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2  Model-Driven Software Development in Technical Spaces (MOST)

Software Factories with Only 1 Technical Space

Mega- and Macromodels

Tool  Engineering

Model Management
Mapping, Transf., Composition

Technical 
Space 
Bridges

Technical Space

Meta-
modeling

Model Analysis
Querying, Interpretation

Metapyramid (Metahierarchy) for Token Modeling

Software Factory

Multi-TS Megamodel

In this chapter: 
1-TS Megamodel
SUM
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3  Model-Driven Software Development in Technical Spaces (MOST)
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4  Model-Driven Software Development in Technical Spaces (MOST)

Overview Table for Link-Tree Macromodels

► A tree node abstracts a subtree (representant)
■ Attributes and attributions are composable partial mappings from treenodes 

► RAGs are useful for all kinds of structure- and function-modeling in Link-Tree 
Macromodels, because they abbreviate dependencies in several models with cross-
model relations. 

■ In a macromodel under an artificial root (rooted macromodel), attributions can work 
on the SUM to ensure the constraints

► Relational RAGs (RelRAGs) are useful, because they have bidirectional constraints

(Plain) MDA  General SUM Skeleton SUM  (partial function extension)

RAGs in Repositories Markings Repository-SUM: get/put as higher-order 
attributions of link trees

● Javadoc-SUM

RAGs in Data-flow architectures Needs trace models get/put as model 
transformations (lenses)

Flow-SUM: Communicating link trees; In-place 
transformations of SUM

● Google Docs, Stream-Based MDA

The Link-Treeware TS is well apt for macromodel construction in a software factory
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Overview

1. Find out why software engineering is important
■ see some software engineering failures

2. Get acquainted with –
■ the Chair of Software Engineering

■ the research

■ the people

■ the teaching

Synchronization of Projective Views on 
a Single Underlying Model
(A Orthographic Macromodel)

Many slides are courtesy to:
Christian Vjekoslav Tunjic,
Prof. Colin Atkinson

Used by permission

L‘Aquila. Italy
21 July, 2015

Presented at: VAO 2015
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33.1. The Macromodel “Single-Underlying Model 
(SUM)”

• is based on a repository (repository-based SUM) [Atkinson19]
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Traditional View-based Software Engineering 
(VOSE)

Java sourceUML classes

Behavior

code
RegEx

test
casesXMI

AFD

OpSpec

system
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View 5

View 4

View 3

View 2

View 1

On-Demand View Generation in a SUM
(Flat Contexts Correspond to Colors or Tags)

Java sourceUML classes

Behavior

Single Underlying Model (SUM)
(all views merged)

Context 1

Context 2

Context 3

Context 4

Context 5
Requirements
texts

Deployment
diagrams

The SUM, if editable, provide a single-source view
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Orthographic Software Modeling (OSM) as a SUM

■ Many engineering disciplines have a long and successful tradition of 
technical drawing - orthographic projection

■ so why don't we do this in software engineering?

Operational
projection

Behavioral
projection

Structural
projectioncom

ponent

■ On demand view generation 
(projective views)

■ Dimension-based navigation

■ View-based methodology

■ Arrangement in a multidimentional 
SUM
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33.2. The Skeleton-SUM

[Hettel08]

[Seifert11]
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14  Model-Driven Software Development in Technical Spaces (MOST)

Skeletons and Flesh

► Skeleton splits models into

■ Skeletons (redundant) (several contexts)

■ and flesh (clothing) (locally different stuff in views, mono-context)

► Global invariants on skeletons vs. local „flesh“ variants

► Flesh must be non-overlapping, extending the skeleton

► Skeletons can have isomorphic, homomorphic, monotonically extended “skeleton” mappings,

■ or may be non-morphic

■ Skeleton mapping is a trace mapping

■ Flesh/Clothing is not traced (private) 

Flesh/
Clothing

Skeleton

 [Hettel08] [Seifert11]

non-morphic

non-morphic

isomorphic
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15  Model-Driven Software Development in Technical Spaces (MOST)

Mono-Skeleton-SUM

► Mono-Skeleton-SUM splits models into

■ One common Skeleton (redundant) (several contexts)

■ and flesh (clothing) (locally different stuff in views, mono-context) is stored in SUM together 
with skeleton

► Flesh must be non-overlapping, extending the skeleton

► Isomorphic Skeleton mapping

Skeleton

Flesh

 [Hettel08] [Seifert11]

isomorphic

isomorphic

isomorphic

isomorphic

isomorphic

SUM

View 1
View 2

View 3

isom
orphic
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16  Model-Driven Software Development in Technical Spaces (MOST)

