TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultit Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Prof. ABmann - Model-Driven Softwrae Development in Technical Spaces

33. Macromodel Single Underlying Model (SUM)
with Orthographic Software Modeling (OSM) -
A 1-TS-Megamodel with Total Consistency

1) The megamodel “Single Underlying
Model (SUM)”

2) Skeleton-SUM
3) Flat Context-Based Skeleton SUM
1) Orthographic Software Modeling

Prof. Dr. U. ABmann P (QSM) hi dSkel
Technische Universitat Dresden) SHLljel\l;Iarc ettt el e

Institut fur Software- und

Multimediatechnik 2) gtiltl-SBkeledt?_nSUM

http://st.inf.tu-dresden.de/teaching/) Delta-Based Lenses

most 7) SUM on ROSI-CROM

Version 21-1.1,22.01.22 8) Disjoint SkeletonSUM
)

Heterogeneous Language-SUM

Software Factories with Only 1 Technical Space

2 Model-Driven Software Development in Technical Spaces (MOST)

In this chapter:
1-TS Megamodel

SUM Software Factory

Multi-TS Megamodel

a

\ Tool Engineering
Technical Mega- and Macromodels "
Space % leta-
Bridges 'Model Management modeling
lapping, Transf., Compositio: ‘ﬁ&

TSI s .T....‘)

Model Analysis

Querying, Interpretation

(Metapyramid (Metahierarchy) for Token Modeling)

(% © Prof.U. ABmann

References

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof.U. ABmann

v

v

v

[Atkinson19] Johannes Meier, Heiko Klare, Christian Tunjic, Colin Atkinson, Erik Burger, Ralf
Reussner, and Andreas Winter. Single underlying models for projectional, multi-view
environments. In Proceedings of the 7th International Conference on Model-Driven Engineering
and Software Development - Volume 1: MODELSWARD, pages 119--130. INSTICC, SciTePress,
2019.
Hettel, Thomas and Lawley, Michael J. and Raymond, Kerry (2008). Model Synchronisation:
Definitions for Round-Trip Engineering. In Proceedings ICMT2008 - International Conference on
Model Transformation: Theory and Practice of Model Transformations LNCS 5063/2008, pages
pp. 31-45, Zurich, Switzerland.
Thomas Hettel. Model Round-Trip Engineering. PhD Thesis. Queensland University of Technology,
2010
Zinovy Diskin and Yingfei Xiong and Krzysztof Czarnecki. From State- to Delta-Based Bidirectional
Model Transformations: the Asymmetric Case. Journal of Object Technology, 2011, vol. 10, 6, pp.
1-25,

http://dx.doi.org/10.5381/jot.2011.10.1.a6é
J.Nathan Foster and Michael B. Greenwald and Jonathan T. Moore and Benjamin C. Pierce and
Alan Schmitt. Combinators for Bi-Directional Tree Transformations: A Linguistic Approach to the
View Update Problem, ACM Transactions on Programming Languages and Systems, Vol 29(3), pp.
17,2007

http://www.cis.upenn.edu/~bcpierce/papers/newlenses-popl.pdf

Overview Table for Link-Tree Macromodels

4 Model-Driven Software Development in Technical Spaces (MOST)

The Link-Treeware TS is well apt for macromodel construction in a software factory I

» Atree node abstracts a subtree (representant)
= Attributes and attributions are composable partial mappings from treenodes
» RAGs are useful for all kinds of structure- and function-modeling in Link-Tree
Macromodels, because they abbreviate dependencies in several models with cross-
model relations.
= Inamacromodel under an artificial root (rooted macromodel), attributions can work
on the SUM to ensure the constraints
> Relational RAGs (RelRAGs) are useful, because they have bidirectional constraints

(Plain) MDA General SUM Skeleton SUM (partial function extension)

Markings Repository-SUM: get/put as higher-order

RAGs in Repositories
attributions of link trees

* Javadoc-SUM

c
£
]
€
<
5 RAGs in Data-flow architectures Needs trace models get/put as model Flow-SUM: Communicating link trees; In-place
5 transformations (lenses) transformations of SUM
a
© * Google Docs, Stream-Based MDA
ey

Other Examples form

*Olympic ring decomposition (EAI) marks all modules
with “rings” and thereby decomposes them (course ST-

1)
*VVSUM (Reussner, Burger et al) generates dependent
parts by create trace links

Synchronization of Projective Views on
a Single Underlying Model
(A Orthographic Macromodel)

