TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Prof. ABmann - Model-Driven Softwrae Development in Technical Spaces

32. Macromodels in One Technical Space

1) Model-Driven Architecture (MDA)

2) MDA Toolkits
Prof. Dr. U. ARmann 3) Traceability in Model Transformations
Technische Universitat Dresden 4) Direc.t Model Mappings between
Institut fiir Software- und REQUITETIEES el EE |
Multimediatechnik 5) RoSIMDA - a Very Simple MDA with
http://st.inf.tu-dresden.de/teaching/ Trace.Mappmgs as Role-Play
most Relations

Version 21-0.2,22.01.22

Literature

2

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ARmann

>

[CHO6] Krzysztof Czarnecki, Simon Helsen. Feature-based survey of model transformation approaches. IBM
Systems Journal 2006. DOI:10.1147/sj.453.0621

[Hedin09] Gorel Hedin. Tutorial: Generating Language Tools with JastAdd
= http://fileadmin.cs.lth.se/sde/people/gorel/misc/gttse-draft-oct-2009-tutorial.pdf

[MID] MID Innovator Tutorial
https://www.mid.de/fileadmin/mid/PDF/Kundenbereich/11_R3/de/Innovator_11.3_Leitfaden.pdf

Birgit Grammel. Automatic Generation of Trace Links in Model-driven Software Development. PhD thesis,
Technische Universitat Dresden, Fakultat Informatik, February 2014.

= http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-155839

Frédéric Jouault and lvan Kurtev. On the Architectural Alignment of ATL and QVT. In: Proceedings of the 2006
ACM Symposium on Applied Computing (SAC 06). ACM Press, Dijon, France, chapter Model transformation (MT
2006), pages 1188—1195.

= http://atlanmod.emn.fr/bibliography/SACO06a

Tutorial Gber ATL “Families2Persones”
= http://www.eclipse.org/m2m/atl/doc/ATLUseCase_Families2Persons.ppt

ATL Zoo von Beispielen: http://www.eclipse.org/m2m/atl/atITransformations

Kevin Lano. Catalogue of Model Transformations: http://www.dcs.kcl.ac.uk/staff/kcl/tcat.pdf

Implementationin ATL

= http://www.eclipse.org/m2m/atl/atITransformations/EquivalenceAttributesAssociations/
EquivalenceAttributesAssociations.pdf

Literature on MDA

3

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ARmann

> https://www.omg.org/mda/products_success.htm
= https://www.omg.org/mda/mda_files/SuccesStory_ DC_TSS MDO_English.pdf

= https://www.omg.org/mda/mda_files/SuccessStory_DBB_4pages.pdf
» Alan Brown. Anintroduction to Model Driven Architecture. Part I: MDA and today's systems
» http://www.ibm.com/developerworks/rational/library/3100.html
» Petrasch, R., Meimberg, O.: Model Driven Architecture - eine praxisorientierte Einfihrung in die MDA. Dpunkt-
Verlag. 2006

= Teaser chapter
https://www.researchgate.net/publication/220693090_Model_Driven_Architecture_-_eine_praxisorie

ntierte_Einfuhrung_in_die_MDA

Q10: The House of a Technical Space

4

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

Technical Space

-
Tool Architectures
Techni Mega- and Macromodels
Meta-
Space modelin
Bridges Model Management odaeling
Mapping, Transformation, and Composition
Model Analysis
Querying, Metrics, and Analysis

Metapyramid (Metahierarchy) for Token Modeling

Software Factories

5

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

A software factory schema essentially defines a recipe for building
members of a software product family.

Jack Greenfield

https://www.researchgate.net/publication/213883069_Software_Factories_Assembling_Applications_with_Patterns_Frameworks_Models_and_Tools

In this course:

A software factory combines the languages and tools of several
technical spaces to create software and cyber-physical systems

product families.

Q12: A Software Factory's Heart: the Mg

Wiegamodel

6

Model-Driven Software Development in Technical Spaces (MOST)

© Prof. U. ABmann

;;:Igr;lcal Pattern
Bridges Model Management Languages
ing, Transf.. Compositign

Metapyramid (Metahierarchy) for Token Modeling

Technical Space

Multi-TS
Megamodel

Software Factory

Technical Space

Method Engineering
Mega- and Macromodels

Model Management
ing, Transf.. Compositiga

Technical
Space
Bridges

Pattern
Languages

Model Analysis
Querying, Interpretation

900000/ S S 7 7 #9090 00 e

Model Analysis

Querying, Interpretation

Metapyramid (Metahierarchy) for Token Modeling

&

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Prof. ABmann - Model-Driven Softwrae Development in Technical Spaces

32.1 Model-Driven Architecture (MDA)
(Modellgetriebene Architektur)

MDA is a trademark of OMG

MDA is an industrial megamodel in the spirit of ReDeCT.
Its instances in software product are multimodels, connecting several model abstraction levels.

Software Factories with Only 1 Technical Space

8 Model-Driven Software Development in Technical Spaces (MOST)

In this chapter:
1-TS Megamodels
MDA, RoSI-MA

Software Factory

=gl

Technical Space

[\ Tool Engineering
Technical Mega- and Macromodels
Space Meta-
Bridges Model Management modeling
Mapping, Transf., Composition
Model Analysis

Querying, Interpretation

(Metapyramid (Metahierarchy) for Token Modeling ’

@loooqoo rgs s I Ivegecee

(25 © Prof. U. ABmann

Q12: The ReDoDeCT Problem and its Macromodel

9 Model-Driven Software Development in Technical Spaces (MOST)

» The ReDoDeCT problem is the problem how requirements, documentation, design,
code, and tests are related (— V model)

» Mappings between the Requirements model, Documentation files, Design model, Code,

@ © Prof. U. ABmann

Test cases
» A ReDoDeCT macromodel has maintained mappings between all 5 models
Requirements Design Code Test

Class Counting {
Procedure count IS

Uses B

Package Bill {Hkage TestBill {
Uses Order:; ses TestOrder;

Proc testCounting
IS

End;
}

s TestOrd ring {

”e TestC der {
rder { Uses Bill;

)4 Class Ordering rocedure
X Procedure count IS testCount IS
End;

}
}

“ Documentation

Overview Table for Link-Tree Macromodels

10 Model-Driven Software Development in Technical Spaces (MOST)

Cﬂs © Prof. U. ARmann

The Link-Treeware TS is well apt for macromodel construction in a software factory

» Atree node abstracts a subtree (representant)
= Attributes and attributions are composable partial mappings from treenodes

» RAGs are useful for all kinds of structure- and function-modeling in Link-Tree
Macromodels, because they abbreviate dependencies in several models with cross-
model relations.

