessStory_DBB_4pages.pdf

► Alan Brown. An introduction to Model Driven Architecture. Part I: MDA and today's systems

► http://www.ibm.com/developerworks/rational/library/3100.html

► Petrasch, R., Meimberg, O.: Model Driven Architecture - eine praxisorientierte Einführung in die MDA. Dpunkt-
Verlag. 2006

■ Teaser chapter
https://www.researchgate.net/publication/220693090_Model_Driven_Architecture_-_eine_praxisorie
ntierte_Einfuhrung_in_die_MDA

 ©
 P

ro
f.

U
. A

ß
m

an
n

4 Model-Driven Software Development in Technical Spaces (MOST)

Q10: The House of a Technical Space

Mega- and Macromodels

Tool Architectures

Model Management
Mapping, Transformation, and Composition

Technical
Space
Bridges

Technical Space

Meta-
modeling

Model Analysis
Querying, Metrics, and Analysis

Metapyramid (Metahierarchy) for Token Modeling

 ©
 P

ro
f.

U
. A

ß
m

an
n

5 Model-Driven Software Development in Technical Spaces (MOST)

Software Factories

A software factory schema essentially defines a recipe for building
members of a software product family.

Jack Greenfield

https://www.researchgate.net/publication/213883069_Software_Factories_Assembling_Applications_with_Patterns_Frameworks_Models_and_Tools

In this course:

A software factory combines the languages and tools of several
technical spaces to create software and cyber-physical systems
product families.

 ©
 P

ro
f.

U
. A

ß
m

an
n

6 Model-Driven Software Development in Technical Spaces (MOST)

Q12: A Software Factory's Heart: the Multi-TS Megamodel

Mega- and Macromodels

Method Engineering

Model Management
Mapping, Transf., Composition

Technical
Space
Bridges

Technical Space

Pattern
Languages

Model Analysis
Querying, Interpretation

Metapyramid (Metahierarchy) for Token Modeling

Software Factory

Multi-TS
Megamodel

Mega- and Macromodels

Method Engineering

Model Management
Mapping, Transf., Composition

Technical
Space
Bridges

Technical Space

Pattern
Languages

Model Analysis
Querying, Interpretation

Metapyramid (Metahierarchy) for Token Modeling

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Softwrae Development in Technical Spaces

32.1 Model-Driven Architecture (MDA)
(Modellgetriebene Architektur)

MDA is a trademark of OMG

MDA is an industrial megamodel in the spirit of ReDeCT.

Its instances in software product are multimodels, connecting several model abstraction levels.

 ©
 P

ro
f.

U
. A

ß
m

an
n

8 Model-Driven Software Development in Technical Spaces (MOST)

Software Factories with Only 1 Technical Space

Mega- and Macromodels

Tool Engineering

Model Management
Mapping, Transf., Composition

Technical
Space
Bridges

Technical Space

Meta-
modeling

Model Analysis
Querying, Interpretation

Metapyramid (Metahierarchy) for Token Modeling

Software Factory

Multi-TS Megamodel

In this chapter:
1-TS Megamodels

MDA, RoSI-MA

 ©
 P

ro
f.

U
. A

ß
m

an
n

9 Model-Driven Software Development in Technical Spaces (MOST)

Q12: The ReDoDeCT Problem and its Macromodel

► The ReDoDeCT problem is the problem how requirements, documentation, design,
code, and tests are related (V model)→

► Mappings between the Requirements model, Documentation files, Design model, Code,
Test cases

► A ReDoDeCT macromodel has maintained mappings between all 5 models

Requirements Design Code Test

Package Bill {
 Uses Order;
 Class Counting {
 Procedure count IS
 End;
}
}

Package Order {
 Uses Bill;
 Class Ordering {
 Procedure count IS
 End;
}
}

Package TestBill {
 Uses TestOrder;
 Proc testCounting
IS
….
 End;
}
}
Package TestOrder {
 Uses Bill;
 Class TestOrdering {
 Procedure
testCount IS
 End;
}
}

Node

Node

Component

Component

System

DocumentationNon-Functional
Requirement A Non-Functional

Requiremens B
Goal BGoal A

 ©
 P

ro
f.

U
. A

ß
m

an
n

10 Model-Driven Software Development in Technical Spaces (MOST)

Overview Table for Link-Tree Macromodels

► A tree node abstracts a subtree (representant)
■ Attributes and attributions are composable partial mappings from treenodes

► RAGs are useful for all kinds of structure- and function-modeling in Link-Tree
Macromodels, because they abbreviate dependencies in several models with cross-
model relations.

■ In a macromodel under an artificial root (rooted macromodel), attributions can
work on the SUM to ensure the constraints

► Relational RAGs (RelRAGs) are useful, because they have bidirectional constraints

(Plain) MDA General SUM Skeleton SUM (partial function extension)

RAGs in Repositories Markings Repository-SUM: get/put as higher-order
attributions of link trees

● Javadoc-SUM

RAGs in Data-flow architectures Needs trace models get/put as model
transformations (lenses)

Flow-SUM: Communicating link trees; In-place
transformations of SUM

● Google Docs, Stream-Based MDA

The Link-Treeware TS is well apt for macromodel construction in a software factory

Other Examples form
•Olympic ring decomposition (EAI) marks all
modules with “rings” and thereby decomposes
them (course ST-1)
•VSUM (Reussner, Burger et al) generates
dependent parts by create trace links

 ©
 P

ro
f.