Many slides are courtesy to:
Christian Vjekoslav Tunjic,
Prof. Colin Atkinson

as| D
Used by permission *I\"" |

Presented at: VAO 2015

L‘Aquila. Italy "
21 July, 2015 UNIVERSITAT
MANNH

EIM

A R k
@ DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Prof. ABmann - Model-Driven Softwrae Development in Technical Spaces

33.1. The Macromodel “Single-Underlying Model
(SUM)”

e isbased on a repository (repository-based SUM) [Atkinson19]

let's take a ook again at the current status

Traditional View-based Software Engineering "3
(VOSE) 4

Java seurce
4 v ~
. ~
- Behavior -

I
N

c i
,3 i
o
Q
wn
a |
®
o HIRN

'°\
1P
{

m\‘

UNIVERSITAT
MANNHEIM

with a picture

On-Demand View Generation in a SUM
(Flat Contexts Correspond to Colors or Tags)

The SUM, if editable, provide a single-source view
Single Underlying Model (SUM)
(all views merged)

View1 o View 5
// . %O Q‘ D :\
Context 1 N B2 G) Sls =
~N »
\ . Deployment e
Requirements i
texts i Context 5
ogf \03
View 2 \(igw 4
- : 03
View 3 e
Java source
v

. { [P S——— \\
~
. ~~
Behavior -

@
Wilds, Context 4
Context 2 @

Context 3 UNIVERSITAT
MANNHEIM

Software Engineering A .
Prof. Dr. Colin Atkinson L COMMIt

o
Orthographic Software Modeling (OSM) as a SUM-'

m Many engineering disciplines have a long and successful tradition of
technical drawing - orthographic projection

/\, R | 1 & = A - ~
\.ﬂ“‘ %\%;\ - \l 7 - o e [
'i‘v‘ < >;"‘"‘ \ ﬁ

= so why don't we do this in software engineering?

structral ® On demand view generation

projection (projective views)

Operationa m Dimension-based navigation

rojection s : .

prel = m View-based methodology

L2 Behavioral
projection ® Arrangement in a multidimentional

Software Engineering A 5 SU M NIVERSITAT
Prof. Dr. Colin Atkinson L\ COMMIt ~ MANNHEIM

apply this metaphor to SE

ic Software Modeling {Dperation Specificati IM - ShoppingCartService - Specificati S
Eile Edit Mavigate Search Project Scripts Topcased Launcher SmartQWT Run Window Help

@ Dimension Explorer 232 =0 ;};-E *PIM - ShoppingCartService - Specification - Structural - Service - all owned - Generic.umldi 23
ﬂ‘ .U [& @ -L:: | ,l’jl,l’wc,l’PIM - ShoppingCartService - Specification - Skructural - Service - all owned - Generic.umldi
| Abstraction(Pimy . = || M package
e
|versionqiatest) ' = | -8
cDmpDnem] VoL = ;'r <<subject, ComponentClass>>
- =0 . -
= | shoppingCart =0... @ ppingCantService
&1 shoppingCartService B + createMewCart (User : String. password : String) : String
) +addProduct (cantlD : String, p : Product number : Integer)
- +removeProduct {cartlD : String, p : Product)
+checkout(cartlD : String. card : CreditCard)
Encapsulation = +totalCost (canlD : String) : Float
. Specification F) +numberOflterns (carlD : String, p : Product) : Integer
1 Realization = +numberOfProducts (canlD : String) © Integer
+isCheckedOut (cartlD : String) : Boolean
=
- 1 +shoppingCanService
Facet | T | i a—
Structural [(=C 4 <<acouires>>
Operational .
Behavioral /
Variational = 1.% | +shoppingCart
Ve
= = e << ComponentClass>>
Granma"tyl— ShoppingCart
gl Service ‘,g,
Type - +addltem {p : Product, price : Float, number : Integer)
B‘ +removeltem (p : Product)
ST +totalCost(hame : String) : Float
22 +numberOfFraducts () © Integer
Operation = | m— +numberOflterns (p : Product) : Integer
| @] “lllec. « +confirmPurchase
[Y r— j = +isCheckedOut () : Boolaan
& addrraduct
& removePraduct d
@ checkout LI =]
[Variant((;eneric)] =] o P |

[o |

1 (Dez 01, 14:21:26)

o
i~
Qs Package

Compnnen‘t]

=] Traveltgent
$:| AccountManager
= $:| TravelBookingSystem

E Class

' Data Type

+registerdccount (3 : Account) : Boolean
+edithccount(a: Account) : Boolean
+deleteAccount (a : Account) : Boolean
+showReservedTrawvels (2. Account)
+payment(a; Account) | Boolean
-getByName (name : String) | Account