= |namacromodel under an artificial root (rooted macromodel), attributions can
work on the SUM to ensure the constraints

» Relational RAGs (RelRAGS) are useful, because they have bidirectional constraints

(Plain) MDA General SUM Skeleton SUM (partial function extension)

RAGs in Repositories Markings Repository-SUM: get/put as higher-order
attributions of link trees

* Javadoc-SUM

RAGs in Data-flow architectures Needs trace models get/put as model Flow-SUM: Communicating link trees; In-place
transformations (lenses) transformations of SUM

* Google Docs, Stream-Based MDA

Model-Driven Software Development (MDSD) in 1 Technical
Space

11 Model-Driven Software Development in Technical Spaces (MOST)

» MDSD in 1-TS falls into several main development methods with a macromodels:

= Engineering with metamodelsin ReDeCT-like megamodels (integrated software life-cycle
management tools):
for integrated requirements, documentation, and testing along the life-cycle

Model-Driven Architecture (MDA) (MDA toolkits)

= Engineering with DSL (domain-specific modeling, DSM) (Meta-CASE toolkits)
For simplifying the specification of domain-specific software

» Model mappings correlate models
= capturing reachability informations (path abbreviations)
= defining trace relations between model elements
= From them, model transformations can easily be derived

> Model transformations
= Horizontal model transformations transform a model within a single language
= Vertical model transformations transform a model from a higher-level language to a lower-lewel
language (lowering)
= Broadband model transformations (lowerings) transform a model from a higher-level set into a
lower-level set of a broadband (wide-spectrum) language

» Model compositions compose models with extensions
= Model weavings extend models by other models and weave them together

@ © Prof. U. ARmann

Model-Driven Architecture (MDA)

12

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ARmann

> Model-Driven Architecture (MDA) is a macromodel similar to ReDoDECT, but distinguishes more
models:
= Platform-independent model (architectural)
= Platform-specific model (in modeling language equivalent to coding language)
= Platform-specificimplmentation (in coding language)
» Onthe other hand, documentation is neglected :-(
» MDA uses model mappings, horizontal and vertical model transformations, as well as code generation

What are Model Mappings?

13 Model-Driven Software Development in Technical Spaces (MOST)

<
=

D U. ABRmann

.

MO

Model mappings are link graphs between model elements of different models

Mappings are automatic or semi-automatic:
= A model mapping can be generated from a model difference analysis
= Some are step-wise refinement of the model by transformation (in MDA)

A model mapping is horizontal, if on the same abstraction level (CIM, PIM, PSM, PSI)

= Itis vertical, if abstraction level is crossed (e.g., PIM-2-PSM)

A model transformation is a specific model mapping creating a “create trace mapping” with create links

A morphic model transformation transforms 1 element of a PIM into 1 or n elements on PSM

: Application :Platform :Mapping iTransformationi
:Metamodel Metamodel : Technique : Technique
........ P e I S
E <<uses>> 5
<<instanceOf%> Model
Transformation
o source @) \Vode!
< target <€ Mapping
C [|
er Reachability .
Model Diffing Mapping Trace Mapping

Model
Weaving

Model
Composition

Horizontal Model
Transformation

Broadband Mode
Transformation

Vertical Model
Transformation

Morphic Model
Transformation

|

The MDA Megamodel, a Specific Variant of ReDoDeCT,
Embedded in the MOF Metapyramid

14 Model-Driven Software Development in Technical Spaces (MOST)

M 3 MOF
TEST-MM .
A DM-MM CIM-MM ! :
M2 A R PIM-MM
: : : A K
: 5 PSM-MM

- :’
M 1 i 4 PSM o ¥

~e.

~

-
~
-
-
-
~
-~
-
-
-
~
~
~
~
~
-~
- '
~a .
~
-
~
-
~
-
~
~
-
-
.~
-~

R e

! _..~"<<instance-of>>

<
O

Runtime system instances

© Pwn& 11 I\Om«nn

&

Q9: Model Mappings and Model Weavings in the

_ MDA Megamodel
Domain model (DM) for

application domain ent in Technical Spaces (MOST)

@ © Prof. U. ABmann

v

N

N\
. Platform-Independent
@del EXtenS'D< Design Extension (PIE)
\§

Platform-Independent Model (PIM)p—
Design specification ~

\

Model Composition,

Model mappings connect models horizontally (on the same level) or
vertically (crossing levels).

Model transformations transform models horizontally or vertically.
From a model mapping, a simple transformation can be infered

Model compositions and model weavings compose/weave two input
models to an output model, based on a crosscut specification

Model extensions (model merges, model additions) extend an input
model by an extension (often done by hand)

= Usually, some parts are still hand-written code

Model2Text expansion (code generation by template expansion)

Platform-Specific | ___ > Platform Description

Weaving, Transformation

V
Platform Specific Model (PSM) <—

\

Extension (PSE) Model (PDM)

')
Code addition
Template expansion
A

PIM and PSM and Model Mapping in MID INNOVATOR

16 Model-Driven Software Development in Technical Spaces (MOST)

> |nnovator can specify transformations between its models [MID]

