
Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Softwrae Development in Technical Spaces

33. Macromodel Single Underlying Model (SUM)
with Orthographic Software Modeling (OSM) -
A 1-TS-Megamodel with Total Consistency

Prof. Dr. U. Aßmann

Technische Universität Dresden

Institut für Software- und
Multimediatechnik

http://st.inf.tu-dresden.de/teaching/
most

Version 21-1.1, 22.01.22

1) The megamodel “Single Underlying
Model (SUM)”

2) Skeleton-SUM

3) Flat Context-Based Skeleton SUM

1) Orthographic Software Modeling
(OSM)

4) Hierarchic Context-Based Skeleton
SUM

5) Multi-Skeleton SUM

6) Delta-Based Lenses

7) SUM on ROSI-CROM

8) Disjoint SkeletonSUM

9) Heterogeneous Language-SUM

http://st.inf.tu-dresden.de/
http://st.inf.tu-dresden.de/

 ©
 P

ro
f.

U
. A

ß
m

an
n

2 Model-Driven Software Development in Technical Spaces (MOST)

Software Factories with Only 1 Technical Space

Mega- and Macromodels

Tool Engineering

Model Management
Mapping, Transf., Composition

Technical
Space
Bridges

Technical Space

Meta-
modeling

Model Analysis
Querying, Interpretation

Metapyramid (Metahierarchy) for Token Modeling

Software Factory

Multi-TS Megamodel

In this chapter:
1-TS Megamodel
SUM

 ©
 P

ro
f.

U
. A

ß
m

an
n

3 Model-Driven Software Development in Technical Spaces (MOST)

References

► [Atkinson19] Johannes Meier, Heiko Klare, Christian Tunjic, Colin Atkinson, Erik Burger, Ralf
Reussner, and Andreas Winter. Single underlying models for projectional, multi-view
environments. In Proceedings of the 7th International Conference on Model-Driven Engineering
and Software Development - Volume 1: MODELSWARD, pages 119--130. INSTICC, SciTePress,
2019.

► Hettel, Thomas and Lawley, Michael J. and Raymond, Kerry (2008). Model Synchronisation:
Definitions for Round-Trip Engineering. In Proceedings ICMT2008 - International Conference on
Model Transformation: Theory and Practice of Model Transformations LNCS 5063/2008, pages
pp. 31-45, Zurich, Switzerland.

► Thomas Hettel. Model Round-Trip Engineering. PhD Thesis. Queensland University of Technology,
2010

► Zinovy Diskin and Yingfei Xiong and Krzysztof Czarnecki. From State- to Delta-Based Bidirectional
Model Transformations: the Asymmetric Case. Journal of Object Technology, 2011, vol. 10, 6, pp.
1-25,

■ http://dx.doi.org/10.5381/jot.2011.10.1.a6

► J. Nathan Foster and Michael B. Greenwald and Jonathan T. Moore and Benjamin C. Pierce and
Alan Schmitt. Combinators for Bi-Directional Tree Transformations: A Linguistic Approach to the
View Update Problem, ACM Transactions on Programming Languages and Systems, Vol 29(3), pp.
17, 2007

■ http://www.cis.upenn.edu/~bcpierce/papers/newlenses-popl.pdf

 ©
 P

ro
f.

U
. A

ß
m

an
n

4 Model-Driven Software Development in Technical Spaces (MOST)

Overview Table for Link-Tree Macromodels

► A tree node abstracts a subtree (representant)
■ Attributes and attributions are composable partial mappings from treenodes

► RAGs are useful for all kinds of structure- and function-modeling in Link-Tree
Macromodels, because they abbreviate dependencies in several models with cross-
model relations.

■ In a macromodel under an artificial root (rooted macromodel), attributions can work
on the SUM to ensure the constraints

► Relational RAGs (RelRAGs) are useful, because they have bidirectional constraints

(Plain) MDA General SUM Skeleton SUM (partial function extension)

RAGs in Repositories Markings Repository-SUM: get/put as higher-order
attributions of link trees

● Javadoc-SUM

RAGs in Data-flow architectures Needs trace models get/put as model
transformations (lenses)

Flow-SUM: Communicating link trees; In-place
transformations of SUM

● Google Docs, Stream-Based MDA

The Link-Treeware TS is well apt for macromodel construction in a software factory

5

Software Engineering
Prof. Dr. Colin Atkinson

Overview

1. Find out why software engineering is important
■ see some software engineering failures

2. Get acquainted with –
■ the Chair of Software Engineering

■ the research

■ the people

■ the teaching

Synchronization of Projective Views on
a Single Underlying Model
(A Orthographic Macromodel)

Many slides are courtesy to:
Christian Vjekoslav Tunjic,
Prof. Colin Atkinson

Used by permission

L‘Aquila. Italy
21 July, 2015

Presented at: VAO 2015

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Softwrae Development in Technical Spaces

33.1. The Macromodel “Single-Underlying Model
(SUM)”

• is based on a repository (repository-based SUM) [Atkinson19]

7

Software Engineering
Prof. Dr. Colin Atkinson

Traditional View-based Software Engineering
(VOSE)

Java sourceUML classes

Behavior

code
RegEx

test
casesXMI

AFD

OpSpec

system

8

Software Engineering
Prof. Dr. Colin Atkinson

View 5

View 4

View 3

View 2

View 1

On-Demand View Generation in a SUM
(Flat Contexts Correspond to Colors or Tags)

Java sourceUML classes

Behavior

Single Underlying Model (SUM)
(all views merged)

Context 1

Context 2

Context 3

Context 4

Context 5
Requirements
texts

Deployment
diagrams

The SUM, if editable, provide a single-source view

9

Software Engineering
Prof. Dr. Colin Atkinson

Orthographic Software Modeling (OSM) as a SUM

■ Many engineering disciplines have a long and successful tradition of
technical drawing - orthographic projection

■ so why don't we do this in software engineering?