U
. A

ß
m

an
n

11 Model-Driven Software Development in Technical Spaces (MOST)

Model-Driven Software Development (MDSD) in 1 Technical
Space

► MDSD in 1-TS falls into several main development methods with a macromodels:
 Engineering with metamodels in ReDeCT-like megamodels (integrated software life-cycle

management tools):

. for integrated requirements, documentation, and testing along the life-cycle

. Model-Driven Architecture (MDA) (MDA toolkits)
■ Engineering with DSL (domain-specific modeling, DSM) (Meta-CASE toolkits)

. For simplifying the specification of domain-specific software

► Model mappings correlate models

■ capturing reachability informations (path abbreviations)

■ defining trace relations between model elements
 From them, model transformations can easily be derived

► Model transformations
 Horizontal model transformations transform a model within a single language

 Vertical model transformations transform a model from a higher-level language to a lower-lewel
language (lowering)

 Broadband model transformations (lowerings) transform a model from a higher-level set into a
lower-level set of a broadband (wide-spectrum) language

► Model compositions compose models with extensions
■ Model weavings extend models by other models and weave them together

 ©
 P

ro
f.

U
. A

ß
m

an
n

12 Model-Driven Software Development in Technical Spaces (MOST)

Model-Driven Architecture (MDA)

► Model-Driven Architecture (MDA) is a macromodel similar to ReDoDECT, but distinguishes more
models:

■ Platform-independent model (architectural)

■ Platform-specific model (in modeling language equivalent to coding language)

■ Platform-specific implmentation (in coding language)

► On the other hand, documentation is neglected :-(

► MDA uses model mappings, horizontal and vertical model transformations, as well as code generation

Transformations...

 ©
 P

ro
f.

U
. A

ß
m

an
n

14 Model-Driven Software Development in Technical Spaces (MOST)

M2

CIM
PIM

PSM

CIM-MM
PIM-MM

PSM-MM

Models

Runtime system instances

MOF

<<instance-of>>

The MDA Megamodel, a Specific Variant of ReDoDeCT,
Embedded in the MOF Metapyramid

TESTM

TEST-MM

PSI

M2

M1

M0

M3

DM

DM-MM

describing the situation in which the system will
be used

A CIM is a model of a system that shows the
system in the environment in which it will
operate, and thus it helps in presenting exactly
what the system is expected to do.

 ©
 P

ro
f.

U
. A

ß
m

an
n

16 Model-Driven Software Development in Technical Spaces (MOST)

PIM and PSM and Model Mapping in MID INNOVATOR

► Innovator can specify transformations between its models [MID]

 ©
 P

ro
f.

U
. A

ß
m

an
n

17 Model-Driven Software Development in Technical Spaces (MOST)

Example: PIM and PSM Extend the CIM in the Janus Toolkit

Quelle: Warum JANUS MDA und MDA JANUS ist; Whitepaper der Firma otris Software AG Dortmund; URL: www.otris.de
http://pi.informatik.uni-siegen.de/stt/15_3/15_3_weg_01.gif

Platform-specific Model (PSM)
Specific applicaiton parts
Communication

Domain model (DM) and
requirements model (CIM,
Computation independent model)

PIM

PSMPSM

Platform-independent Model
(PIM)
Application architecture

Platform-specific
Implementation (PSI)
Handwriten additions
in programming language

► In the MDA, there are
model mappings between
the models DM - CIM –
PIM – PSM - PSI

 ©
 P

ro
f.

U
. A

ß
m

an
n

18 Model-Driven Software Development in Technical Spaces (MOST)

Model Management in Megamodels

► In the MDA megamodel,because MDA enriches models from top to bottom, the mappings
between models must be maintained with a model algebra:

 Model difference analysis (Diff, comm of models)
 Version management
 Konfiguration management

 Model composition
 Lookup and query of model elements
 Union, compose, weave, unweave of models

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Softwrae Development in Technical Spaces

32.1.2 Different Forms of MDA

 ©
 P

ro
f.

U
. A

ß
m

an
n

20 Model-Driven Software Development in Technical Spaces (MOST)

Different forms of MDA

► A transformative MDA uses refinement transformations for variation
■ introduces trace links (32.3)

► An MDA is called component-based (CoMDA) if the variation action is the exchange of
an implementation behind an interface, or if the component model is used for exchange

■ RoSIMDA MDA (32.5)

► A transformative CoMDA uses point-wise refinement transformations on a model-based
component model

■ for instance, refinements in Petrinets
■ combining trace links and component-based MDA (32.3 and 32.5)

► A MDA-SUM uses transformative or component-based MDA for realizing views on a
single underlying model (SUM) (next chapter)

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Softwrae Development in Technical Spaces

32.1.3 Morphic Model Mappings and
Transformations

 ©
 P

ro
f.