% UML-Modell ‘TTBib_UML.ino_prak2' - INNOVATOR

Elernent Bearbeiten Ansicht Modell Enginesring Wechseln Extras Hilfe

o & fhEERe DE « Lo S OS

£ F"]:: TTBib UML - Status Matne: Typ | Anderungsdatum
T) Ei@ sys_temr-.dl:ndel 1 0 A |E| A =zleihe Sec.. 22112003 00:458:02
= @ external object $INHOTMP/docs 2 0 A Hunde_anmelden Foll... 1011.2003 012154
-[B5} Uze Case System 30 A, @ Flckgabe Sec.. 221120035 00:21:.47
%j @ analysis system 4 0 A |E| Tartréger _Einkauf Sec.. 1011.2003 01:23:59
Java design system 2 a A |E| HKunden_neu_anlegen Sec.. 1011.2003 01:26:.19
@ Java implementation system $INOTMP/src B 0 Lt @ &nalyzizClassDiagram Klas.. 09112003 15:29:14
E}ﬁ systemModel management 7o A Q Werwattung_A= Klas... 0911 20035 152556
=l 5 0 A () Tontréger_AS Wlae.. 09.11.2003 15:20:08
9 0 A Q Hunde_A% Klas.. 09112003 15:27.32
oA Q D Kunde_A5 Obj... 09112003 13:20:05
|E| 0 A Q Tontrager _AS Obj... 09112003 132016
0 Lt HD Wervealtungll_A% Klas.. 0911.2003 151632
0 A, HD - verwatungUl_as Obj.. 0911 2005 13:23.08
@ oA i Hunde _LIC Obj... 09112003 14:05:54
oA i : Biblicthek_1C Cbj.. 09112003 15:44:35
0 Lt Q Wervwaltung_&5 Obj.. 09112003 16:14:14

@ © Prof. U. ABmann

Example: PIM and PSM Extend the CIM in the Janus Toolkit

17 Model-Driven Software Development in Technical Spaces (MOST)

Domain model (DM)and > Inthe MDA, there are
requirements model (CIM, model mappings between
Computation independent model) l the models DM - CIM -
Platform-independent Model --="""" (ﬂ’ PIM - PSM - PSI

(PIM) ' S

Application architecture

Platform-specific Model (PSM)
Specific applicaiton parts "+
Communicaton e

Weboberfliche

Platform-specific
Implementation (PSI)
Handwriten additions
in programming language

Client/
| Server-
werteilung

Gul Coderahmen

Schnitt Daten-
stallen haltung

© Prof. U. ABmann

elle: Warum JANUS MDA und MDA JANUS ist; Whitepaper der Firma otris Software AG Dortmund; URL: www.otris.de
hitp://pi.informatik.uni-siegen.de/stt/15_3/15_3_weg_01.gif

Model Management in Megamodels

18 Model-Driven Software Development in Technical Spaces (MOST)

> Inthe MDA megamodel,because MDA enriches models from top to bottom, the mappings
between models must be maintained with a model algebra:

= Model difference analysis (Diff, comm of models)
= Version management
= Konfiguration management
= Model composition
* Lookup and query of model elements
= Union, compose, weave, unweave of models

@ © Prof. U. ARmann

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Prof. ABmann - Model-Driven Softwrae Development in Technical Spaces

32.1.2 Different Forms of MDA

Different forms of MDA

20

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ARmann

A transformative MDA uses refinement transformations for variation

= introduces trace links (32.3)
An MDA is called component-based (CoMDA) if the variation action is the exchange of
an implementation behind an interface, or if the component model is used for exchange

= RoSIMDA MDA (32.5)
A transformative CoMDA uses point-wise refinement transformations on a model-based
component model

= forinstance, refinements in Petrinets

= combining trace links and component-based MDA (32.3 and 32.5)

A MDA-SUM uses transformative or component-based MDA for realizing views on a
single underlying model (SUM) (next chapter)

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Prof. ABmann - Model-Driven Softwrae Development in Technical Spaces

32.1.3 Morphic Model Mappings and
Transformations

Morphic Mappings and Pointwise Transformations on Marked

PIMs

Model-Driven Software Development in Technical Spaces (MOST)

22

» Morphic mappings (1:1 or 1:n) are
defined by marked PIMs:
= Stereotypes introduce a mapping from 1

element of the PIM to n elements in
the PSM

= Supported by many MDA tools, such as
AndroMDA

» The stereotype creates a mapping
between a PIM class and a set of PSM
classes

= The stereotype tells the MDA system
how to transform the PIM class to the

PSM (stereotype triggers template
extension)

= The stereotypes partition the PSM: The
border of a partition is demarcated by
the PIM stereotype tag

» Example: automatic creation of
interfaces for implementation classes

© Prof. U. ABmann

@ » Easy traceability by morphic mapping

) N

s

<<with_interface>>
Loan

~

-int sum
+withdraw()

J

with_interface:
Template
Class)

LoanImpl

-int sum
+withdraw()

LoanInterf

| +withdraw()

Example of a Marked PIM and the Induced Pointwise Model
Transformations

23 Model-Driven Software Development in Technical Spaces (MOST)

» Tags (stereotypes) may denote different class implementations in a PSM or PSI

» Here: mapping of a class and activity diagram to different languages, using different
code generation templates, triggered by stereotype marking

. ([<<C#>> szd
II\DAI:/II’ked <<Java>> Loan
amount

Loan s < —
Java: int -int sum C#-Template
’ -INt sum :
Java-Template el < » +withdraw() (Class)
(Class)

‘ I ’ <<generate>>

// C# implementation: a partial class
partial class Loan : Account ({
private int sum;

public void withdraw (

int amount) {
sum —-= amount;

// Java implementation as a decorator
class Loan extends Account {

// decorator backlink

Account upper;

private int sum;
public void withdraw (
int amount) {
sum —-= amount;

Cartridges are Transformation Libraries for Marked PIMs

24 24 Model-Driven Software Development in Technical Spaces (MOST)

» A Cartridge is a plugin to an MDA tool defining both the model mapping and the model
transformation

= For vertical and horizontal transformations

= Definition of stereotypes for PIM markings in vertical transformations
Manual marking of the PIM
Selective transformation of the marked PIM classes

= Automatic transformation using the mapping and transformations from the

cartridge

No manual specifications of mappings and transformations
necessary

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Prof. ABmann - Model-Driven Softwrae Development in Technical Spaces

32.1.4 Cartridges (Platform Extensions)
in RAGs and JastAdd

RAG Modules Compose Extensions into CIM or PIM

26

Model-Driven Software Development in Technical Spaces (MOST)

» The basic module can be DM, DM+CIM, DM+CIM+PIM
= Extensions are PSE, PSI

» Due to the declarativeness of attributions, modules can be unified by term (tree
unification)

= Names of the classes serve as unificator

Iy

eq ..