Get/Put in Mono-Skeleton-SUM

► From a Skeleton-SUM 

■ get operation produces a view

■ put operation commits it into SUM

Skeleton

Flesh

 [Hettel08] [Seifert11]

isomorphic

isomorphic

isomorphic

isomorphic

isomorphic

SUM

View 1
View 2

View 3

isom
orphic

put

get



 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann 

Fakultät Informatik  -  Institut Software- und Multimediatechnik  -  Softwaretechnologie 

33.2.1 Javadoc-SUM, a Mono-Skeleton-SUM for 
Documentation
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18  Model-Driven Software Development in Technical Spaces (MOST)

Pkg

Class

Method

Class

Method Method

Comments

comments

comments

code

code code
code

code

comments

comments

comments

Example Skeleton-SUM:
Scope tree of a program (static structuring)

Javadoc comment relies on several attributes of nodes of the syntax tree:

► Comments (package, class, method, parameter)

► Code (skeleton)

► Visibility 

► Metadata

► Unit tests
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19  Model-Driven Software Development in Technical Spaces (MOST)

Pkg

Class

Method

Class

Method Method

Projecting A Scope Tree for Skeleton

► put/get operations transform SUM to views and back

► Get: partial function projection

► Put: merge of partial function of view and of SUM 

► Exa.: result of get operation for Scope Tree “Skeleton”:
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20  Model-Driven Software Development in Technical Spaces (MOST)

Pkg

Class

Method

Class

Method Method

Comments

Comments

Comments

Projecting A Scope Tree for Skeleton

► Result of get operation for For Comment Context “Comment Flesh”:
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21  Model-Driven Software Development in Technical Spaces (MOST)

Pkg

Class

Method

Class

Method Method

Code

Code Code Code

Code

Projecting A Scope Tree for Skeleton

► Result of get operation for Code Context “Code Flesh”:
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22  Model-Driven Software Development in Technical Spaces (MOST)

Merge of Partial Functions and Partial Trees in a Mono-
Skeleton-SUM

► Given two partial functions on tree-node domain D and two domains E, F: 

■ attr: D  E → and 
■ attr2: D  F→

► Their merge merged-attr:D  E  F→ ◊
■ merged-attr(d) = attr (d)  attr2(d)◊

► Skeleton-SUM are trees of objects 
which work on a partial function space of attributes

■ Every view adds a new partial function

Method

Class

Method

code

code code

comments

comments

comments

Method

Class

Method

comments

comments

comments

Method

Class

Method

code

code
code

attr

attr2

attr

attr2
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23  Model-Driven Software Development in Technical Spaces (MOST)

      

  

Javadoc-SUM: 
A Simple Metamodel-based Mono-Skeleton-SUM

SUM

Comment
View

Code
View

CodeView and CommentView 
unify along the skeleton

put

get
put

get
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24  Model-Driven Software Development in Technical Spaces (MOST)

Remarks on Mono-Skeleton-SUM

► Generality: The Skeleton need not be a link tree; it can be an arbitrary graph data 
structure

■ But RAGs can model Mono-Skeleton-SUMs very easily: inherit the flesh attributes to 
all nodes 

► Between Skeleton and Flesh there holds a key dependency 
■ A partial function describes the mapping between skeleton and flesh
■ Different partial functions exist for every view
■ Flesh-skeleton unification employs partial function merge (feature term unification)
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33.3. Context-Based Skeleton-SUM

[Hettel08]

[Seifert11]
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26  Model-Driven Software Development in Technical Spaces (MOST)

Skeleton-SUM

► Clothing can be associated to context (context-aware clothing)
■ Code context
■ Comment context

► If all clothings have mono-context, the SUM is called flat contextual SUM. 

Context Context
Context
Hierarchy
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27  Model-Driven Software Development in Technical Spaces (MOST)

A Metamodel-based Skeleton-SUM with Flat Context Hierarchy

SUM

Comment
View

Code
View

Signature
View

TestCase
View

Views unify along the skeleton
Context

Context
Hierarchy

Active context determines 
the view



 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann 

Fakultät Informatik  -  Institut Software- und Multimediatechnik  -  Softwaretechnologie 

33.3.1.  Orthographic Software Modeling (OSM) 
as a Dimensional, Context-Based Skeleton-SUM

[Hettel08]

[Seifert11]
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Orthographic Software Modeling (OSM) as a 
Dimensional Skeleton-SUM

■ Many engineering disciplines have a long and successful tradition of 
technical drawing - orthographic projection

■ so why don't we do this in software engineering?