U
. A

ß
m

an
n

22 Model-Driven Software Development in Technical Spaces (MOST)

Morphic Mappings and Pointwise Transformations on Marked
PIMs

► Morphic mappings (1:1 or 1:n) are
defined by marked PIMs:

■ Stereotypes introduce a mapping from 1
element of the PIM to n elements in
the PSM

■ Supported by many MDA tools, such as
AndroMDA

► The stereotype creates a mapping
between a PIM class and a set of PSM
classes

■ The stereotype tells the MDA system
how to transform the PIM class to the
PSM (stereotype triggers template
extension)

■ The stereotypes partition the PSM: The
border of a partition is demarcated by
the PIM stereotype tag

► Example: automatic creation of
interfaces for implementation classes

► Easy traceability by morphic mapping

22

-int sum
+withdraw()

<<with_interface>>
Loan

-int sum
+withdraw()

LoanImpl

+withdraw()

LoanInterf

PIM

PSM

with_interface:
Template

(Class)

Example: different class implementations of a
connector class in a PIM

 ©
 P

ro
f.

U
. A

ß
m

an
n

23 Model-Driven Software Development in Technical Spaces (MOST)

Example of a Marked PIM and the Induced Pointwise Model
Transformations

► Tags (stereotypes) may denote different class implementations in a PSM or PSI

► Here: mapping of a class and activity diagram to different languages, using different
code generation templates, triggered by stereotype marking

P
ro

f.
 U

.
A

ß
m

a
n

n

23

-int sum
+withdraw()

<<Java>>
Loan

// Java implementation as a decorator
class Loan extends Account {
 // decorator backlink
 Account upper;

 private int sum;
 public void withdraw(
 int amount) {
 sum -= amount;
}

// C# implementation: a partial class
partial class Loan : Account {
 private int sum;
 public void withdraw(
 int amount) {
 sum -= amount;
}

-int sum
+withdraw()

<<C#>>
Loan

<<generate>>

sum = sum - amount

amount
Marked
PIM

Marked
PIM

PSI
Java

PSI
C#

C#:
C#-Template

(Class)
Java:

Java-Template
(Class)

1) Umarbeiten auf code models
2)Petri netze zeigen oder statecharts

 ©
 P

ro
f.

U
. A

ß
m

an
n

24 Model-Driven Software Development in Technical Spaces (MOST)

Cartridges are Transformation Libraries for Marked PIMs

► A Cartridge is a plugin to an MDA tool defining both the model mapping and the model
transformation

■ For vertical and horizontal transformations
■ Definition of stereotypes for PIM markings in vertical transformations

. Manual marking of the PIM

. Selective transformation of the marked PIM classes
■ Automatic transformation using the mapping and transformations from the

cartridge
. No manual specifications of mappings and transformations

necessary

P
ro

f.
 U

.
A

ß
m

a
n

n

24

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Softwrae Development in Technical Spaces

32.1.4 Cartridges (Platform Extensions)
in RAGs and JastAdd

 ©
 P

ro
f.

U
. A

ß
m

an
n

26 Model-Driven Software Development in Technical Spaces (MOST)

RAG Modules Compose Extensions into CIM or PIM

► The basic module can be DM, DM+CIM, DM+CIM+PIM
■ Extensions are PSE, PSI

► Due to the declarativeness of attributions, modules can be unified by term (tree
unification)

■ Names of the classes serve as unificator

// JastAdd Additional Tree Spec for
// Requirements Model (cartridge for CIM)
aspect CIM {
 class CIMAcc extends Account {
 }
 eq Loan.fun1() = ..
 syn Savings.fun2 () = ..
 inh ..

}

// JastAdd Main Tree Spec
// Domain Model
class Loan extends Account {
 eq ..
 syn ..
 inh ..
}
class Saving extends Account {
 eq ..
 syn ..
 inh ..
}

Intertype declarations

 ©
 P

ro
f.

U
. A

ß
m

an
n

27 Model-Driven Software Development in Technical Spaces (MOST)

// JastAdd Additional Tree Spec
aspect CIM {
 eq Loan.fun1()
 eq ..
 syn ..
 inh ..
}

Ex.: JastAdd Aspects are Cartridges

► A JastAdd Aspect, like a cartridge, extends a set of Main Tree Nodes and their attributions with new
attributions [Hedin09]

■ Intertype declarations distribute a class definition over several files of MDA

■ (Declarative) aspect files are composed by class unification

// JastAdd Main Tree Spec
// Domain Model
class Loan extends Account {
 eq ..
 syn ..
 inh ..
}

// JastAdd Additional Tree Spec
aspect TestM {
 eq Loan.test_fun1()
 eq ..
 syn ..
 inh ..
}// JastAdd Additional Tree Spec

aspect PIM {
 eq Loan.fun2()
 eq ..
 syn ..
 inh ..
}

// JastAdd Additional Tree Spec
aspect PSM {
 eq Loan.fun3()
 eq ..
 syn ..
 inh ..
}

// JastAdd Additional Tree Spec
aspect PSI {
 eq Loan.fun4()
 eq ..
 syn ..
 inh ..
}

 ©
 P

ro
f.