@ © Prof. U. AB<=

// JastAdd Main Tree Spec
// Domain Model

eq ..
syn ..
inh ..

class Saving extends Account {

syn ..
inh ..

// JastAdd Additional Tree Spec for
// Requirements Model (cartridge for CIM)
aspect CIM {

class CIMAcc extends Account {

eq Loan.funl() = ..
________________ _..syn Savings.fun2 () = .
inh ..

S
Y
-
-

-
..
-~
~
~

.”
-
-
-
-

Ex.: JastAdd Aspects are Cartridges

27 Model-Driven Software Development in Technical Spaces (MOST)

» A lJastAdd Aspect, like a cartridge, extends a set of Main Tree Nodes and their attributions with new
attributions [Hedin09]

= Intertype declarations distribute a class definition over several files of MDA

= (Declarative) aspect files are composed by class unification // JastAdd Additional Tree Spec
aspect TestM {

// JastAdd Additional Tree Spec eq Loan.test_fun1()
aspect CIM { -
eq Loan.fun1() —
eq - inh ..
// JastAdd Main Tree Spec syn .. |// JastAdd Additional Tree Spec
// Domain Model) inh .. laspect PIM {
class Loan extends Account { eq Loan.fun2()
eq .. S
syn .. S o
Saln B inh .. [// JastAdd Additional Tree Spec
+ aspect PSM {
eq Loan.fun3()
ed - // JastAdd Additional Tree Spec
L SYyD - lspect PSI {
inh . eq Loan.fun4()
b eq ..
syn ..
; inh ..
5 T
5 Iy
o
©)

MDA by Composition of RAG Aspects

28 Model-Driven Software Development in Technical Spaces (MOST)

» RAG modules, e.g., JastAdd aspects, can be used as MDA cartridges
= They compose class extensions “around” class names
= Model weaving is done by class composition
= |ntertype declarations introduce “mixins” into classes of main syntax tree

> Model Refinement (in MDA) is done by modular composition (aspect composition) with
intertype declarations
= Model synchronisation is done by re-composition
= RAG-MDA supports composable macromodels
» Model mappings achieved by common class names
= Tracingis easy (common classes for extensions)

RAG modules, e.g., JastAdd aspects, can be used as MDA cartridges

@ © Prof. U. ABmann

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Prof. ABmann - Model-Driven Softwrae Development in Technical Spaces

32.1.5 Morphic Model Transformations in JastAdd

Morphic Transformations on Marked PIMs

——————————————————————————————————

30 Model-Driven Software Development in Technical Spaces (MOST)
Tags: {<<with_interface>>} |
» Morphic mappings (1:1 or 1:n) can be Name: Loan |
realized by JastAdd Rewrite , / i
operations or Term rewrite operations i i withdraw() i
(Stratego, Xcerpt) | { } { } |
= [|fUsersadd astereotypetoanodeof @~ Coommooomooomoommooomoooooooooooes ’
a PIM with_interface:
TemplateT
= Rewrites can reduce them emaaases) e
» Therewriteis areplace operation of
the marked node by its
“implementation” 0 SOSSSENS 200000 {_} _____________
. Tags:
» Rewrite rule transforms redex of i Name: LoanCompound } 3
upper model to snippet in lower model /\ |
> Easy traceability by morphic mapping NameLoanimpl | N
» The PIM tree as well as the PSM tree i Extends:"Loaninterf ameoammerty
are represented by the top node | /\ Q
» The PIM tree snippet and the PSM i [-int sum M +withdraw() } { +withdraw() 1
tree snippet are homomorphic regions ™ d

@ © Prof. U. ABmann

TECHNISCHE
UNIVERSITAT

DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Prof. ABmann - Model-Driven Softwrae Development in Technical Spaces

32.2 MDA Toolkits

Some MDA Tools

32 Model-Driven Software Development in Technical Spaces (MOST)

AndroMDA Eclipse http://www.andromda.org/
XText, Xpand Eclipse http://www.eclipse.org/Xtext/
IBM Rational Suite Eclipse

Software Architect

BlTplan smart Generator ~ Eclipse http://www.bitplan.com/
Epsilon Eclipse https://www.eclipse.org/epsilon/

[Petrasch, R., Meimberg, O.: Model Driven Architecture - eine praxisorientierte Einfihrung in die MDA
dpunkt-verlag 2006]

@ © Prof. U. ABmann

Important Features of MDA Toolkits

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ARmann

> Model-to-Model Mapping bzw. Model-to-Model Transformation (e.g., PIM to PSM) with
cartridges
» User definition of model transformation cartridges with query and transformation languages
= eg.,with QVT, ATL, Graph writing or XML Rewriting
» Forward- und Reverse-Engineering
= Code generation (Model-to-Code Transformation, PSM to PSI)
= Mapping to a programming language (e.g., with JMI)
» Roundtrip-Engineering between models and code
» Single underlying model (SUM): forming views by get and put operations
» Model-driven Testing: generation of test cases ad test data based on models

[Petrasch, R., Meimberg, O.: Model Driven Architecture - eine praxisorientierte Einfihrung in die MDA
dpunkt-verlag 2006]

32.2.1 AndroMDA, a Leading MDA Toolkit Focusing on PIM-
PSM Transformations

'www.androlVIDA.org]

34 34 Model-Driven Software Development in Technical Spaces (MOST)

» AndroMDA defines model mappings in » A cartridge contains a mapping from
platform-specific cartridges. UML to e.g., Java, C# or C++ and a model
transformation

[Platform Independent UML Model (PIM) } » AndroMDA defines cartridges for
& = UML-CD: Spring, Hibernate

- ersistency), XML, Enterprise
>@el paig > SZva BeansﬁEJB) i
|

Platform Independent UML Model (PIM)
in internal representation

= UML-AD: Struts, Java Server
J Pages(JSP), Servlets

Partial Platform Specific Impl tati
[artial Platform Specific mpemenaloan

(PSM)
- Handwritten code
completion

\Y4
Platform-Specific Implementation
(PSI, Code)