Operational
projection

Behavioral
projection

Structural
projectioncom

ponent

■ On demand view generation 
(projective views)

■ Dimension-based navigation

■ View-based methodology
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Dimension Based Navigation

■ views organized in a multi-dimensional cube

■ one choice always “selected” from each dimension

■ each cell represents a viewpoint

30

Cell

...

...

... ...
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31  Model-Driven Software Development in Technical Spaces (MOST)

OSM is a Flat Contextual Skeleton-SUM

► OSM defines n-dimensional contexts, i.e., every model element is related to n contexts.

► OSM can be realized by a Skeleton-SUM providing n mono-contextual clothings
■ i.e., n mono-contextual attributes for every model element (link tree node).

► The n dimensions (contexts) are used for projection

► Instead of attributes, model elements have roles (CROM-Skeleton-SUM)

► ROSIMA is a CROM-Skeleton-SUM
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33.4. Hierarchic Context-Based Skeleton-SUM

[Hettel08]

[Seifert11]
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33  Model-Driven Software Development in Technical Spaces (MOST)

Hierarchic Skeleton-SUM

► Clothing can be associated to structured context 
■ Code context

. Signatures

. Implementation
■ Comment context

► If som clothings have an inner (structured) context, the SUM is called hierarchic 
contextual SUM. 

Context
Context
Hierarchy

Test Comment

Implementation Signature

Code
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34  Model-Driven Software Development in Technical Spaces (MOST)

A Mono-Skeleton-SUM 
with Hierarchic Contexts

SUM

Comment
View

Code
View

Code
View

TestCase
View

Context
Context
Hierarchy

Views of 
structured context 
can be further 
decomposed

Signature
View

Implementation
View



Fakultät Informatik  -  Institut Software- und Multimediatechnik  -  Softwaretechnologie – Prof. Aßmann – Model-Driven Softwrae Development in Technical Spaces

33.5. Multi-Skeleton-SUM

[Seifert11]
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36  Model-Driven Software Development in Technical Spaces (MOST)

Multi-Skeleton-SUM

► In SUMs, not all 
Skeletons need not be a 
linked by isomorphic 
mappings

► A Skeleton mapping is 
isomorphic to a subset 
of the skeleton of the 
SUM, not touching 
private clothes of 
others

isomorphic

iso
m

orp
hic

SUM

View 1
View 2

View 3
isom

orphic

► Every Skeleton must be invariant, and 
within the SUM, a Skeleton—Skeleton 
mapping must exist
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33.5.2 Put Operations in the MDA-Multi-Skeleton-
SUM
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► A single underlying model (SUM) is a 
cultimodel with views

► MDA can be arranged as MDA-SUM

► A evolution operation changes a 
global name or definition in one model 
tree a view, which used in several 
other model trees in the SUM

► To synchronize dependent model 
elements, we need a commit/put 

operation (“commit/put to SUM”)

► Its implementation needs to repeat 
the rewrite in all referencing places 

■ Follow the references introduced 
by global name analysis

■ Standard process in RAG

► Easy traceability by dependency graph 
between global names

38

Model Synchronization in RAG-MDA by Put Operations on Single 

Underlying Models (SUM)

-int sum

Status: {<<changed>>}
Name: Loan->Rental

+withdraw()

Dependent
Tree in 

SUM

Model
tree

(view)

-int sum +withdraw()

commit/
put

Status: {<<committed>>}
Name: Loan->Rental
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33.6 Delta-Based Lenses for Incremental 
Modifications for Scalability and Applicability of 
Skeleton-SUMs

[Diskin]
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Delta-Based Lenses for
Scalability and Applicability

■ Simple minded implementation approach –
■ uni-directional exhaustive transformations 

● get: SUM-to-view, put: view-to-SUM
■ create a new (version of the) view whenever there is a change in the 

SUM

■ create a new (version of the) SUM whenever there is a change in a 
view

■ Would work but too large grained
■ Not scalable (inefficient)

■ No incrementality

■ transformation more complex than necessary

Þ The necessary get/put operations are called bidirectional lenses
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Delta-Based Lenses and Skeleton SUMs

■ Lenses (Pierce et al. 2007) are pairs of bidirectional transformations based on 
get (exhaustive projection, decomposition, checkout) and put (exhaustive 
integration, checkin) operations on models
■ axioms for well-behaved lenses