Operational
projection

Behavioral
projection

Structural
projectioncom

ponent

■ On demand view generation
(projective views)

■ Dimension-based navigation

■ View-based methodology

■ Arrangement in a multidimentional
SUM

10

Software Engineering
Prof. Dr. Colin Atkinson

11

Software Engineering
Prof. Dr. Colin Atkinson

12

Software Engineering
Prof. Dr. Colin Atkinson

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Softwrae Development in Technical Spaces

33.2. The Skeleton-SUM

[Hettel08]

[Seifert11]

 ©
 P

ro
f.

U
. A

ß
m

an
n

14 Model-Driven Software Development in Technical Spaces (MOST)

Skeletons and Flesh

► Skeleton splits models into

■ Skeletons (redundant) (several contexts)

■ and flesh (clothing) (locally different stuff in views, mono-context)

► Global invariants on skeletons vs. local „flesh“ variants

► Flesh must be non-overlapping, extending the skeleton

► Skeletons can have isomorphic, homomorphic, monotonically extended “skeleton” mappings,

■ or may be non-morphic

■ Skeleton mapping is a trace mapping

■ Flesh/Clothing is not traced (private)

Flesh/
Clothing

Skeleton

 [Hettel08] [Seifert11]

non-morphic

non-morphic

isomorphic

 ©
 P

ro
f.

U
. A

ß
m

an
n

15 Model-Driven Software Development in Technical Spaces (MOST)

Mono-Skeleton-SUM

► Mono-Skeleton-SUM splits models into

■ One common Skeleton (redundant) (several contexts)

■ and flesh (clothing) (locally different stuff in views, mono-context) is stored in SUM together
with skeleton

► Flesh must be non-overlapping, extending the skeleton

► Isomorphic Skeleton mapping

Skeleton

Flesh

 [Hettel08] [Seifert11]

isomorphic

isomorphic

isomorphic

isomorphic

isomorphic

SUM

View 1
View 2

View 3

isom
orphic

 ©
 P

ro
f.

U
. A

ß
m

an
n

16 Model-Driven Software Development in Technical Spaces (MOST)

Get/Put in Mono-Skeleton-SUM

► From a Skeleton-SUM

■ get operation produces a view

■ put operation commits it into SUM

Skeleton

Flesh

 [Hettel08] [Seifert11]

isomorphic

isomorphic

isomorphic

isomorphic

isomorphic

SUM

View 1
View 2

View 3

isom
orphic

put

get

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

33.2.1 Javadoc-SUM, a Mono-Skeleton-SUM for
Documentation

 ©
 P

ro
f.

U
. A

ß
m

an
n

18 Model-Driven Software Development in Technical Spaces (MOST)

Pkg

Class

Method

Class

Method Method

Comments

comments

comments

code

code code
code

code

comments

comments

comments

Example Skeleton-SUM:
Scope tree of a program (static structuring)

Javadoc comment relies on several attributes of nodes of the syntax tree:

► Comments (package, class, method, parameter)

► Code (skeleton)

► Visibility

► Metadata

► Unit tests

 ©
 P

ro
f.

U
. A

ß
m

an
n

19 Model-Driven Software Development in Technical Spaces (MOST)

Pkg

Class

Method

Class

Method Method

Projecting A Scope Tree for Skeleton

► put/get operations transform SUM to views and back

► Get: partial function projection

► Put: merge of partial function of view and of SUM

► Exa.: result of get operation for Scope Tree “Skeleton”:

 ©
 P

ro
f.

U
. A

ß
m

an
n

20 Model-Driven Software Development in Technical Spaces (MOST)

Pkg

Class

Method

Class

Method Method

Comments

Comments

Comments

Projecting A Scope Tree for Skeleton

► Result of get operation for For Comment Context “Comment Flesh”:

 ©
 P

ro
f.

U
. A

ß
m

an
n

21 Model-Driven Software Development in Technical Spaces (MOST)

Pkg

Class

Method

Class

Method Method

Code

Code Code Code

Code

Projecting A Scope Tree for Skeleton

► Result of get operation for Code Context “Code Flesh”:

 ©
 P

ro
f.

U
. A

ß
m

an
n

22 Model-Driven Software Development in Technical Spaces (MOST)

Merge of Partial Functions and Partial Trees in a Mono-
Skeleton-SUM

► Given two partial functions on tree-node domain D and two domains E, F:

■ attr: D E → and
■ attr2: D F→

► Their merge merged-attr:D E F→ ◊
■ merged-attr(d) = attr (d) attr2(d)◊

► Skeleton-SUM are trees of objects
which work on a partial function space of attributes

■ Every view adds a new partial function

Method

Class

Method

code

code code

comments

comments

comments

Method

Class

Method

comments

comments

comments

Method

Class

Method

code

code
code

attr

attr2

attr

attr2

 ©
 P

ro
f.

U
. A

ß
m

an
n

23 Model-Driven Software Development in Technical Spaces (MOST)

Javadoc-SUM:
A Simple Metamodel-based Mono-Skeleton-SUM

SUM

Comment
View

Code
View

CodeView and CommentView
unify along the skeleton

put

get
put

get

 ©
 P

ro
f.

U
. A

ß
m

an
n

24 Model-Driven Software Development in Technical Spaces (MOST)

Remarks on Mono-Skeleton-SUM

► Generality: The Skeleton need not be a link tree; it can be an arbitrary graph data
structure

■ But RAGs can model Mono-Skeleton-SUMs very easily: inherit the flesh attributes to
all nodes

► Between Skeleton and Flesh there holds a key dependency
■ A partial function describes the mapping between skeleton and flesh
■ Different partial functions exist for every view
■ Flesh-skeleton unification employs partial function merge (feature term unification)

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Softwrae Development in Technical Spaces

33.3. Context-Based Skeleton-SUM

[Hettel08]

[Seifert11]

 ©
 P

ro
f.