U
. A

ß
m

an
n

28 Model-Driven Software Development in Technical Spaces (MOST)

MDA by Composition of RAG Aspects

► RAG modules, e.g., JastAdd aspects, can be used as MDA cartridges
■ They compose class extensions “around” class names
■ Model weaving is done by class composition
■ Intertype declarations introduce “mixins” into classes of main syntax tree

► Model Refinement (in MDA) is done by modular composition (aspect composition) with
intertype declarations

■ Model synchronisation is done by re-composition
■ RAG-MDA supports composable macromodels

► Model mappings achieved by common class names
■ Tracing is easy (common classes for extensions)

RAG modules, e.g., JastAdd aspects, can be used as MDA cartridges

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Softwrae Development in Technical Spaces

32.1.5 Morphic Model Transformations in JastAdd

 ©
 P

ro
f.

U
. A

ß
m

an
n

30 Model-Driven Software Development in Technical Spaces (MOST)

► Morphic mappings (1:1 or 1:n) can be
realized by JastAdd Rewrite
operations or Term rewrite operations
 (Stratego, Xcerpt)

■ If Users add a stereotype to a node of
a PIM

■ Rewrites can reduce them

► The rewrite is a replace operation of
the marked node by its
“implementation”

► Rewrite rule transforms redex of
upper model to snippet in lower model

► Easy traceability by morphic mapping

► The PIM tree as well as the PSM tree
are represented by the top node

► The PIM tree snippet and the PSM
tree snippet are homomorphic regions

30

Morphic Transformations on Marked PIMs

-int sum

Tags: {<<with_interface>>}
Name: Loan

Name:LoanImpl
Extends:^LoanInterf Name:LoanInterf

with_interface:
TemplateTree

(Class)

+withdraw()

Tags: {}
Name: LoanCompound

-int sum +withdraw() +withdraw()

PSM
tree

PIM
tree

Example: different class implementations of a
connector class in a PIM

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Softwrae Development in Technical Spaces

32.2 MDA Toolkits

 ©
 P

ro
f.

U
. A

ß
m

an
n

32 Model-Driven Software Development in Technical Spaces (MOST)

Some MDA Tools

Integrated into URL

AndroMDA Eclipse http://www.andromda.org/

XText, Xpand Eclipse http://www.eclipse.org/Xtext/

IBM Rational Suite
Software Architect

Eclipse

BITplan smart Generator Eclipse http://www.bitplan.com/

Epsilon Eclipse https://www.eclipse.org/epsilon/

[Petrasch, R., Meimberg, O.: Model Driven Architecture - eine praxisorientierte Einführung in die MDA;
 dpunkt-verlag 2006]

 ©
 P

ro
f.

U
. A

ß
m

an
n

33 Model-Driven Software Development in Technical Spaces (MOST)

Important Features of MDA Toolkits

► Model-to-Model Mapping bzw. Model-to-Model Transformation (e.g., PIM to PSM) with
cartridges

► User definition of model transformation cartridges with query and transformation languages

■ e.g., with QVT, ATL, Graph writing or XML Rewriting

► Forward- und Reverse-Engineering

 Code generation (Model-to-Code Transformation, PSM to PSI)
 Mapping to a programming language (e.g., with JMI)

► Roundtrip-Engineering between models and code

► Single underlying model (SUM): forming views by get and put operations

► Model-driven Testing: generation of test cases ad test data based on models

[Petrasch, R., Meimberg, O.: Model Driven Architecture - eine praxisorientierte Einführung in die MDA;
 dpunkt-verlag 2006]

 ©
 P

ro
f.

U
. A

ß
m

an
n

34 Model-Driven Software Development in Technical Spaces (MOST)

32.2.1 AndroMDA, a Leading MDA Toolkit Focusing on PIM-
PSM Transformations

34

Platform Independent UML Model (PIM)

Partial Platform Specific Implementation
(PSM)

Platform-Specific Implementation
(PSI, Code)

Model parsing

Handwritten code
completion

Platform Specific Cartridge with
Model Mapping PIM->PSM

Platform Independent UML Model (PIM)
in internal representation

Model transformation

► AndroMDA defines model mappings in
platform-specific cartridges.

[www.androMDA.org]

► A cartridge contains a mapping from
UML to e.g., Java, C# or C++ and a model
transformation

► AndroMDA defines cartridges for
■ UML-CD: Spring, Hibernate

(persistency), XML, Enterprise
Java Beans (EJB)

■ UML-AD: Struts, Java Server
Pages(JSP), Servlets

 ©
 P

ro
f.