■ axiom for very well behaved lenses: “intermediary puts can be forgotten”

■ Delta-based Lenses optimize the checkin/checkout (Diskin et al. 2011)
■ Incremental delta operations dput and dget are driven by the changes to 

the views

■ axiom for delta-put: “If a delta-commit results in a delta of the SUM, then 
the next delta-checkout refers only to this delta of the SUM”

■ much more fine-grained and scalable

if s = dput(v, s), then dget(s) = v     //  DeltaPUTPUT rule 

v: View; s:SUM
get(put(v, s)) = v      // PUTGET invariant rule 
put(get(s), s) = s       // GETPUT invariant rule

put(v’, put(v, s)) = put(v’, s)       // PUTPUT invariant rule
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The Background of
Orthographic Software Modeling (OSM) 

■ In OSM, the SUM is much larger than the views
■ the views are relatively small and compact

■ Views can be updated concurrently
■ axioms only applicable locally (i.e. to one view at a time)

■ Usually have one-to-one correspondences between view elements and SUM 
elements
■ changes can conveniently be 

traced to the affected element

■ View elements cannot be changed 
just locally
■ for example, cannot delete 

an element from just the 
view, but not the SUM
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Hybrid Approach with dput

■ use get to create views from the SUM

■ use dput (delta put) to update the SUM when a view is changed

– incremental put operation only transmits the delta (increment)

get 

v
dput

s

if s = dput(v, s), then dget(s) = v     //  DeltaPUTPUT rule 
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45  Model-Driven Software Development in Technical Spaces (MOST)

Skeleton-SUM and DeltaPutPut

► Reason:
■ Partial functions are independent
■ Skeleton stays invariant

► Corollary
■ therefore OSM
■ therefore Javadoc-SUM

A Skeleton-SUM fulfills the DeltaPutPut rule.

   
   

  

SUM

Comment
View

Code
View

put
get put

get
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Pros and Cons of the Hybrid Approach

■ Traces allow affected SUM elements to be efficiently identified
■ can be generated most mainstream transformation engines

■ Traces also allow the open views impacted by a change to be identified

■ Traces must be updated dynamically a la MVC pattern

■ Use of get to create views reduces the complexity of the transformation with 
little extra overhead
■ no need to update trace information

■ Use of dput to update the SUM greatly enhances the efficiency of updating 
SUM
■ the SUM is only ever updated via changes to views

■ However, it increases the amount of information that needs to be stored on 
the server
■ part of the SUM?
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33.7 Skeleton-SUM on RoSI CROM
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Skeleton-SUM on RoSI CROM

► The SUM principle can be played on all metalanguages, e.g., CROM

► CROM supports Mono-Skeleton-SUM for all 
■ Contexts provide viewpoints
■ Cores provide Skeleton, Roles provide flesh/clothing
■ Role-play provides partial functions from objects to roles for a SkeletonSUM over cores 

and roles

Theorem: A CROM-based Skeleton-SUM fulfils the delta-putput invariant.
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33.8. Disjoint-Skeleton-SUM

[Seifert11]
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50  Model-Driven Software Development in Technical Spaces (MOST)

SUM2

Disjoint-Skeleton-SUM

► Skeletons can be 
disjoint, though related 
by isomorphic 
mappings and 
homomorphic mappings

► Then, the SUM can be 
thought of as hierarchic

SUM1

View 1a
View 1b

View 2a

hom
om

orphic

isomorphic

hom
om

orphic

homomorphic

SUM
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33.8.1 Heterogeneous-Language-Skeleton-SUM

[Seifert11]
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52  Model-Driven Software Development in Technical Spaces (MOST)

SUM2

Heterogeneous-Language-Skeleton-SUM

► Disjoing Skeletons can 
be of different 
languages 
(heterogeneous)

► Then, Roundtrip 
Scenarios between 
different languages can 
be described

SUM1

View 1a
View 1b

View 2a

hom
om

orphic

isomorphic

hom
om

orphic

homomorphic

SUM
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53  Model-Driven Software Development in Technical Spaces (MOST)

SUM2

Heterogeneous-Language-Skeleton-SUM with Templates

► When skeletons have 
slots (parameters) they 
are templates 

► They can be filled with 
snippets from 
attributes

SUM1

View 1a
View 1b

View 2a

hom
om

orphic

isomorphic

hom
om

orphic

homomorphic

SUM
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54  Model-Driven Software Development in Technical Spaces (MOST)

The End

► Explain, how partial functions between objects and attributes enable the projections 
(get) and the merge functions (put) of a Skeleton-SUM 

► Why are contexts important for views?