U
. A

ß
m

an
n

26 Model-Driven Software Development in Technical Spaces (MOST)

Skeleton-SUM

► Clothing can be associated to context (context-aware clothing)
■ Code context
■ Comment context

► If all clothings have mono-context, the SUM is called flat contextual SUM.

Context Context
Context
Hierarchy

 ©
 P

ro
f.

U
. A

ß
m

an
n

27 Model-Driven Software Development in Technical Spaces (MOST)

A Metamodel-based Skeleton-SUM with Flat Context Hierarchy

SUM

Comment
View

Code
View

Signature
View

TestCase
View

Views unify along the skeleton
Context

Context
Hierarchy

Active context determines
the view

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

33.3.1. Orthographic Software Modeling (OSM)
as a Dimensional, Context-Based Skeleton-SUM

[Hettel08]

[Seifert11]

29

Software Engineering
Prof. Dr. Colin Atkinson

Orthographic Software Modeling (OSM) as a
Dimensional Skeleton-SUM

■ Many engineering disciplines have a long and successful tradition of
technical drawing - orthographic projection

■ so why don't we do this in software engineering?

Operational
projection

Behavioral
projection

Structural
projectioncom

ponent

■ On demand view generation
(projective views)

■ Dimension-based navigation

■ View-based methodology

30

Software Engineering
Prof. Dr. Colin Atkinson

Dimension Based Navigation

■ views organized in a multi-dimensional cube

■ one choice always “selected” from each dimension

■ each cell represents a viewpoint

30

Cell

...

...

... ...

 ©
 P

ro
f.

U
. A

ß
m

an
n

31 Model-Driven Software Development in Technical Spaces (MOST)

OSM is a Flat Contextual Skeleton-SUM

► OSM defines n-dimensional contexts, i.e., every model element is related to n contexts.

► OSM can be realized by a Skeleton-SUM providing n mono-contextual clothings
■ i.e., n mono-contextual attributes for every model element (link tree node).

► The n dimensions (contexts) are used for projection

► Instead of attributes, model elements have roles (CROM-Skeleton-SUM)

► ROSIMA is a CROM-Skeleton-SUM

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Softwrae Development in Technical Spaces

33.4. Hierarchic Context-Based Skeleton-SUM

[Hettel08]

[Seifert11]

 ©
 P

ro
f.

U
. A

ß
m

an
n

33 Model-Driven Software Development in Technical Spaces (MOST)

Hierarchic Skeleton-SUM

► Clothing can be associated to structured context
■ Code context

. Signatures

. Implementation
■ Comment context

► If som clothings have an inner (structured) context, the SUM is called hierarchic
contextual SUM.

Context
Context
Hierarchy

Test Comment

Implementation Signature

Code

 ©
 P

ro
f.

U
. A

ß
m

an
n

34 Model-Driven Software Development in Technical Spaces (MOST)

A Mono-Skeleton-SUM
with Hierarchic Contexts

SUM

Comment
View

Code
View

Code
View

TestCase
View

Context
Context
Hierarchy

Views of
structured context
can be further
decomposed

Signature
View

Implementation
View

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Softwrae Development in Technical Spaces

33.5. Multi-Skeleton-SUM

[Seifert11]

 ©
 P

ro
f.

U
. A

ß
m

an
n

36 Model-Driven Software Development in Technical Spaces (MOST)

Multi-Skeleton-SUM

► In SUMs, not all
Skeletons need not be a
linked by isomorphic
mappings

► A Skeleton mapping is
isomorphic to a subset
of the skeleton of the
SUM, not touching
private clothes of
others

isomorphic

iso
m

orp
hic

SUM

View 1
View 2

View 3
isom

orphic

► Every Skeleton must be invariant, and
within the SUM, a Skeleton—Skeleton
mapping must exist

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Softwrae Development in Technical Spaces

33.5.2 Put Operations in the MDA-Multi-Skeleton-
SUM

 ©
 P

ro
f.

U
. A

ß
m

an
n

38 Model-Driven Software Development in Technical Spaces (MOST)

► A single underlying model (SUM) is a
cultimodel with views

► MDA can be arranged as MDA-SUM

► A evolution operation changes a
global name or definition in one model
tree a view, which used in several
other model trees in the SUM

► To synchronize dependent model
elements, we need a commit/put

operation (“commit/put to SUM”)

► Its implementation needs to repeat
the rewrite in all referencing places

■ Follow the references introduced
by global name analysis

■ Standard process in RAG

► Easy traceability by dependency graph
between global names

38

Model Synchronization in RAG-MDA by Put Operations on Single

Underlying Models (SUM)

-int sum

Status: {<<changed>>}
Name: Loan->Rental

+withdraw()

Dependent
Tree in

SUM

Model
tree

(view)

-int sum +withdraw()

commit/
put

Status: {<<committed>>}
Name: Loan->Rental

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Softwrae Development in Technical Spaces

33.6 Delta-Based Lenses for Incremental
Modifications for Scalability and Applicability of
Skeleton-SUMs

[Diskin]

41

Software Engineering
Prof. Dr. Colin Atkinson

Delta-Based Lenses for
Scalability and Applicability

■ Simple minded implementation approach –
■ uni-directional exhaustive transformations

● get: SUM-to-view, put: view-to-SUM
■ create a new (version of the) view whenever there is a change in the

SUM

■ create a new (version of the) SUM whenever there is a change in a
view

■ Would work but too large grained
■ Not scalable (inefficient)

■ No incrementality

■ transformation more complex than necessary

Þ The necessary get/put operations are called bidirectional lenses

42

Software Engineering
Prof. Dr. Colin Atkinson

Delta-Based Lenses and Skeleton SUMs

■ Lenses (Pierce et al. 2007) are pairs of bidirectional transformations based on
get (exhaustive projection, decomposition, checkout) and put (exhaustive
integration, checkin) operations on models
■ axioms for well-behaved lenses