= Orthograpic Software Mod v -0 x|
Flle Edit Mavigate Search Project Scripts Topcased Launcher SmarkCWT Run indow Help
U5 Navigator | @ Dimension Explorer £3 =0 mﬁ*PIM - TravelBookingSystem - Specification - Structural - Service - all owned - Generic umldi £3 =0
l:l‘. .D [‘E']- - -Fﬁ g4/ wcfPIM - TravelBookingSystem - Specification - Structural - Service - all owned - Generic, umldi -
[Abstraction(PIM) | ’ CalIeN [}y Select package A
+ ar-
Version | S|} gl Marques
< £

latest " Jhote Cnmpm:ntclag

3 (Dez 01, 14:23:51) S m= - = Acc g

2 (Dez 01, 14:22:17) L= (= Objects

& bookTravel
& cancelTravel
& searchTravel

[

Variant(Generic) &
|

@ Visibility must be public in the Specification, however "getByMame()" is nat publicly visible,

Operat]
$:| Accomodationagent - & Operstion
o I S = =7 Property 1 | +accountManager
I'I;HPSU on Y st . et .
] . Speciication , =] Instance HE[I ication <<acqliras>>
“@ Realization o (= Connections &
e
S== » / Assodiation 1 | +rawvelBookingSystem
4 Association Class
Projection | = S <<ComponentClass, subjects>
Instance Specification link :
Struckural 4 s TravelBookingSystem
Operational # Generalization
Eph | +hookTravel {t: Travel. a: Account. outr: ReseredTravel) : Boolean
ehaviore & Interface Realization N T T & I: Bool
variational : cancelTravel(r : ResenvedTravel) : Boolean
g, Template: Binding +sgearchTrawel (i : TrawelQueny) : Travel
Gmnularityl = * Dependsnc
€| Setvice —h—BC ; _lJ
ommernl 1 3
H Type | |
Q] Error Log (ﬁ Properties (EE Outline ﬂ—z_\ Problems &8 ~ =0
1 etror, 0 warnings, 0 others
0peratinn| = Description |Resource = \
all owned Fl @ Errors (1 item)

PIM - TravelBookingSystem - Specification - Stru.,.

Bl

P[=IF

Flle Edit Mavigate Search Project

Scripts Topcased Launcher SmarkCWT Run Window Help

U5 Navigator | @ Dimension Explorer £3 = O || s *FIM - Traveliookin yskem - Realization - Structural - Service - all owned - Generic.umldi &3 =0
iz
[=i 4, PIM - Ti |BookingSystem - Realization - Struckural - S - all d- G unldi
™ [5]-@ ‘» 94 v ravelBookingSystem - Realization - Structural - Service - all owned - Generic, umidi -
[abstraction(PIM) | ’ B[l by oot package —
Version | . S| i Marquee <<ComponentClass, subject>>
|atest . L [hote TravelBookingSystem
3 (Dez 01, 14:23:51) S m= - > -wersion : String
2 (Dez 01, 14:22:17) o = =] Obects
1 (Dez01, 14:21:26) e ~ [CaPackage +ravelBookingSystem /1 stravelBaokingSystem
Component | . = e class
2] Travelagent So A, fmoata e <nests>> <<reates>>
=] AccountManager .~ j +accomodationAgent /4
El TravelBookingSystemn
= = £ Operation <<ComponentClass>> +ravelBundler
$:| Accomodationagent - s
7 T = @ Property Accomodationfgent <<ComponentClass>>
Engapsulation N T
P p— ravelBundler
I . speciication ¥ [Instance SHEEIFI[EHDH +getdvailahility () : Boolean
1
“@ Realization o (= Connections 2 +createTravelBundles)
.
S - v/ Bssociation
£ Assaciation Class <<ComponentClass>>
Praojection =
! 1 /" Instance Specification link Travelfgent
Structural -
Operational A ceneralization +getdyvailability () : Boolean
Behavioral A Inkerface Realization +bookTravelPart() : Boolean
Wariational .) +cancelTravelPart() : Boolean
g, Template Binding
. =
Gmnularltyl " Dependenc
€| Setvice —h— _IJ
H Type [Comment 1| | e
Q] Error Lag | =1 Properties 53 B= Outline‘] = Prnh\ems] =¥ =0
= =] < <componentClass, subject’> < Class> TravelBookingSystem
0peratinn|
all awned Model Mame: |Trave\EnnkingSystem |
& bookTravel
Stereatypes .
@ cancelTravel : Visibility: Ipubllc |z”
Stereotype Attributes
W searchTravel .
Owned Rules O isabstract
[Varian‘t(GenBric]] &]
i | =
o J