► What happens if the SUM has several skeletons?

► Which are the contexts of Javadoc-SUM? Why does Javadoc-SUM fulfill the 
DeltaPutPut rule?

► Which are the contexts of OSM? Why does OSM fulfill the DeltaPutPut rule?

► Why does ROSI-CROM enable Skeleton-SUM?

► Some slides are courtesy to Prof. Colin Atkinson, Mannheim. Used by permission.
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2) Skeleton-SUM
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2  Model-Driven Software Development in Technical Spaces (MOST)

Software Factories with Only 1 Technical Space

Mega- and Macromodels

Tool  Engineering

Model Management
Mapping, Transf., Composition

Technical 
Space 
Bridges

Technical Space

Meta-
modeling

Model Analysis
Querying, Interpretation

Metapyramid (Metahierarchy) for Token Modeling

Software Factory

Multi-TS Megamodel

In this chapter: 
1-TS Megamodel
SUM
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Overview Table for Link-Tree Macromodels

► A tree node abstracts a subtree (representant)
■ Attributes and attributions are composable partial mappings from treenodes 

► RAGs are useful for all kinds of structure- and function-modeling in Link-Tree 
Macromodels, because they abbreviate dependencies in several models with cross-
model relations. 

■ In a macromodel under an artificial root (rooted macromodel), attributions can work 
on the SUM to ensure the constraints

► Relational RAGs (RelRAGs) are useful, because they have bidirectional constraints

(Plain) MDA  General SUM Skeleton SUM  (partial function extension)

RAGs in Repositories Markings Repository-SUM: get/put as higher-order 
attributions of link trees

● Javadoc-SUM

RAGs in Data-flow architectures Needs trace models get/put as model 
transformations (lenses)

Flow-SUM: Communicating link trees; In-place 
transformations of SUM

● Google Docs, Stream-Based MDA

The Link-Treeware TS is well apt for macromodel construction in a software factory

Other Examples form

•Olympic ring decomposition (EAI)  marks all modules 
with “rings” and thereby decomposes them (course ST-
1)

•VSUM (Reussner, Burger et al) generates dependent 
parts by create trace links
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Overview

1. Find out why software engineering is important
■ see some software engineering failures

2. Get acquainted with –
■ the Chair of Software Engineering

■ the research

■ the people

■ the teaching

Synchronization of Projective Views on 
a Single Underlying Model
(A Orthographic Macromodel)

Many slides are courtesy to:
Christian Vjekoslav Tunjic,
Prof. Colin Atkinson

Used by permission

L‘Aquila. Italy
21 July, 2015

Presented at: VAO 2015
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33.1. The Macromodel “Single-Underlying Model 
(SUM)”

• is based on a repository (repository-based SUM) [Atkinson19]



7

Software Engineering
Prof. Dr. Colin Atkinson

7

Traditional View-based Software Engineering 
(VOSE)

Java sourceUML classes

Behavior

code
RegEx

test
casesXMI

AFD

OpSpec

system

let‘s take a look again at the current status 
with a picture
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View 5

View 4

View 3

View 2

View 1

On-Demand View Generation in a SUM
(Flat Contexts Correspond to Colors or Tags)

Java sourceUML classes

Behavior

Single Underlying Model (SUM)
(all views merged)

Context 1

Context 2

Context 3

Context 4

Context 5
Requirements
texts

Deployment
diagrams

The SUM, if editable, provide a single-source view
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Orthographic Software Modeling (OSM) as a SUM

■ Many engineering disciplines have a long and successful tradition of 
technical drawing - orthographic projection

■ so why don't we do this in software engineering?

Operational
projection

Behavioral
projection

Structural
projectioncom

ponent

■ On demand view generation 
(projective views)

■ Dimension-based navigation

■ View-based methodology

■ Arrangement in a multidimentional 
SUM

apply this metaphor to SE
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33.2. The Skeleton-SUM

[Hettel08]

[Seifert11]
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Skeletons and Flesh

► Skeleton splits models into

■ Skeletons (redundant) (several contexts)

■ and flesh (clothing) (locally different stuff in views, mono-context)

► Global invariants on skeletons vs. local „flesh“ variants

► Flesh must be non-overlapping, extending the skeleton

► Skeletons can have isomorphic, homomorphic, monotonically extended “skeleton” mappings,