■ axiom for very well behaved lenses: “intermediary puts can be forgotten”

■ Delta-based Lenses optimize the checkin/checkout (Diskin et al. 2011)
■ Incremental delta operations dput and dget are driven by the changes to

the views

■ axiom for delta-put: “If a delta-commit results in a delta of the SUM, then
the next delta-checkout refers only to this delta of the SUM”

■ much more fine-grained and scalable

if s = dput(v, s), then dget(s) = v // DeltaPUTPUT rule

v: View; s:SUM
get(put(v, s)) = v // PUTGET invariant rule
put(get(s), s) = s // GETPUT invariant rule

put(v’, put(v, s)) = put(v’, s) // PUTPUT invariant rule

43

Software Engineering
Prof. Dr. Colin Atkinson

The Background of
Orthographic Software Modeling (OSM)

■ In OSM, the SUM is much larger than the views
■ the views are relatively small and compact

■ Views can be updated concurrently
■ axioms only applicable locally (i.e. to one view at a time)

■ Usually have one-to-one correspondences between view elements and SUM
elements
■ changes can conveniently be

traced to the affected element

■ View elements cannot be changed
just locally
■ for example, cannot delete

an element from just the
view, but not the SUM

44

Software Engineering
Prof. Dr. Colin Atkinson

Hybrid Approach with dput

■ use get to create views from the SUM

■ use dput (delta put) to update the SUM when a view is changed

– incremental put operation only transmits the delta (increment)

get

v
dput

s

if s = dput(v, s), then dget(s) = v // DeltaPUTPUT rule

 ©
 P

ro
f.

U
. A

ß
m

an
n

45 Model-Driven Software Development in Technical Spaces (MOST)

Skeleton-SUM and DeltaPutPut

► Reason:
■ Partial functions are independent
■ Skeleton stays invariant

► Corollary
■ therefore OSM
■ therefore Javadoc-SUM

A Skeleton-SUM fulfills the DeltaPutPut rule.

SUM

Comment
View

Code
View

put
get put

get

46

Software Engineering
Prof. Dr. Colin Atkinson

Pros and Cons of the Hybrid Approach

■ Traces allow affected SUM elements to be efficiently identified
■ can be generated most mainstream transformation engines

■ Traces also allow the open views impacted by a change to be identified

■ Traces must be updated dynamically a la MVC pattern

■ Use of get to create views reduces the complexity of the transformation with
little extra overhead
■ no need to update trace information

■ Use of dput to update the SUM greatly enhances the efficiency of updating
SUM
■ the SUM is only ever updated via changes to views

■ However, it increases the amount of information that needs to be stored on
the server
■ part of the SUM?

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Softwrae Development in Technical Spaces

33.7 Skeleton-SUM on RoSI CROM

 ©
 P

ro
f.

U
. A

ß
m

an
n

48 Model-Driven Software Development in Technical Spaces (MOST)

Skeleton-SUM on RoSI CROM

► The SUM principle can be played on all metalanguages, e.g., CROM

► CROM supports Mono-Skeleton-SUM for all
■ Contexts provide viewpoints
■ Cores provide Skeleton, Roles provide flesh/clothing
■ Role-play provides partial functions from objects to roles for a SkeletonSUM over cores

and roles

Theorem: A CROM-based Skeleton-SUM fulfils the delta-putput invariant.

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Softwrae Development in Technical Spaces

33.8. Disjoint-Skeleton-SUM

[Seifert11]

 ©
 P

ro
f.

U
. A

ß
m

an
n

50 Model-Driven Software Development in Technical Spaces (MOST)

SUM2

Disjoint-Skeleton-SUM

► Skeletons can be
disjoint, though related
by isomorphic
mappings and
homomorphic mappings

► Then, the SUM can be
thought of as hierarchic

SUM1

View 1a
View 1b

View 2a

hom
om

orphic

isomorphic

hom
om

orphic

homomorphic

SUM

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Softwrae Development in Technical Spaces

33.8.1 Heterogeneous-Language-Skeleton-SUM

[Seifert11]

 ©
 P

ro
f.

U
. A

ß
m

an
n

52 Model-Driven Software Development in Technical Spaces (MOST)

SUM2

Heterogeneous-Language-Skeleton-SUM

► Disjoing Skeletons can
be of different
languages
(heterogeneous)

► Then, Roundtrip
Scenarios between
different languages can
be described

SUM1

View 1a
View 1b

View 2a

hom
om

orphic

isomorphic

hom
om

orphic

homomorphic

SUM

 ©
 P

ro
f.

U
. A

ß
m

an
n

53 Model-Driven Software Development in Technical Spaces (MOST)

SUM2

Heterogeneous-Language-Skeleton-SUM with Templates

► When skeletons have
slots (parameters) they
are templates

► They can be filled with
snippets from
attributes

SUM1

View 1a
View 1b

View 2a

hom
om

orphic

isomorphic

hom
om

orphic

homomorphic

SUM

 ©
 P

ro
f.

U
. A

ß
m

an
n

54 Model-Driven Software Development in Technical Spaces (MOST)

The End

► Explain, how partial functions between objects and attributes enable the projections
(get) and the merge functions (put) of a Skeleton-SUM

► Why are contexts important for views?

► What happens if the SUM has several skeletons?

► Which are the contexts of Javadoc-SUM? Why does Javadoc-SUM fulfill the
DeltaPutPut rule?

► Which are the contexts of OSM? Why does OSM fulfill the DeltaPutPut rule?

► Why does ROSI-CROM enable Skeleton-SUM?

► Some slides are courtesy to Prof. Colin Atkinson, Mannheim. Used by permission.