@ © Prof. U. ABmann

32.2.2 MDA Toolkit ArcStyler

35 Model-Driven Software Development in Technical Spaces (MOST)
ArcStyler is a toolkit working with several UML-editors such as MagicDraw or Rational Rose
» Cartridges for model mappings and transformations
> Object Modeler for requirements modeling; based on CRC-Cards
» Pattern Refinement Assistant transforms the domain model interactively into a PIM UML-model
(with MagicDraw or Rational Rose)
= With annotation of design decisions
» Refinement of the PIM
= Horizontal refinement on PIM level
= Vertical transformation to PSM or PSI (code generation)
» Code completion (Codevervollstandigung) and optimization for an application platform
» Component generation for user interface
» Generation for build tools
» Generation for database persistency
é http://www.software-kompetenz.de/servlet/is/27460/?print=true

&

Versteegen, G.: Wege aus der Plattformabhéangigkeit - Hoffnungstrager Model Driven Architecture;

Computerwoche 29(2002) Nr. 5 vom 1. Febr. 2002

Process Engineering with ArcStyler

Model-Driven Software Development in Technical Spaces (MOST)

36

UML modeling

. components
= associations
(logical structure:;
FIME} The Unified Process
% design assistants
% wizards

ArcStyler Core Modules

Open MOAUMLUXML Repository

Build,

Technical
Deploy & Test

-y

Process automation according to the UP (defaulit).

JIEEENE, HET

BEA Weblogic

BN WAS HT, 208

refinement of

LML comonent
madel for JZEELMET
target platforms

S| wiith Meta IDE

m

Technical Modeling MDA, Cartrickge [0 & MIA Enginer

= EJB/.MNET

I'I"IEI'RISE- Syutem Dwlinition [Analysis, Desiga) N
= archive *
I:pa,:l_,:a,ge; Sysiem Developmend -
componentsy Modeling physical { Nerifiatinn | Test I Daployrment
deployiment Units
i eractivel (= deployable assembly Automation verify and

components; PShs) — Generate a deployable infra-

EJE archive structure (+ test/ build env.)

Oracle, 10MA

Build, deploy and test
SUpport

. code customization

. kuild, deploy in container
- server/DB & client startup

® |IDE projects/libs
% ANT scripts + properties

(deploymeant
i packages for EJB
containers), MET-C.

1% MDA engine code generator
 MDA-Cartridges

f. U. ABRmann

https://www.omg.org/mda/mda_files/P2A_Tutorial.pdf

L

http://www.interactive-objects.com/products/arcstyler/supportdocumentation.html

‘éDttp://arcstyler.software.informer.com/

Cartridges and Generated Artifacts

37

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

MDA-Cartridges

EJB11 Acc

:

WAS EJB20

ZAN

MDA-Cartridges
b= L -

MDA-Engine
with Meta IDE

Sources

Remote, Home, Bean, PK
Java Classifier

JUnit Test Suites
Default Test Client
WebService Wrapper

Descriptors

ejb-jar.xml, <container>.xml
application.xml
Webservice .wsdl, soap .xmi

ANT Support

build.xml, build.properties
Database .sql scripts

JBuilder Support

JPX, ejbgrpx
custom .libraries

Out-of-the-Box
MDA-Engine Fanout

Isolated, Container
Specific Test
Environment

Build |7.

Configuration —
Deployment

=
=

Configuration ‘

Automation verify and

p Arcstyler MDA Details

Generate a deployable infra-
structure (+ test/ build env.)

% MDA engine code generator
% MDA-Cartridges

Quelle: Butze, D.: Entwicklung eines Praktikums flr die werkzeuggestitzte Softwareentwicklung nach der

Model-Driven-Architecture; GroBer Beleg an der Fakultat Informatik der TU Dresden 2004

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Prof. ABmann - Model-Driven Softwrae Development in Technical Spaces

32.3 Traceability between Models

e Model transformations generate trace mappings

[omitted in 2021/22 J

Advantages of Model Mappings

39 Model-Driven Software Development in Technical Spaces (MOST)

> Error tracing
= When an error occurs during testing or runtime, we want to trace back the error
to a design element or requirements element

> Traceability

= We want to know which requirement (feature) influences which design, code, and
test elements, so that we can demarcate modules in the solution space (product

line development)

> Synchronization in Development:

= Two models are called synchronized, if the change of one of them leads
automatically to a hot-update of the other

» Cohesion of Distributed Information:

= Two related model elements may contain distributed information about a thing.
The relation allows for reconstructing the full information

= Example:
Storing two roles of an object in two different models (See “Amoeba
Object Pattern”)
Splitting the representation of the requirements on an object and
its design in requirements vs design model

@ © Prof. U. ARmann

Different Forms of Model Mappings

40

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ARmann

>

Directly specified mappings specify a deterministic mapping function between a
source and target model.

= Direct mappings are specified in GUI or text files
= Direct mappings may be complete or incomplete
Recursive mappings are defined in a functional language
= Denotational semantics is a complete direct mapping of two languages

= The coverage of the source model must be ensured (completeness of
specification)

General mappings may be intensionally specified. Source and target models are
mapped

= With graph reachability expressions (QVT-R, TgreQL, EARS)

= With query expressions (Semmle.QL)

= With expressions in a logic (F-Datalog)
Inter-model mappings are defined between model elements of different models

Lifted inter-model mappings are lifted from intra-model element mappings

Why Traceability in a Macromodel?

41 Model-Driven Software Development in Technical Spaces (MOST) [G ramme”

System Comprehension:
= Trace mappings improve orientation in multimodels by navigating via trace links
along model transformation chains
> Change Impact Analysis:
= toanalyze the impact of a model change on other models

= toanalyze the impact of a model change on existing generated or transformed
output
= Toenable to do model synchronization (hot updating dependent parts)

» Orphan Analysis: finding orphaned elements in models

Validation and Verification:

» System Validation: Connecting the requirements with the customer's goals and
problems (see ZOPP method)

> (Test) Coverage analysis: to determine whether all requirements were covered by
test cases in the development life cycle

> Debugging: To locate bugs when tracing code back to requirements
= Tolocate bugs during the development of transformation programs

@ © Prof. U. ARmann

Traceability Metamodel: CRUD Types of Trace Links between
Model Elements of Different Models

42 Model-Driven Software Development in Technical Spaces (MOST) [G ram me”

Source-Target Relations

—

_— T~

New Target Model Existing Target Model

Ex. Morphic
PIM-PSM transformation
generating new PSM

Update Transformation In-Place Transformation
Source --update— Target Model--self-update

Ex. Morphic

PSM-PSI template
xpansion replacing

gdperated hedged code

Ex. Roundtrip on

PSI generated from template
Expansion, replacing

erated hedged code

Destructive Extension-Only

Destructive Extension-Only

Create \ Update Create \ Update

Delete
Link

Delete
Link

@ © Prof. U. ARmann

Extensible Traceability Metamodel acc. to Grammel

43

Model-Driven Software Development in Technical Spaces (MOST)

>

New facets for new trace link types can be created

Tracemodel

Granularity

.