■ or may be non-morphic

■ Skeleton mapping is a trace mapping

■ Flesh/Clothing is not traced (private) 

Flesh/
Clothing

Skeleton

 [Hettel08] [Seifert11]

non-morphic

non-morphic

isomorphic
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Mono-Skeleton-SUM

► Mono-Skeleton-SUM splits models into

■ One common Skeleton (redundant) (several contexts)

■ and flesh (clothing) (locally different stuff in views, mono-context) is stored in SUM together 
with skeleton

► Flesh must be non-overlapping, extending the skeleton

► Isomorphic Skeleton mapping

Skeleton

Flesh

 [Hettel08] [Seifert11]

isomorphic

isomorphic

isomorphic

isomorphic

isomorp
hic

SUM

View 1
View 2

View 3

isom
orphic
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Get/Put in Mono-Skeleton-SUM

► From a Skeleton-SUM 

■ get operation produces a view

■ put operation commits it into SUM

Skeleton

Flesh

 [Hettel08] [Seifert11]

isomorphic

isomorphic

isomorphic

isomorphic

isomorp
hic

SUM

View 1
View 2

View 3

isom
orphic

put

get
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33.2.1 Javadoc-SUM, a Mono-Skeleton-SUM for 
Documentation
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Pkg

Class

Method

Class

Method Method

Comments

comments

comments

code

code code
code

code

comments

comments

comments

Example Skeleton-SUM:
Scope tree of a program (static structuring)

Javadoc comment relies on several attributes of nodes of the syntax tree:

► Comments (package, class, method, parameter)

► Code (skeleton)

► Visibility 

► Metadata

► Unit tests
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Pkg

Class

Method

Class

Method Method

Projecting A Scope Tree for Skeleton

► put/get operations transform SUM to views and back

► Get: partial function projection

► Put: merge of partial function of view and of SUM 

► Exa.: result of get operation for Scope Tree “Skeleton”:
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Pkg

Class

Method

Class

Method Method

Comments

Comments

Comments

Projecting A Scope Tree for Skeleton

► Result of get operation for For Comment Context “Comment Flesh”:
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Pkg

Class

Method

Class

Method Method

Code

Code Code Code

Code

Projecting A Scope Tree for Skeleton

► Result of get operation for Code Context “Code Flesh”:
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Merge of Partial Functions and Partial Trees in a Mono-
Skeleton-SUM

► Given two partial functions on tree-node domain D and two domains E, F: 

■ attr: D  E → and 
■ attr2: D  F→

► Their merge merged-attr:D  E  F→ ◊
■ merged-attr(d) = attr (d)  attr2(d)◊

► Skeleton-SUM are trees of objects 
which work on a partial function space of attributes

■ Every view adds a new partial function

Method

Class

Method

code

code code

comments

comments

comments

Method

Class

Method

comments

comments

comments

Method

Class

Method

code

code
code

attr

attr2

attr

attr2
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Javadoc-SUM: 
A Simple Metamodel-based Mono-Skeleton-SUM

SUM

Comment
View

Code
View

CodeView and CommentView 
unify along the skeleton

put

get
put

get
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Remarks on Mono-Skeleton-SUM

► Generality: The Skeleton need not be a link tree; it can be an arbitrary graph data 
structure

■ But RAGs can model Mono-Skeleton-SUMs very easily: inherit the flesh attributes to 
all nodes 

► Between Skeleton and Flesh there holds a key dependency 
■ A partial function describes the mapping between skeleton and flesh
■ Different partial functions exist for every view
■ Flesh-skeleton unification employs partial function merge (feature term unification)
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33.3. Context-Based Skeleton-SUM

[Hettel08]

[Seifert11]
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Skeleton-SUM

► Clothing can be associated to context (context-aware clothing)
■ Code context
■ Comment context

► If all clothings have mono-context, the SUM is called flat contextual SUM. 

Context Context
Context
Hierarchy
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A Metamodel-based Skeleton-SUM with Flat Context Hierarchy

SUM

Comment
View

Code
View

Signature
View

TestCase
View

Views unify along the skeleton
Context

Context
Hierarchy

Active context determines 
the view
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33.3.1.  Orthographic Software Modeling (OSM) 
as a Dimensional, Context-Based Skeleton-SUM

[Hettel08]

[Seifert11]
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Orthographic Software Modeling (OSM) as a 
Dimensional Skeleton-SUM

■ Many engineering disciplines have a long and successful tradition of 
technical drawing - orthographic projection

■ so why don't we do this in software engineering?