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Softwrae Development in Technical Spaces

33. Macromodel Single Underlying Model (SUM)
with Orthographic Software Modeling (OSM) -
A 1-TS-Megamodel with Total Consistency

Prof. Dr. U. Aßmann

Technische Universität Dresden

Institut für Software- und
Multimediatechnik

http://st.inf.tu-dresden.de/teaching/
most

Version 21-1.1, 22.01.22

1) The megamodel “Single Underlying
Model (SUM)”

2) Skeleton-SUM

3) Flat Context-Based Skeleton SUM

1) Orthographic Software Modeling
(OSM)

4) Hierarchic Context-Based Skeleton
SUM

5) Multi-Skeleton SUM

6) Delta-Based Lenses

7) SUM on ROSI-CROM

8) Disjoint SkeletonSUM

9) Heterogeneous Language-SUM

 ©
 P

ro
f.

U
. A

ß
m

an
n

2 Model-Driven Software Development in Technical Spaces (MOST)

Software Factories with Only 1 Technical Space

Mega- and Macromodels

Tool Engineering

Model Management
Mapping, Transf., Composition

Technical
Space
Bridges

Technical Space

Meta-
modeling

Model Analysis
Querying, Interpretation

Metapyramid (Metahierarchy) for Token Modeling

Software Factory

Multi-TS Megamodel

In this chapter:
1-TS Megamodel
SUM

 ©
 P

ro
f.

U
. A

ß
m

an
n

3 Model-Driven Software Development in Technical Spaces (MOST)

References

► [Atkinson19] Johannes Meier, Heiko Klare, Christian Tunjic, Colin Atkinson, Erik Burger, Ralf
Reussner, and Andreas Winter. Single underlying models for projectional, multi-view
environments. In Proceedings of the 7th International Conference on Model-Driven Engineering
and Software Development - Volume 1: MODELSWARD, pages 119--130. INSTICC, SciTePress,
2019.

► Hettel, Thomas and Lawley, Michael J. and Raymond, Kerry (2008). Model Synchronisation:
Definitions for Round-Trip Engineering. In Proceedings ICMT2008 - International Conference on
Model Transformation: Theory and Practice of Model Transformations LNCS 5063/2008, pages
pp. 31-45, Zurich, Switzerland.

► Thomas Hettel. Model Round-Trip Engineering. PhD Thesis. Queensland University of Technology,
2010

► Zinovy Diskin and Yingfei Xiong and Krzysztof Czarnecki. From State- to Delta-Based Bidirectional
Model Transformations: the Asymmetric Case. Journal of Object Technology, 2011, vol. 10, 6, pp.
1-25,

■ http://dx.doi.org/10.5381/jot.2011.10.1.a6

► J. Nathan Foster and Michael B. Greenwald and Jonathan T. Moore and Benjamin C. Pierce and
Alan Schmitt. Combinators for Bi-Directional Tree Transformations: A Linguistic Approach to the
View Update Problem, ACM Transactions on Programming Languages and Systems, Vol 29(3), pp.
17, 2007

■ http://www.cis.upenn.edu/~bcpierce/papers/newlenses-popl.pdf

 ©
 P

ro
f.

U
. A

ß
m

an
n

4 Model-Driven Software Development in Technical Spaces (MOST)

Overview Table for Link-Tree Macromodels

► A tree node abstracts a subtree (representant)
■ Attributes and attributions are composable partial mappings from treenodes

► RAGs are useful for all kinds of structure- and function-modeling in Link-Tree
Macromodels, because they abbreviate dependencies in several models with cross-
model relations.

■ In a macromodel under an artificial root (rooted macromodel), attributions can work
on the SUM to ensure the constraints

► Relational RAGs (RelRAGs) are useful, because they have bidirectional constraints

(Plain) MDA General SUM Skeleton SUM (partial function extension)

RAGs in Repositories Markings Repository-SUM: get/put as higher-order
attributions of link trees

● Javadoc-SUM

RAGs in Data-flow architectures Needs trace models get/put as model
transformations (lenses)

Flow-SUM: Communicating link trees; In-place
transformations of SUM

● Google Docs, Stream-Based MDA

The Link-Treeware TS is well apt for macromodel construction in a software factory

Other Examples form

•Olympic ring decomposition (EAI) marks all modules
with “rings” and thereby decomposes them (course ST-
1)

•VSUM (Reussner, Burger et al) generates dependent
parts by create trace links

5

Software Engineering
Prof. Dr. Colin Atkinson

5

Overview

1. Find out why software engineering is important
■ see some software engineering failures

2. Get acquainted with –
■ the Chair of Software Engineering

■ the research

■ the people

■ the teaching

Synchronization of Projective Views on
a Single Underlying Model
(A Orthographic Macromodel)

Many slides are courtesy to:
Christian Vjekoslav Tunjic,
Prof. Colin Atkinson

Used by permission

L‘Aquila. Italy
21 July, 2015

Presented at: VAO 2015

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Softwrae Development in Technical Spaces

33.1. The Macromodel “Single-Underlying Model
(SUM)”

• is based on a repository (repository-based SUM) [Atkinson19]

7

Software Engineering
Prof. Dr. Colin Atkinson

7

Traditional View-based Software Engineering
(VOSE)

Java sourceUML classes

Behavior

code
RegEx

test
casesXMI

AFD

OpSpec

system

let‘s take a look again at the current status
with a picture

8

Software Engineering
Prof. Dr. Colin Atkinson

8

View 5

View 4

View 3

View 2

View 1

On-Demand View Generation in a SUM
(Flat Contexts Correspond to Colors or Tags)

Java sourceUML classes

Behavior

Single Underlying Model (SUM)
(all views merged)

Context 1

Context 2

Context 3

Context 4

Context 5
Requirements
texts

Deployment
diagrams

The SUM, if editable, provide a single-source view

9

Software Engineering
Prof. Dr. Colin Atkinson

9

Orthographic Software Modeling (OSM) as a SUM

■ Many engineering disciplines have a long and successful tradition of
technical drawing - orthographic projection

■ so why don't we do this in software engineering?