Model
(to be traced)

Configuration

A/

sourceT 1..* 1..*Ttarg

|

D\

Scope

0..*
et

Links
1..%

TraceLink

TraceLinkFacet

/\/\/\

MonotonicLink

—

T

ChangesLink

DirectLink

CreateLink

RetrievelLink

T~

© Prof. U.

&

1

UpdateLink

DeleteLink

ContainmentLink

Traceability in Macromodels

44 Model-Driven Software Development in Technical Spaces (MOST)

> Piecemeal growth of macromodels in the software process:
= Start with requirements, then add more stuff and models

» Add links

= Symmetric “Direct” (auto-drawn) links are drawn between model element MA
from model A and model element MB whenever MB is related to MA

Specified by hand or found by a model difference, model analysis or
a model query

= Create links are drawn between model element MA from model A and model
element MB whenever MB is generated or added because of MA

= Retrieve links are drawn when MB is extracted (queried) from a model A and
added to another model B

= Containment links are drawn, when in a new model B the model element MA is
contained in another model element MB'

= Delete links are drawn if In model B the model element MB should be deleted
= Update links are drawn if MA has changed and MB should be changed too

@ © Prof. U. ARmann

Examples for TraceLinkFacet

45

Model-Driven Software Development in Technical Spaces (MOST)

Grammel

» Facets factorize inheritance hierarchies; new facets extend inheritance hierarchies

TextFacet

JavaCodeFacet

JavaMethod
Values

TextFileValues

TextBlockValues

Location StartPos
Name EndPos
UnknownTextFacet

@ © Prof. U. ARmann

JavaPackage JavaClassValues JavaAttribute
Values Values
Name Name NEE
Type
UnknowndJavaFacet

Name
Parameters
returnType

Different Kinds of Trace Models

46 Model-Driven Software Development in Technical Spaces (MOST)

» So far, trace mappings were realized as associations in a simple model mapping
» The trace metamodel can be extended to describe a trace model, a specific form of

connector model
ModelMapping
Simple
ConnectorModel ode M epping
TraceModel TraceMapping NameMapping

@ © Prof. U. ARmann

Adding a Trace Link Generator to Tools

47 Model-Driven Software Development in Technical Spaces (MOST) Grammel

» TracelLinkGenerators for Trace Models must be written by hand

» They can be connected to transformation engines and cartriges in three ways,
following a generic traceability interface:

Transformation Via Generic Traceability TraceLinkGenerator
Engine Interface Engine

Transformation (Black j’ raceLinkGenerator Transformation engine
Engine ack-box connector Engine must know and call
the generator

Transformation engine
need not know but

is extended

Invasively or woven

) ByAoOP

raceLinkGenerator

Transformation (I) : j
nvasive connector Engine

Engine

© Prof. U. ARmann

Traceability in Macromodels with Models from Link-Treeware

48 Model-Driven Software Development in Technical Spaces (MOST)

> Inlink-tree models, a skeleton tree exists, in which every model element has a unique
tree node number (hierarchical number)

» Trace links can be added with tree node number and stored externally of the model in
the macromodel

In link-treeware, macromodels Hierarchical numbering of the classes
maintain trace(link) models in an inheritance tree:

linking and tracing all models and

thelr elements by referencing the 1 TraceLink
hierarchical numbers of all nodes —

/\/\/\

1.1. MonotonicLink 1.2 ChangesLink

T T

1.1.1 DirectLink 1.1.2 CreateLink 1.'1'3 : 1.2.1 UpdateLink || 1.2.2 DeleteLink
Retrievelink

1

1.1.2.1
ContainmentLink

@ © Prof. U. ARmann

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Prof. ABmann - Model-Driven Softwrae Development in Technical Spaces

32.4 Traceability in Practical Requirements
Management Tools

{ omitted in 2021/22]

Introduction to Requirements Management (RM)

50 Model-Driven Software Development in Technical Spaces (MOST)

» RM bridges the needs of the customer to testing, design, coding, and documentation
» RM continuously manages requirements in the entire software life cycle
» RMrelies on inter-model mappings between requirements, test cases, design, and code

Solution
Space @)
Problem O T
Needs / N\
Trace Model 2" The
Product - Product
/ Features H Q | ToBe
e v R A Built
Software Ao ~_ O
Space Requirements VN e e ;I_\
i 5 \ - .\"\‘
\j 3
Test <------"""7 Design \j A
Code User
Docs

@ © Prof. U. ARmann
NN
NN

Tools in an Integrated Development Environment (IDE)

51

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ARmann

[Requirements Tool]

[Coding Tool] [Testing Tool J

J {

Model mappings

Model slicing][Model composition]

[

Reachability analysis (traceability)

Attribute analysis

J |

|

Reasoning Relational GRS TRS XML
engine engine engine engine engine
5

Reqmrements
Repository

eS|gn
Repository
(PIM, Arch)

Metamodel
Repository
(M2)

Test Case
Repository

Implementation
Repository
(PSI, Code)

Deficiencies of Current RE Methods

52 Model-Driven Software Development in Technical Spaces (MOST)

» Relationships among requirements are inadequately captured
= Causal relationship between consistency, completeness and correctness
[Zowghi2002]
= Completeness and consistency are not verified
» Requirement problems (e.g. conflicts, incompleteness) are detected too late or not all

» Relationships between requirements and dependent artifacts are insufficiently
managed (test, documentation, design, code)

» Desirable:
= Models for RE need richer and higher-level abstractions (goals, problems, needs)
to validate that they are fulfilled [Mylopoulos1999]

Metamodels can be used to define these concepts
Ontologies deliver reasoning services
= Model mappings (direct and indirect) between the artifacts (design, code) and the
goals, problems, needs of the customer

Based on the model mappings, the requirements are consistently
managed with design, code, and documentation

@ © Prof. U. ARmann

Model Mapping in MID INNOVATOR

53 Model-Driven Software Development in Technical Spaces (MOST)

> Innovator can be employed simultaneously for requirements, design and
implementation models

» How to relate these models?