Operational
projection

Behavioral
projection

Structural
projectioncom

ponent

■ On demand view generation 
(projective views)

■ Dimension-based navigation

■ View-based methodology

apply this metaphor to SE
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Dimension Based Navigation

■ views organized in a multi-dimensional cube

■ one choice always “selected” from each dimension

■ each cell represents a viewpoint

30

Cell

...

...

... ...
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OSM is a Flat Contextual Skeleton-SUM

► OSM defines n-dimensional contexts, i.e., every model element is related to n contexts.

► OSM can be realized by a Skeleton-SUM providing n mono-contextual clothings
■ i.e., n mono-contextual attributes for every model element (link tree node).

► The n dimensions (contexts) are used for projection

► Instead of attributes, model elements have roles (CROM-Skeleton-SUM)

► ROSIMA is a CROM-Skeleton-SUM
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33.4. Hierarchic Context-Based Skeleton-SUM

[Hettel08]

[Seifert11]
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Hierarchic Skeleton-SUM

► Clothing can be associated to structured context 
■ Code context

. Signatures

. Implementation
■ Comment context

► If som clothings have an inner (structured) context, the SUM is called hierarchic 
contextual SUM. 

Context
Context
Hierarchy

Test Comment

Implementation Signature

Code
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A Mono-Skeleton-SUM 
with Hierarchic Contexts

SUM

Comment
View

Code
View

Code
View

TestCase
View

Context
Context
Hierarchy

Views of 
structured context 
can be further 
decomposed

Signature
View

Implementation
View
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33.5. Multi-Skeleton-SUM

[Seifert11]
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Multi-Skeleton-SUM

► In SUMs, not all 
Skeletons need not be a 
linked by isomorphic 
mappings

► A Skeleton mapping is 
isomorphic to a subset 
of the skeleton of the 
SUM, not touching 
private clothes of 
others

isomorphic

iso
m

orp
hic

SUM

View 1
View 2

View 3

isom
orph

ic

► Every Skeleton must be invariant, and 
within the SUM, a Skeleton—Skeleton 
mapping must exist
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33.5.2 Put Operations in the MDA-Multi-Skeleton-
SUM
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► A single underlying model (SUM) is a 
cultimodel with views

► MDA can be arranged as MDA-SUM

► A evolution operation changes a 
global name or definition in one model 
tree a view, which used in several 
other model trees in the SUM

► To synchronize dependent model 
elements, we need a commit/put 

operation (“commit/put to SUM”)

► Its implementation needs to repeat 
the rewrite in all referencing places 

■ Follow the references introduced 
by global name analysis

■ Standard process in RAG

► Easy traceability by dependency graph 
between global names

38

Model Synchronization in RAG-MDA by Put Operations on Single 

Underlying Models (SUM)

-int sum

Status: {<<changed>>}
Name: Loan->Rental

+withdraw()

Dependent
Tree in 

SUM

Model
tree

(view)

-int sum +withdraw()

commit/
put

Status: {<<committed>>}
Name: Loan->Rental

Example: different class implementations of a 
connector class in a PIM
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33.6 Delta-Based Lenses for Incremental 
Modifications for Scalability and Applicability of 
Skeleton-SUMs

[Diskin]
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Delta-Based Lenses for
Scalability and Applicability

■ Simple minded implementation approach –
■ uni-directional exhaustive transformations 

● get: SUM-to-view, put: view-to-SUM
■ create a new (version of the) view whenever there is a change in the 

SUM

■ create a new (version of the) SUM whenever there is a change in a 
view

■ Would work but too large grained
■ Not scalable (inefficient)

■ No incrementality

■ transformation more complex than necessary

Þ The necessary get/put operations are called bidirectional lenses
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Delta-Based Lenses and Skeleton SUMs

■ Lenses (Pierce et al. 2007) are pairs of bidirectional transformations based on 
get (exhaustive projection, decomposition, checkout) and put (exhaustive 
integration, checkin) operations on models
■ axioms for well-behaved lenses

■ axiom for very well behaved lenses: “intermediary puts can be forgotten”

■ Delta-based Lenses optimize the checkin/checkout (Diskin et al. 2011)
■ Incremental delta operations dput and dget are driven by the changes to 

the views

■ axiom for delta-put: “If a delta-commit results in a delta of the SUM, then 
the next delta-checkout refers only to this delta of the SUM”