Operational
projection

Behavioral
projection

Structural
projectioncom

ponent

■ On demand view generation
(projective views)

■ Dimension-based navigation

■ View-based methodology

■ Arrangement in a multidimentional
SUM

apply this metaphor to SE

10

Software Engineering
Prof. Dr. Colin Atkinson

10

11

Software Engineering
Prof. Dr. Colin Atkinson

11

12

Software Engineering
Prof. Dr. Colin Atkinson

12

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Softwrae Development in Technical Spaces

33.2. The Skeleton-SUM

[Hettel08]

[Seifert11]

 ©
 P

ro
f.

U
. A

ß
m

an
n

14 Model-Driven Software Development in Technical Spaces (MOST)

Skeletons and Flesh

► Skeleton splits models into

■ Skeletons (redundant) (several contexts)

■ and flesh (clothing) (locally different stuff in views, mono-context)

► Global invariants on skeletons vs. local „flesh“ variants

► Flesh must be non-overlapping, extending the skeleton

► Skeletons can have isomorphic, homomorphic, monotonically extended “skeleton” mappings,

■ or may be non-morphic

■ Skeleton mapping is a trace mapping

■ Flesh/Clothing is not traced (private)

Flesh/
Clothing

Skeleton

 [Hettel08] [Seifert11]

non-morphic

non-morphic

isomorphic

 ©
 P

ro
f.

U
. A

ß
m

an
n

15 Model-Driven Software Development in Technical Spaces (MOST)

Mono-Skeleton-SUM

► Mono-Skeleton-SUM splits models into

■ One common Skeleton (redundant) (several contexts)

■ and flesh (clothing) (locally different stuff in views, mono-context) is stored in SUM together
with skeleton

► Flesh must be non-overlapping, extending the skeleton

► Isomorphic Skeleton mapping

Skeleton

Flesh

 [Hettel08] [Seifert11]

isomorphic

isomorphic

isomorphic

isomorphic

isomorp
hic

SUM

View 1
View 2

View 3

isom
orphic

 ©
 P

ro
f.

U
. A

ß
m

an
n

16 Model-Driven Software Development in Technical Spaces (MOST)

Get/Put in Mono-Skeleton-SUM

► From a Skeleton-SUM

■ get operation produces a view

■ put operation commits it into SUM

Skeleton

Flesh

 [Hettel08] [Seifert11]

isomorphic

isomorphic

isomorphic

isomorphic

isomorp
hic

SUM

View 1
View 2

View 3

isom
orphic

put

get

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

33.2.1 Javadoc-SUM, a Mono-Skeleton-SUM for
Documentation

 ©
 P

ro
f.

U
. A

ß
m

an
n

18 Model-Driven Software Development in Technical Spaces (MOST)

Pkg

Class

Method

Class

Method Method

Comments

comments

comments

code

code code
code

code

comments

comments

comments

Example Skeleton-SUM:
Scope tree of a program (static structuring)

Javadoc comment relies on several attributes of nodes of the syntax tree:

► Comments (package, class, method, parameter)

► Code (skeleton)

► Visibility

► Metadata

► Unit tests

 ©
 P

ro
f.

U
. A

ß
m

an
n

19 Model-Driven Software Development in Technical Spaces (MOST)

Pkg

Class

Method

Class

Method Method

Projecting A Scope Tree for Skeleton

► put/get operations transform SUM to views and back

► Get: partial function projection

► Put: merge of partial function of view and of SUM

► Exa.: result of get operation for Scope Tree “Skeleton”:

 ©
 P

ro
f.

U
. A

ß
m

an
n

20 Model-Driven Software Development in Technical Spaces (MOST)

Pkg

Class

Method

Class

Method Method

Comments

Comments

Comments

Projecting A Scope Tree for Skeleton

► Result of get operation for For Comment Context “Comment Flesh”:

 ©
 P

ro
f.

U
. A

ß
m

an
n

21 Model-Driven Software Development in Technical Spaces (MOST)

Pkg

Class

Method

Class

Method Method

Code

Code Code Code

Code

Projecting A Scope Tree for Skeleton

► Result of get operation for Code Context “Code Flesh”:

 ©
 P

ro
f.

U
. A

ß
m

an
n

22 Model-Driven Software Development in Technical Spaces (MOST)

Merge of Partial Functions and Partial Trees in a Mono-
Skeleton-SUM

► Given two partial functions on tree-node domain D and two domains E, F:

■ attr: D E → and
■ attr2: D F→

► Their merge merged-attr:D E F→ ◊
■ merged-attr(d) = attr (d) attr2(d)◊

► Skeleton-SUM are trees of objects
which work on a partial function space of attributes

■ Every view adds a new partial function

Method

Class

Method

code

code code

comments

comments

comments

Method

Class

Method

comments

comments

comments

Method

Class

Method

code

code
code

attr

attr2

attr

attr2

 ©
 P

ro
f.

U
. A

ß
m

an
n

23 Model-Driven Software Development in Technical Spaces (MOST)

Javadoc-SUM:
A Simple Metamodel-based Mono-Skeleton-SUM

SUM

Comment
View

Code
View

CodeView and CommentView
unify along the skeleton

put

get
put

get

 ©
 P

ro
f.

U
. A

ß
m

an
n

24 Model-Driven Software Development in Technical Spaces (MOST)

Remarks on Mono-Skeleton-SUM

► Generality: The Skeleton need not be a link tree; it can be an arbitrary graph data
structure

■ But RAGs can model Mono-Skeleton-SUMs very easily: inherit the flesh attributes to
all nodes

► Between Skeleton and Flesh there holds a key dependency
■ A partial function describes the mapping between skeleton and flesh
■ Different partial functions exist for every view
■ Flesh-skeleton unification employs partial function merge (feature term unification)

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Softwrae Development in Technical Spaces

33.3. Context-Based Skeleton-SUM

[Hettel08]

[Seifert11]

 ©
 P

ro
f.