U
. A

ß
m

an
n

35 Model-Driven Software Development in Technical Spaces (MOST)

32.2.2 MDA Toolkit ArcStyler

ArcStyler is a toolkit working with several UML-editors such as MagicDraw or Rational Rose

► Cartridges for model mappings and transformations

► Object Modeler for requirements modeling; based on CRC-Cards

► Pattern Refinement Assistant transforms the domain model interactively into a PIM UML-model
(with MagicDraw or Rational Rose)

■ With annotation of design decisions

► Refinement of the PIM

■ Horizontal refinement on PIM level

■ Vertical transformation to PSM or PSI (code generation)

► Code completion (Codevervollständigung) and optimization for an application platform

► Component generation for user interface

► Generation for build tools

► Generation for database persistency

http://www.software-kompetenz.de/servlet/is/27460/?print=true
Versteegen, G.: Wege aus der Plattformabhängigkeit - Hoffnungsträger Model Driven Architecture;
 Computerwoche 29(2002) Nr. 5 vom 1. Febr. 2002

 ©
 P

ro
f.

U
. A

ß
m

an
n

36 Model-Driven Software Development in Technical Spaces (MOST)

Process Engineering with ArcStyler

http://www.interactive-objects.com/products/arcstyler/supportdocumentation.html
http://arcstyler.software.informer.com/

https://www.omg.org/mda/mda_files/P2A_Tutorial.pdf

 ©
 P

ro
f.

U
. A

ß
m

an
n

37 Model-Driven Software Development in Technical Spaces (MOST)

Cartridges and Generated Artifacts

Quelle: Butze, D.: Entwicklung eines Praktikums für die werkzeuggestützte Softwareentwicklung nach der
 Model-Driven-Architecture; Großer Beleg an der Fakultät Informatik der TU Dresden 2004

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Softwrae Development in Technical Spaces

32.3 Traceability between Models

• Model transformations generate trace mappings

omitted in 2021/22

 ©
 P

ro
f.

U
. A

ß
m

an
n

39 Model-Driven Software Development in Technical Spaces (MOST)

Advantages of Model Mappings

► Error tracing
■ When an error occurs during testing or runtime, we want to trace back the error

to a design element or requirements element

► Traceability
■ We want to know which requirement (feature) influences which design, code, and

test elements, so that we can demarcate modules in the solution space (product
line development)

► Synchronization in Development:
■ Two models are called synchronized, if the change of one of them leads

automatically to a hot-update of the other

► Cohesion of Distributed Information:
■ Two related model elements may contain distributed information about a thing.

The relation allows for reconstructing the full information
■ Example:

. Storing two roles of an object in two different models (See “Amoeba
Object Pattern”)

. Splitting the representation of the requirements on an object and
its design in requirements vs design model

 ©
 P

ro
f.

U
. A

ß
m

an
n

40 Model-Driven Software Development in Technical Spaces (MOST)

Different Forms of Model Mappings

► Directly specified mappings specify a deterministic mapping function between a
source and target model.

■ Direct mappings are specified in GUI or text files
■ Direct mappings may be complete or incomplete

► Recursive mappings are defined in a functional language
■ Denotational semantics is a complete direct mapping of two languages
■ The coverage of the source model must be ensured (completeness of

specification)

► General mappings may be intensionally specified. Source and target models are
mapped

■ With graph reachability expressions (QVT-R, TgreQL, EARS)
■ With query expressions (Semmle.QL)
■ With expressions in a logic (F-Datalog)

► Inter-model mappings are defined between model elements of different models

► Lifted inter-model mappings are lifted from intra-model element mappings

 ©
 P

ro
f.

U
. A

ß
m

an
n

41 Model-Driven Software Development in Technical Spaces (MOST)

System Comprehension:
■ Trace mappings improve orientation in multimodels by navigating via trace links

along model transformation chains

► Change Impact Analysis:
■ to analyze the impact of a model change on other models
■ to analyze the impact of a model change on existing generated or transformed

output
■ To enable to do model synchronization (hot updating dependent parts)

► Orphan Analysis: finding orphaned elements in models

Validation and Verification:

► System Validation: Connecting the requirements with the customer's goals and
problems (see ZOPP method)

► (Test) Coverage analysis: to determine whether all requirements were covered by
test cases in the development life cycle

► Debugging: To locate bugs when tracing code back to requirements
■ To locate bugs during the development of transformation programs

Why Traceability in a Macromodel?

[Grammel]

41

 ©
 P

ro
f.

U
. A

ß
m

an
n

42 Model-Driven Software Development in Technical Spaces (MOST)

Traceability Metamodel: CRUD Types of Trace Links between
Model Elements of Different Models

Source-Target Relations

New Target Model Existing Target Model

[Grammel]

Ex. Morphic
PSM-PSI template
expansion replacing
generated hedged code

Ex. Roundtrip on
PSI generated from template
Expansion, replacing
generated hedged code

Update Transformation
Source --update→ Target

In-Place Transformation
Model--self-update

Destructive Extension-Only
Destructive Extension-Only

Create
Link

Delete
Link

Delete
Link

Create
Link

Update
Link

Create
Link

Update
Link

Ex. Morphic
PIM-PSM transformation
generating new PSM

 ©
 P

ro
f.