■ much more fine-grained and scalable

if s = dput(v, s), then dget(s) = v     //  DeltaPUTPUT rule 

v: View; s:SUM
get(put(v, s)) = v      // PUTGET invariant rule 
put(get(s), s) = s       // GETPUT invariant rule

put(v’, put(v, s)) = put(v’, s)       // PUTPUT invariant rule
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The Background of
Orthographic Software Modeling (OSM) 

■ In OSM, the SUM is much larger than the views
■ the views are relatively small and compact

■ Views can be updated concurrently
■ axioms only applicable locally (i.e. to one view at a time)

■ Usually have one-to-one correspondences between view elements and SUM 
elements
■ changes can conveniently be 

traced to the affected element

■ View elements cannot be changed 
just locally
■ for example, cannot delete 

an element from just the 
view, but not the SUM
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Hybrid Approach with dput

■ use get to create views from the SUM

■ use dput (delta put) to update the SUM when a view is changed

– incremental put operation only transmits the delta (increment)

get 

v
dput

s

if s = dput(v, s), then dget(s) = v     //  DeltaPUTPUT rule 
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Skeleton-SUM and DeltaPutPut

► Reason:
■ Partial functions are independent
■ Skeleton stays invariant

► Corollary
■ therefore OSM
■ therefore Javadoc-SUM

A Skeleton-SUM fulfills the DeltaPutPut rule.

   
   

  

SUM

Comment
View

Code
View

put
get put

get



  

 

46

Software Engineering
Prof. Dr. Colin Atkinson

46

Pros and Cons of the Hybrid Approach

■ Traces allow affected SUM elements to be efficiently identified
■ can be generated most mainstream transformation engines

■ Traces also allow the open views impacted by a change to be identified

■ Traces must be updated dynamically a la MVC pattern

■ Use of get to create views reduces the complexity of the transformation with 
little extra overhead
■ no need to update trace information

■ Use of dput to update the SUM greatly enhances the efficiency of updating 
SUM
■ the SUM is only ever updated via changes to views

■ However, it increases the amount of information that needs to be stored on 
the server
■ part of the SUM?
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33.7 Skeleton-SUM on RoSI CROM
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Skeleton-SUM on RoSI CROM

► The SUM principle can be played on all metalanguages, e.g., CROM

► CROM supports Mono-Skeleton-SUM for all 
■ Contexts provide viewpoints
■ Cores provide Skeleton, Roles provide flesh/clothing
■ Role-play provides partial functions from objects to roles for a SkeletonSUM over cores 

and roles

Theorem: A CROM-based Skeleton-SUM fulfils the delta-putput invariant.



  

Fakultät Informatik  -  Institut Software- und Multimediatechnik  -  Softwaretechnologie – Prof. Aßmann – Model-Driven Softwrae Development in Technical Spaces

33.8. Disjoint-Skeleton-SUM

[Seifert11]
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SUM2

Disjoint-Skeleton-SUM

► Skeletons can be 
disjoint, though related 
by isomorphic 
mappings and 
homomorphic mappings

► Then, the SUM can be 
thought of as hierarchic

SUM1

View 1a
View 1b

View 2a

hom
om

orphic

isomorphic
hom

om
orphic

homomorphic

SUM
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33.8.1 Heterogeneous-Language-Skeleton-SUM

[Seifert11]
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SUM2

Heterogeneous-Language-Skeleton-SUM

► Disjoing Skeletons can 
be of different 
languages 
(heterogeneous)

► Then, Roundtrip 
Scenarios between 
different languages can 
be described

SUM1

View 1a
View 1b

View 2a

hom
om

orphic

isomorphic
hom

om
orphic

homomorphic

SUM
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SUM2

Heterogeneous-Language-Skeleton-SUM with Templates

► When skeletons have 
slots (parameters) they 
are templates 

► They can be filled with 
snippets from 
attributes

SUM1

View 1a
View 1b

View 2a

hom
om

orphic

isomorphic
hom

om
orphic

homomorphic

SUM
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The End

► Explain, how partial functions between objects and attributes enable the projections 
(get) and the merge functions (put) of a Skeleton-SUM 

► Why are contexts important for views?

► What happens if the SUM has several skeletons?

► Which are the contexts of Javadoc-SUM? Why does Javadoc-SUM fulfill the 
DeltaPutPut rule?

► Which are the contexts of OSM? Why does OSM fulfill the DeltaPutPut rule?

► Why does ROSI-CROM enable Skeleton-SUM?

► Some slides are courtesy to Prof. Colin Atkinson, Mannheim. Used by permission.