U
. A

ß
m

an
n

26 Model-Driven Software Development in Technical Spaces (MOST)

Skeleton-SUM

► Clothing can be associated to context (context-aware clothing)
■ Code context
■ Comment context

► If all clothings have mono-context, the SUM is called flat contextual SUM.

Context Context
Context
Hierarchy

 ©
 P

ro
f.

U
. A

ß
m

an
n

27 Model-Driven Software Development in Technical Spaces (MOST)

A Metamodel-based Skeleton-SUM with Flat Context Hierarchy

SUM

Comment
View

Code
View

Signature
View

TestCase
View

Views unify along the skeleton
Context

Context
Hierarchy

Active context determines
the view

 28

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

33.3.1. Orthographic Software Modeling (OSM)
as a Dimensional, Context-Based Skeleton-SUM

[Hettel08]

[Seifert11]

29

Software Engineering
Prof. Dr. Colin Atkinson

29

Orthographic Software Modeling (OSM) as a
Dimensional Skeleton-SUM

■ Many engineering disciplines have a long and successful tradition of
technical drawing - orthographic projection

■ so why don't we do this in software engineering?

Operational
projection

Behavioral
projection

Structural
projectioncom

ponent

■ On demand view generation
(projective views)

■ Dimension-based navigation

■ View-based methodology

apply this metaphor to SE

30

Software Engineering
Prof. Dr. Colin Atkinson

30

Dimension Based Navigation

■ views organized in a multi-dimensional cube

■ one choice always “selected” from each dimension

■ each cell represents a viewpoint

30

Cell

...

...

... ...

 ©
 P

ro
f.

U
. A

ß
m

an
n

31 Model-Driven Software Development in Technical Spaces (MOST)

OSM is a Flat Contextual Skeleton-SUM

► OSM defines n-dimensional contexts, i.e., every model element is related to n contexts.

► OSM can be realized by a Skeleton-SUM providing n mono-contextual clothings
■ i.e., n mono-contextual attributes for every model element (link tree node).

► The n dimensions (contexts) are used for projection

► Instead of attributes, model elements have roles (CROM-Skeleton-SUM)

► ROSIMA is a CROM-Skeleton-SUM

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Softwrae Development in Technical Spaces

33.4. Hierarchic Context-Based Skeleton-SUM

[Hettel08]

[Seifert11]

 ©
 P

ro
f.

U
. A

ß
m

an
n

33 Model-Driven Software Development in Technical Spaces (MOST)

Hierarchic Skeleton-SUM

► Clothing can be associated to structured context
■ Code context

. Signatures

. Implementation
■ Comment context

► If som clothings have an inner (structured) context, the SUM is called hierarchic
contextual SUM.

Context
Context
Hierarchy

Test Comment

Implementation Signature

Code

 ©
 P

ro
f.

U
. A

ß
m

an
n

34 Model-Driven Software Development in Technical Spaces (MOST)

A Mono-Skeleton-SUM
with Hierarchic Contexts

SUM

Comment
View

Code
View

Code
View

TestCase
View

Context
Context
Hierarchy

Views of
structured context
can be further
decomposed

Signature
View

Implementation
View

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Softwrae Development in Technical Spaces

33.5. Multi-Skeleton-SUM

[Seifert11]

 ©
 P

ro
f.

U
. A

ß
m

an
n

36 Model-Driven Software Development in Technical Spaces (MOST)

Multi-Skeleton-SUM

► In SUMs, not all
Skeletons need not be a
linked by isomorphic
mappings

► A Skeleton mapping is
isomorphic to a subset
of the skeleton of the
SUM, not touching
private clothes of
others

isomorphic

iso
m

orp
hic

SUM

View 1
View 2

View 3

isom
orph

ic

► Every Skeleton must be invariant, and
within the SUM, a Skeleton—Skeleton
mapping must exist

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Softwrae Development in Technical Spaces

33.5.2 Put Operations in the MDA-Multi-Skeleton-
SUM

 ©
 P

ro
f.

U
. A

ß
m

an
n

38 Model-Driven Software Development in Technical Spaces (MOST)

► A single underlying model (SUM) is a
cultimodel with views

► MDA can be arranged as MDA-SUM

► A evolution operation changes a
global name or definition in one model
tree a view, which used in several
other model trees in the SUM

► To synchronize dependent model
elements, we need a commit/put

operation (“commit/put to SUM”)

► Its implementation needs to repeat
the rewrite in all referencing places

■ Follow the references introduced
by global name analysis

■ Standard process in RAG

► Easy traceability by dependency graph
between global names

38

Model Synchronization in RAG-MDA by Put Operations on Single

Underlying Models (SUM)

-int sum

Status: {<<changed>>}
Name: Loan->Rental

+withdraw()

Dependent
Tree in

SUM

Model
tree

(view)

-int sum +withdraw()

commit/
put

Status: {<<committed>>}
Name: Loan->Rental

Example: different class implementations of a
connector class in a PIM

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Softwrae Development in Technical Spaces

33.6 Delta-Based Lenses for Incremental
Modifications for Scalability and Applicability of
Skeleton-SUMs

[Diskin]

41

Software Engineering
Prof. Dr. Colin Atkinson

41

Delta-Based Lenses for
Scalability and Applicability

■ Simple minded implementation approach –
■ uni-directional exhaustive transformations

● get: SUM-to-view, put: view-to-SUM
■ create a new (version of the) view whenever there is a change in the

SUM

■ create a new (version of the) SUM whenever there is a change in a
view

■ Would work but too large grained
■ Not scalable (inefficient)