U
. A

ß
m

an
n

43 Model-Driven Software Development in Technical Spaces (MOST)

Extensible Traceability Metamodel acc. to Grammel

Model
(to be traced)

TraceLinkFacet

TraceLink

targetsource 1..* 1..*
0..*

0..*

CreateLink RetrieveLink UpdateLink DeleteLink

ChangesLinkMonotonicLink

ContainmentLink

► New facets for new trace link types can be created

Configuration

Granularity

Scope

Tracemodel

Links
1..*

DirectLink

 ©
 P

ro
f.

U
. A

ß
m

an
n

44 Model-Driven Software Development in Technical Spaces (MOST)

Traceability in Macromodels

► Piecemeal growth of macromodels in the software process:
■ Start with requirements, then add more stuff and models

► Add links
■ Symmetric “Direct” (auto-drawn) links are drawn between model element MA

from model A and model element MB whenever MB is related to MA
. Specified by hand or found by a model difference, model analysis or

a model query
■ Create links are drawn between model element MA from model A and model

element MB whenever MB is generated or added because of MA
■ Retrieve links are drawn when MB is extracted (queried) from a model A and

added to another model B
■ Containment links are drawn, when in a new model B the model element MA is

contained in another model element MB'
■ Delete links are drawn if In model B the model element MB should be deleted
■ Update links are drawn if MA has changed and MB should be changed too

 ©
 P

ro
f.

U
. A

ß
m

an
n

45 Model-Driven Software Development in Technical Spaces (MOST)

Examples for TraceLinkFacet

► Facets factorize inheritance hierarchies; new facets extend inheritance hierarchies

TextFacet

UnknownTextFacet

TextBlockValues

StartPos
EndPos

TextFileValues

Location
Name

JavaCodeFacet

UnknownJavaFacet

JavaClassValues

Name

JavaPackage
Values

Name

JavaMethod
Values
Name

Parameters
returnType

JavaAttribute
Values
Name
Type

[Grammel]

 ©
 P

ro
f.

U
. A

ß
m

an
n

46 Model-Driven Software Development in Technical Spaces (MOST)

Different Kinds of Trace Models

► So far, trace mappings were realized as associations in a simple model mapping

► The trace metamodel can be extended to describe a trace model, a specific form of
connector model

ConnectorModel

TraceMappingTraceModel

ModelMapping

NameMapping

Simple
ModelMapping

 ©
 P

ro
f.

U
. A

ß
m

an
n

47 Model-Driven Software Development in Technical Spaces (MOST)

Adding a Trace Link Generator to Tools

► TraceLinkGenerators for Trace Models must be written by hand

► They can be connected to transformation engines and cartriges in three ways,
following a generic traceability interface:

Transformation
Engine

TraceLinkGenerator
Engine

Via Generic Traceability
Interface

Transformation
Engine

TraceLinkGenerator
EngineBlack-box connector

Transformation
Engine

TraceLinkGenerator
EngineInvasive connector

Transformation engine
must know and call
the generator

Transformation engine
need not know but
is extended
Invasively or woven
By AOP

[Grammel]

 ©
 P

ro
f.

U
. A

ß
m

an
n

48 Model-Driven Software Development in Technical Spaces (MOST)

Traceability in Macromodels with Models from Link-Treeware

► In link-tree models, a skeleton tree exists, in which every model element has a unique
tree node number (hierarchical number)

► Trace links can be added with tree node number and stored externally of the model in
the macromodel

1. TraceLink

1.1.2 CreateLink
1.1.3

RetrieveLink
1.2.1 UpdateLink 1.2.2 DeleteLink

1.2 ChangesLink1.1. MonotonicLink

1.1.2.1
ContainmentLink

Hierarchical numbering of the classes
in an inheritance tree:

In link-treeware, macromodels
maintain trace(link) models
linking and tracing all models and
their elements by referencing the
hierarchical numbers of all nodes

1.1.1 DirectLink

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Softwrae Development in Technical Spaces

32.4 Traceability in Practical Requirements
Management Tools

omitted in 2021/22

 ©
 P

ro
f.

U
. A

ß
m

an
n

50 Model-Driven Software Development in Technical Spaces (MOST)

Introduction to Requirements Management (RM)

► RM bridges the needs of the customer to testing, design, coding, and documentation

► RM continuously manages requirements in the entire software life cycle

► RM relies on inter-model mappings between requirements, test cases, design, and code

Needs

Product
Features

Software
Requirements

Test Design
User
Docs

Problem

The
Product
To Be
Built

Solution
Space

Problem
Space

Code

Trace Model

 ©
 P

ro
f.

U
. A

ß
m

an
n

51 Model-Driven Software Development in Technical Spaces (MOST)

Tools in an Integrated Development Environment (IDE)

Requirements
Repository

Design
Repository
(PIM, Arch)

Implementation
Repository
(PSI, Code)

Test Case
Repository

Requirements Tool Testing Tool

Metamodel
Repository

(M2)

Reasoning
engine

GRS
engine

TRS
engine

XML
engine

Relational
engine

Coding Tool

Reachability analysis (traceability) Attribute analysis

Model mappings Model slicing Model composition

 ©
 P

ro
f.