% UML-Modell ‘TTBib_UML.ino_prak2' - INNOVATOR

Elernent Bearbeiten Ansicht Modell Enginesring Wechseln Extras Hilfe

o & fhEERe DE « Lo S OS

£ F"]:: TTBib UML - Status Matne: Typ | Anderungsdatum
T) Ei@ sys_temr-.dl:ndel 1 0 A |E| A =zleihe Sec.. 22112003 00:458:02
= @ external object $INHOTMP/docs 2 0 A Hunde_anmelden Foll... 1011.2003 012154
-[B5} Uze Case System 30 A, @ Flckgabe Sec.. 221120035 00:21:.47
%j @ analysis system 4 0 A |E| Tartréger _Einkauf Sec.. 1011.2003 01:23:59
Java design system 2 a A |E| HKunden_neu_anlegen Sec.. 1011.2003 01:26:.19
@ Java implementation system $INOTMP/src B 0 Lt @ &nalyzizClassDiagram Klas.. 09112003 15:29:14
E}ﬁ systemModel management 7o A Q Werwattung_A= Klas... 0911 20035 152556
=l 5 0 A () Tontréger_AS Wlae.. 09.11.2003 15:20:08
9 0 A Q Hunde_A% Klas.. 09112003 15:27.32
oA Q D Kunde_A5 Obj... 09112003 13:20:05
|E| 0 A Q Tontrager _AS Obj... 09112003 132016
0 Lt HD Wervealtungll_A% Klas.. 0911.2003 151632
0 A, HD - verwatungUl_as Obj.. 0911 2005 13:23.08
@ oA i Hunde _LIC Obj... 09112003 14:05:54
oA i : Biblicthek_1C Cbj.. 09112003 15:44:35
0 Lt Q Wervwaltung_&5 Obj.. 09112003 16:14:14

@ © Prof. U. ABmann

Direct Traceability

54

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ARmann

> With a direct model mapping, a requirements model can be linked
= to atest case specification
= toadocumentation

= toan architectural specification
= viathe architectural specification, to the classes and procedures in the code

Example: imbus TestBench

55

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

O)
=
=
-
Q
=
Q
e
N

http://www.imbus.de/produkte/imbus-testbench/hauptfunktionen/

Planung

Analyse
& Design

T

Automatisierung

Realisierung &
Durchfihrung

Auswertung & Bericht

4

Abschluss

Requirements get “red-yellow-green” Test Status Attribute

56 Model-Driven Software Development in Technical Spaces (MOST)

» Test status is an attribute in the requirements tree that contains a direct link to the
result of a corresponding test case

[Anforderungsverwattung von Car Konfigurator (Version 2.1, Abnahmetest)

Anforderungsbaun: gil/[letails Benutzerdefinierte Felder | Erweitert | Wird verwendet in | Alle Versionen
8 CarConfiguratar - Wersion 1.1 {caliber) :

o 03 1. Business Reguirements

B Konfiguration zusammenstellen Name: Handler gewahnt Rabatt
¢ [’}- Hahattgews:uhren ID: i
EvM automatische Rabatte :
%M Handler gewshit Rahatt 3 Version: 1.1

¢ [2 UserRequirements
M standige Preisanzeige :
% keihe erzwungene Bedienerfolge §§ Status: Review Complete
o [2. Functional Reguirements :
v sofortige Preisherechnung
¢ %M Guelle der Basisdaten :
B Impor einer Datel | TestStatus: M Getestet PASS
M Impartvom OEM-Host :
¢ [4 Design Requirements
% giltige Konfiguration
[Eingabe der Bazizdaten

Eigentiimer:

Prioritat: Essential

Testf]...]: endpreis-berechnen-mit-rabatten_log.xml LS Aktuelle Ansicht : Endpreis berechnen mit Rabatten : [...]Jgurieren : Fahrzeug wahlen CER Mend &

ﬁ'. 2.3.2 Endpreis bherechnen mit Rabatten
= EM 1. einfach

Datei Anzeige Mavigation Zeitmessung Fenster Hilfe Ansicht

13 M CarConfig Starten i Interaktian Details
% M Preis priffan -
ﬁ. CarCaonfig Beenden | Fahrzeug wihlen CBR
57 Model-Driven Software |2 E/l 2. Testfall
B CarConfig Starten PR
=] Fahrzeug kanfigurieren }-‘ahrzeug

I Sondermodell wahlen
£ Zubehdrwihlen

¥ Preis priifen

=] .?l Fahrzeug konfigurieren

L3 W Fahrzeug wihlen CER
3 W Sondermodell wahlen
3 M Zubehor wahlen

% M Preis priffen

Interaktion: Fahrzeug wiahlen CBR

X Bemerkungen =

~Beschreibung

~Bemerkungen zur Durchflhrung

Fahrzeun aus der Liste der Fahrzeuge wahlen

=] .? B Fahrzeug konfigurieren
3 M Fahrzeugwahlen CER
3 W Sondermodell wahlen
3 M Zubehir wahlen "
@. Freis prilfen ~Bemerkungen zur Spezifikation
= ;? W Endpreis berechnen "ohne” Rabatt
B CarConfig Staden
= M Fahrzeug konfigurieren
3 M Fahrzeug wihlen CER

|

Benutzerdefinierte Felder der Durchfithrung 2 Aufgezeichnete Attribute x
=fiir diezen Knotentyp kinnen Benutzerdefinierte Felder nicht definiert werden= ~Tester
Aktueller Benutzer | |_|
Tester | |
L | Letzte Anderung des Ergebni
Liste der Anforderungen X Aktuelles Ergehnis Zu priifen