■ No incrementality

■ transformation more complex than necessary

Þ The necessary get/put operations are called bidirectional lenses

42

Software Engineering
Prof. Dr. Colin Atkinson

42

Delta-Based Lenses and Skeleton SUMs

■ Lenses (Pierce et al. 2007) are pairs of bidirectional transformations based on
get (exhaustive projection, decomposition, checkout) and put (exhaustive
integration, checkin) operations on models
■ axioms for well-behaved lenses

■ axiom for very well behaved lenses: “intermediary puts can be forgotten”

■ Delta-based Lenses optimize the checkin/checkout (Diskin et al. 2011)
■ Incremental delta operations dput and dget are driven by the changes to

the views

■ axiom for delta-put: “If a delta-commit results in a delta of the SUM, then
the next delta-checkout refers only to this delta of the SUM”

■ much more fine-grained and scalable

if s = dput(v, s), then dget(s) = v // DeltaPUTPUT rule

v: View; s:SUM
get(put(v, s)) = v // PUTGET invariant rule
put(get(s), s) = s // GETPUT invariant rule

put(v’, put(v, s)) = put(v’, s) // PUTPUT invariant rule

43

Software Engineering
Prof. Dr. Colin Atkinson

43

The Background of
Orthographic Software Modeling (OSM)

■ In OSM, the SUM is much larger than the views
■ the views are relatively small and compact

■ Views can be updated concurrently
■ axioms only applicable locally (i.e. to one view at a time)

■ Usually have one-to-one correspondences between view elements and SUM
elements
■ changes can conveniently be

traced to the affected element

■ View elements cannot be changed
just locally
■ for example, cannot delete

an element from just the
view, but not the SUM

44

Software Engineering
Prof. Dr. Colin Atkinson

44

Hybrid Approach with dput

■ use get to create views from the SUM

■ use dput (delta put) to update the SUM when a view is changed

– incremental put operation only transmits the delta (increment)

get

v
dput

s

if s = dput(v, s), then dget(s) = v // DeltaPUTPUT rule

 ©
 P

ro
f.

U
. A

ß
m

an
n

45 Model-Driven Software Development in Technical Spaces (MOST)

Skeleton-SUM and DeltaPutPut

► Reason:
■ Partial functions are independent
■ Skeleton stays invariant

► Corollary
■ therefore OSM
■ therefore Javadoc-SUM

A Skeleton-SUM fulfills the DeltaPutPut rule.

SUM

Comment
View

Code
View

put
get put

get

46

Software Engineering
Prof. Dr. Colin Atkinson

46

Pros and Cons of the Hybrid Approach

■ Traces allow affected SUM elements to be efficiently identified
■ can be generated most mainstream transformation engines

■ Traces also allow the open views impacted by a change to be identified

■ Traces must be updated dynamically a la MVC pattern

■ Use of get to create views reduces the complexity of the transformation with
little extra overhead
■ no need to update trace information

■ Use of dput to update the SUM greatly enhances the efficiency of updating
SUM
■ the SUM is only ever updated via changes to views

■ However, it increases the amount of information that needs to be stored on
the server
■ part of the SUM?

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Softwrae Development in Technical Spaces

33.7 Skeleton-SUM on RoSI CROM

 ©
 P

ro
f.

U
. A

ß
m

an
n

48 Model-Driven Software Development in Technical Spaces (MOST)

Skeleton-SUM on RoSI CROM

► The SUM principle can be played on all metalanguages, e.g., CROM

► CROM supports Mono-Skeleton-SUM for all
■ Contexts provide viewpoints
■ Cores provide Skeleton, Roles provide flesh/clothing
■ Role-play provides partial functions from objects to roles for a SkeletonSUM over cores

and roles

Theorem: A CROM-based Skeleton-SUM fulfils the delta-putput invariant.

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Softwrae Development in Technical Spaces

33.8. Disjoint-Skeleton-SUM

[Seifert11]

 ©
 P

ro
f.

U
. A

ß
m

an
n

50 Model-Driven Software Development in Technical Spaces (MOST)

SUM2

Disjoint-Skeleton-SUM

► Skeletons can be
disjoint, though related
by isomorphic
mappings and
homomorphic mappings

► Then, the SUM can be
thought of as hierarchic

SUM1

View 1a
View 1b

View 2a

hom
om

orphic

isomorphic
hom

om
orphic

homomorphic

SUM

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Softwrae Development in Technical Spaces

33.8.1 Heterogeneous-Language-Skeleton-SUM

[Seifert11]

 ©
 P

ro
f.

U
. A

ß
m

an
n

52 Model-Driven Software Development in Technical Spaces (MOST)

SUM2

Heterogeneous-Language-Skeleton-SUM

► Disjoing Skeletons can
be of different
languages
(heterogeneous)

► Then, Roundtrip
Scenarios between
different languages can
be described

SUM1

View 1a
View 1b

View 2a

hom
om

orphic

isomorphic
hom

om
orphic

homomorphic

SUM

 ©
 P

ro
f.

U
. A

ß
m

an
n

53 Model-Driven Software Development in Technical Spaces (MOST)

SUM2

Heterogeneous-Language-Skeleton-SUM with Templates

► When skeletons have
slots (parameters) they
are templates

► They can be filled with
snippets from
attributes

SUM1

View 1a
View 1b

View 2a

hom
om

orphic

isomorphic
hom

om
orphic

homomorphic

SUM

 ©
 P

ro
f.

U
. A

ß
m

an
n

54 Model-Driven Software Development in Technical Spaces (MOST)

The End

► Explain, how partial functions between objects and attributes enable the projections
(get) and the merge functions (put) of a Skeleton-SUM

► Why are contexts important for views?

► What happens if the SUM has several skeletons?

► Which are the contexts of Javadoc-SUM? Why does Javadoc-SUM fulfill the
DeltaPutPut rule?

► Which are the contexts of OSM? Why does OSM fulfill the DeltaPutPut rule?

► Why does ROSI-CROM enable Skeleton-SUM?

► Some slides are courtesy to Prof. Colin Atkinson, Mannheim. Used by permission.