U
. A

ß
m

an
n

52 Model-Driven Software Development in Technical Spaces (MOST)

Deficiencies of Current RE Methods

► Relationships among requirements are inadequately captured
■ Causal relationship between consistency, completeness and correctness

[Zowghi2002]
■ Completeness and consistency are not verified

► Requirement problems (e.g. conflicts, incompleteness) are detected too late or not all

► Relationships between requirements and dependent artifacts are insufficiently
managed (test, documentation, design, code)

► Desirable:
■ Models for RE need richer and higher-level abstractions (goals, problems, needs)

to validate that they are fulfilled [Mylopoulos1999]
. Metamodels can be used to define these concepts
. Ontologies deliver reasoning services

■ Model mappings (direct and indirect) between the artifacts (design, code) and the
goals, problems, needs of the customer

. Based on the model mappings, the requirements are consistently
managed with design, code, and documentation

Requirement knowledge is not sufficiently covered:
Intentions, risks, obstacles and decisions are not
documented during RE and thus, are not available at later
stages during software development.

Relationships among requirements are inadequately covered: requirements
instead of defining which kind of relation is meant (e.g. excluding, alternative,
generalization).

vicious circle of completeness, correctness and consistency (Zowghi et. Al)

Zowghi et. al. ([3])
describes this vicious circle as a causal relationship between consistency,

completeness and correctness. From a formal point of view, correctness is usually
meant to be the combination of consistency and completeness. Therefore, the

ability to detect and repair inconsistent and incomplete requirements is crucial
to the successful development of requirements specications

Complete metadata for requirements, that is data about
that requirement rather than data listed in the requirement [6]), ensure

completeness.
Though current RE tools provide means for capturing requirements, they fail in

providing sufficient support for metadata about requirements and leave it to the
requirements engineer to define them. Another shortcoming of RE tools is the
lack of tests for completeness, that is, checking whether all important metadata
are available. This way, the requirement engineer would detect missing but
relevant information easily.

52

 ©
 P

ro
f.

U
. A

ß
m

an
n

53 Model-Driven Software Development in Technical Spaces (MOST)

Model Mapping in MID INNOVATOR

► Innovator can be employed simultaneously for requirements, design and
implementation models

► How to relate these models?

 ©
 P

ro
f.

U
. A

ß
m

an
n

54 Model-Driven Software Development in Technical Spaces (MOST)

Direct Traceability

► With a direct model mapping, a requirements model can be linked
■ to a test case specification
■ to a documentation
■ to an architectural specification
■ via the architectural specification, to the classes and procedures in the code

 ©
 P

ro
f.

U
. A

ß
m

an
n

55 Model-Driven Software Development in Technical Spaces (MOST)

Example: imbus TestBench

http://www.imbus.de/produkte/imbus-testbench/hauptfunktionen/

 ©
 P

ro
f.

U
. A

ß
m

an
n

56 Model-Driven Software Development in Technical Spaces (MOST)

Requirements get “red-yellow-green” Test Status Attribute

► Test status is an attribute in the requirements tree that contains a direct link to the
result of a corresponding test case

 ©
 P

ro
f.

U
. A

ß
m

an
n

57 Model-Driven Software Development in Technical Spaces (MOST)

 ©
 P

ro
f.

U
. A

ß
m

an
n

58 Model-Driven Software Development in Technical Spaces (MOST)

Direct Model Mappings between Requirements and Test Tools

► Most often, these tools are in Link-treeware (hierarchical requirements, hierarchical
test cases and test suites)

► → The trace models can be stored externally in the megamodel
■ Every trace link refers to link-tree node numbers in the requirements and test

specifications

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Softwrae Development in Technical Spaces

32.5 The MDA Macromodel of RoSI (RoSI-MDA):
Representing Trace Mappings as Role-Playing

• What happens if contexts and roles are available in models?

• The Megamodel of RoSI and its traceability of model elements is extremely simple, because the
role-based models and metamodels are factorizing objects

• RoSI-MDA is homogeneous Macromodel

 ©
 P

ro
f.

U
. A

ß
m

an
n

60 Model-Driven Software Development in Technical Spaces (MOST)

Remember: The Steimann Factorization of Natural and Role
Types

<<compartment>> Nutrition

Splitting a full type into its natural and role-type components
■ FullType = Natural x (role-type, role-type, ...)
■ FullPerson = Person x (Reader, Father, Customer, ..)

Man

<<compartment>> Marriage

Husband

Reader

Buyer

Sausage

Newspaper

Woman

<<compartment>>
Resources

Wife

Read

BoughtFullMan

FullBook

FullWoman

FullNewsPaper

 ©
 P

ro
f.

U
. A

ß
m

an
n

61 Model-Driven Software Development in Technical Spaces (MOST)

Remember: Full Type is from Inheritance Product Lattice

Q: What is a reading buying grandfather person? (A: tuple type)

Person

Father

Mammal

LivingBeing

Thing

Dinosaurs

Chicken

┴

Mother

Grand
Father

Grand
Mother

Ancestor

┴

Acquain-
ted

Reader Writer

Accessor

┴

Negotiator

Contractor

Buyer Seller

Customer

┴

Natural (entity)
Role 1

Role 2

Role 3

 ©
 P

ro
f.