Ergehnis-Datum (DO YY) 07 .03.2003

Mame | D ‘ Yersion | Eigertiimet ‘ Status ‘ Pricritat
Ergebnis-Zeit (HH:kM: 550 09:34:03
=ofortige Preisherechnung WHATI0S 31 Dierk Accepted E==zential
keine erzwungene Bedienerfolge IJSERZ02 1.0 Dierk Subnitted E==zential Zeitmessung
Standlge Preisanzeige JSER301 10 Dierk Submittecd Ezzertial Geplarrte Durchfﬂhrungszeit (DDHHMMSSSSS) (0000 0000 000

Aktuele Durchfdhrngszet (DD:HH: ML S5 555 (000 00 0000
NN

@ © Prof. U. ABmann

Direct Model Mappings between Requirements and Test Tools

58

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

> Most often, these tools are in Link-treeware (hierarchical requirements, hierarchical
test cases and test suites)
» — The trace models can be stored externally in the megamodel
= Everytracelink refers to link-tree node numbers in the requirements and test
specifications

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Prof. ABmann - Model-Driven Softwrae Development in Technical Spaces

32.5 The MDA Macromodel of RoSI (RoSI-MDA):
Representing Trace Mappings as Role-Playing

e What happens if contexts and roles are available in models?

e The Megamodel of RoSI and its traceability of model elements is extremely simple, because the
role-based models and metamodels are factorizing objects

e RoSI-MDA is homogeneous Macromodel

Remember: The Steimann Factorization of Natural and Role
Types

60 Model-Driven Software Development in Technical Spaces (MOST)

Splitting a full type into its natural and role-type components

= FullType = Natural x (role-type, role-type,...)
= FullPerson = Person x (Reader, Father, Customer, ..)

LAR o
A CiEnicinn;

£l

oD

FullBook
<<compartment>> Nutrition
FullMan |7\ Bought Sausage
<<compartment>> Mafriage FullWoman
Woman
<<cpmpartment>>
Man Respurces

Reader

FullNewsPaper

™ Read

Newspaper

Remember: Full Type is from Inheritance Product Lattice

61 Model-Driven Software Development in Technical Spaces (MOST)

Q: What is a reading buying grandfather person? (A: tuple type)

Z Role 1
Natural (entity) — Role 2

—» Role 3
A A

Z|> R

(Contractor)

LivingBeing
(Mother)

/ \ (Father
(Negotiator)

N/

ted
Mammal | | Dinosaurs T T TR

: Grand Grand :
P Chick
sreen e (Father) (Mother) (Reader)(wniter) (Buyer)(Seller)

@ © Prof. U. ARman

Scalable Bindung Time of Contexts with the Factorization

62

Model-Driven Software Development in Technical Spaces (MOST)

» Scalable Binding: Roles can also be bound statically, if mixins are used as
implementation (fixing the context)

» Consequences for object life time, cohesion, allocation, adaptation, reconfiguration

Natural Class —_

Thing

1

LivingBeing

N

Mammal Dinosaurs

1 1

Person Chicken

(ﬂl © Prof. U. ABmann

NS

L

B

Static fixed role type 1

Related

<R

corer | [)

[1

Grand][Grand]
Eather Child

role type 2

Accessor

/\

[Acquainted]

/ N\

(s | (e
N

role type 3

[Customer]

T

('

Contractor
\ J

1

(y

Negotiator

\ J

N

Buyer][Seller]

A = v

NS

- /

RoSI Macromodel (RoSI-MDA): Refinement by Role
Allocation

63 Model-Driven Software Development in Technical Spaces (MOST)

> Refinement by allocation of further roles - static roles at design time, dynamic roles at runtime
> |In RoSI-MA, the role-play relation is subset of the traceability relation

TN T

e
v I — 1
] \T‘ﬁ>
2 ﬁ 4 = | %
AT — ‘7%
CIC] |A||A|§;[C | |CX
NN VOV IV R

@ © Prof. U. ABmann

RoSI-MDA: Traceability in Refinement by Role Allocation

64

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann °

> Refinement by allocation of further roles - static roles at design time, dynamic roles at runtime

>

N
A

T 3
s
VOV

RoSI Macromodel (RoSI-MDA): Cross-Layer Role-Based
Refinement in the Software Life Cycle

66 Model-Driven Software Development in Technical Spaces (MOST)

» Refinement by allocation of roles provides simple traceability because Natural objects STAY the same

» Trace mapping is role-play relation joined with context-role matrix

» Platform properties are ,technical® roles of the objects

= Technical plattforms are static contexts

= Dynamic contexts (place, time, service quality)

Natural
Domain Model Person
. Person
Requirements
Person
Design
Person
PSM

. Person

Implementation
Person

Run time context 1
= Person

Run time context 2
Run time context 3 Person

o

Fixed Role

1

Customer

Customer

Customer

Customer

Customer

Customer

Customer

Fixed Role

2

Customer
Design

Customer
Design

Customer
Design

Customer
Design

Customer
Design

Customer
Design

Fixed Role 3

Platform-specific
Behavior

Platform-specific
Behavior

Platform-specific
Behavior

Platform-specific
Behavior

Platform-specific
Behavior

Fixed
Role 4

Full static
behavior

Full static
behavior

Full static
behavior

Full static
behavior

Dynamic
role 1

Behavior in
Context 1

Behavior in
Context 1

Behavior in
Context 1

Dynamic Dynamic
role 2 role 3
Behavior in

Context 2

Behavior in Behavior in
Context 2 Context 3

Advantages of RoSI-MDA (Role-Based MDA)

67

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ARmann

> Very simple, component MDA with easy traceability:
= Cores of objects map 1:1 from CIM via PIM and PSM into the application PSI
(context-role matrix)

= Variability via new roles for PIM, PSM, PSI
= “object fattening” through the MDA
> Projection (get) and reintegration (put) is simple for MDA-SUM

End

68

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ARmann

» Why do the models of MDA form a macromodel, while MDA is a megamodel?

> Which trace link types are important for MDA?
» Why is a context-role-based model better for traceability?
» How does JastAdd aspects achieve MDA refinement?
= How is traceability achieved?
= How model synchronisation?
» How does RoSI-MDA achieve global traceability from requirements to run time?

» How will megamodel look like that provides Link-tree-based models and Role-based
factorization of objects?

= How does atrace link look like?
= Where are the trace links stored?
= Why can XML be used as simple exchange format in these megamodels?