U
. A

ß
m

an
n

62 Model-Driven Software Development in Technical Spaces (MOST)

Scalable Bindung Time of Contexts with the Factorization

► Scalable Binding: Roles can also be bound statically, if mixins are used as
implementation (fixing the context)

► Consequences for object life time, cohesion, allocation, adaptation, reconfiguration

Person

Father

Mammal

LivingBeing

Thing

Dinosaurs

Chicken

┴

Child

Grand
Father

Grand
Child

Related

┴

Acquainted

Reader Writer

Accessor

┴

Negotiator

Contractor

Buyer Seller

Customer

┴

Natural Class
Static fixed role type 1 role type 2 role type 3

OPTIONAL

62

 ©
 P

ro
f.

U
. A

ß
m

an
n

63 Model-Driven Software Development in Technical Spaces (MOST)

RoSI Macromodel (RoSI-MDA): Refinement by Role
Allocation

► Refinement by allocation of further roles – static roles at design time, dynamic roles at runtime
► In RoSI-MA, the role-play relation is subset of the traceability relation

Design

Run time

Implementierung

Requirements

Platform-
Dependent Design

Model

┴ ┴ ┴ ┴

┴ ┴ ┴┴

1

2

┴ ┴

3

4

Design time Run time

Die Faktorisierung hilft, die Traceability von natürlichen Objekten zu
verbessern, denn sie können nun von Rollen unterschieden werden

63

 ©
 P

ro
f.

U
. A

ß
m

an
n

64 Model-Driven Software Development in Technical Spaces (MOST)

RoSI-MDA: Traceability in Refinement by Role Allocation

► Refinement by allocation of further roles – static roles at design time, dynamic roles at runtime

Design

Run time

Implementierung

Requirements

Platform-
Dependent Design

Model

┴ ┴ ┴ ┴

┴ ┴ ┴┴

1

2

┴ ┴

3

4

Design time Run time

Die Faktorisierung hilft, die Traceability von natürlichen Objekten zu
verbessern, denn sie können nun von Rollen unterschieden werden

64

 ©
 P

ro
f.

U
. A

ß
m

an
n

66 Model-Driven Software Development in Technical Spaces (MOST)

RoSI Macromodel (RoSI-MDA): Cross-Layer Role-Based
Refinement in the Software Life Cycle

► Refinement by allocation of roles provides simple traceability because Natural objects STAY the same

► Trace mapping is role-play relation joined with context-role matrix

► Platform properties are „technical“ roles of the objects

■ Technical plattforms are static contexts

■ Dynamic contexts (place, time, service quality)

Causal Mapping of contexts and fludity
From requirements level to runtime

Domain Model

Design

Run time context 1

Implementation

Requirements

PSM

Natural Fixed Role
1

Fixed Role
2

Fixed Role 3 Fixed
Role 4

Dynamic
role 1

Dynamic
role 2

Dynamic
role 3

Person

Person Customer

Person Customer Customer
Design

Person Customer Customer
Design

Platform-specific
Behavior

Person Customer Customer
Design

Platform-specific
Behavior

Full static
behavior

Person Customer Customer
Design

Platform-specific
Behavior

Full static
behavior

Behavior in
Context 1

Person Customer Customer
Design

Platform-specific
Behavior

Full static
behavior

Behavior in
Context 1

Behavior in
Context 2

Person Customer Customer
Design

Platform-specific
Behavior

Full static
behavior

Behavior in
Context 1

Behavior in
Context 2

Behavior in
Context 3

Run time context 2

Run time context 3

Die Faktorisierung hilft, die Traceability von natürlichen Objekten zu
verbessern, denn sie können nun von Rollen unterschieden werden

66

 ©
 P

ro
f.

U
. A

ß
m

an
n

67 Model-Driven Software Development in Technical Spaces (MOST)

Advantages of RoSI-MDA (Role-Based MDA)

► Very simple, component MDA with easy traceability:
■ Cores of objects map 1:1 from CIM via PIM and PSM into the application PSI

(context-role matrix)
■ Variability via new roles for PIM, PSM, PSI
■ “object fattening” through the MDA

► Projection (get) and reintegration (put) is simple for MDA-SUM

 ©
 P

ro
f.

U
. A

ß
m

an
n

68 Model-Driven Software Development in Technical Spaces (MOST)

End

► Why do the models of MDA form a macromodel, while MDA is a megamodel?

► Which trace link types are important for MDA?

► Why is a context-role-based model better for traceability?

► How does JastAdd aspects achieve MDA refinement?
■ How is traceability achieved?
■ How model synchronisation?

► How does RoSI-MDA achieve global traceability from requirements to run time?

► How will megamodel look like that provides Link-tree-based models and Role-based
factorization of objects?

■ How does a trace link look like?
■ Where are the trace links stored?
■ Why can XML be used as simple exchange format in these megamodels?