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Prof. ABmann - Model-Driven Softwrae Development in Technical Spaces

33.2. The Skeleton-SUM

[Hettel08]
[Seifert11]

Skeletons and Flesh

14 Model-Driven Software Development in Technical Spaces (MOST) [Hettelos] [Selfertl 1]

>

>

>

>

b

@ © Prof.U. ABmann

Skeleton splits models into

Skeletons (redundant) (several contexts)
and flesh (clothing) (locally different stuff in views, mono-context)

Global invariants on skeletons vs. local ,flesh” variants

Flesh must be non-overlapping, extending the skeleton

Skeletons can have isomorphic, homomorphic, monotonically extended “skeleton” mappings,
or may be non-morphic
Skeleton mapping is a trace mapping
Flesh/Clothing is not traced (private)

Mono-Skeleton-SUM

[HettelO8] [Seifert11]

15 Model-Driven Software Development in Technical Spaces (MOST)

> Mono-Skeleton-SUM splits models into
= One common Skeleton (redundant) (several contexts)
= and flesh (clothing) (locally different stuff in views, mono-context) is stored in SUM together
with skeleton
> Flesh must be non-overlapping, extending the skeleton

> Isomorphic Skeleton mapping

@ © Prof.U. ABmann e.

Get/Put in Mono-Skeleton-SUM

16 Model-Driven Software Development in Technical Spaces (MOST)

[HettelO8] [Seifert11]

> From a Skeleton-SUM
= get operation produces a view
= put operation commits it into SUM

@ © Prof.U. ABmann e.

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultét Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

33.2.1 Javadoc-SUM, a Mono-Skeleton-SUM for
Documentation

Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. ABmann

Example Skeleton-SUM:
Scope tree of a program (static structuring)

18

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof.U. ABmann

Javadoc comment relies on several attributes of nodes of the syntax tree:

» Comments (package, class, method, parameter)

> Code (ske
> Visibility

leton)

> Metadata

> Unit tests

Comments

/

comments

< Wethod
I

_Method >

comments

comments

< Method >

comments

(I _code]

Projecting A Scope Tree for Skeleton

19

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof.U. ABmann

> put/get operations transform SUM to views and back
> Get: partial function projection
» Put: merge of partial function of view and of SUM

J

» Exa.:result of get operation for Scope Tree “Skeleton”:

Projecting A Scope Tree for Skeleton

20

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof.U. ABmann

» Result of get operation for For Comment Context “Comment Flesh”:

Comments

_—

Projecting A Scope Tree for Skeleton

21 Model-Driven Software Development in Technical Spaces (MOST)

» Result of get operation for Code Context “Code Flesh”:

@ © Prof.U. ABmann

Merge of Partial Functions and Partial Trees in a Mono-
Skeleton-SUM

22

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof.U. ABmann

» Given two partial functions on tree-node domain D and two domains E, F:

= attr: D » E and

=« attr2: D - F
» Their mergemerged-attr:D - E { F @

. merged-attr(d) = attr (d) { attr2(d)

» Skeleton-SUM are trees of objects
which work on a partial function space of attributes

= Every view adds a new partial function

g]

W T\
< Method >

Javadoc-SUM:
A Simple Metamodel-based Mono-Skeleton-SUM

23 Model-Driven Software Development in Technical Spaces (MOST)

-

CodeView and CommentView
unify along the skeleton

]

LAY 5

' Code
View

' Comment
View

Remarks on Mono-Skeleton-SUM

24

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof.U. ABmann

> Generality: The Skeleton need not be a link tree; it can be an arbitrary graph data
structure
= But RAGs can model Mono-Skeleton-SUMs very easily: inherit the flesh attributes to
all nodes
» Between Skeleton and Flesh there holds a key dependency
= A partial function describes the mapping between skeleton and flesh
= Different partial functions exist for every view
= Flesh-skeleton unification employs partial function merge (feature term unification)

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Prof. ABmann - Model-Driven Softwrae Development in Technical Spaces

33.3. Context-Based Skeleton-SUM

[Hettel08]
[Seifert11]

Skeleton-SUM

26

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof.U. ABmann

» Clothing can be associated to context (context-aware clothing)
= Code context
= Comment context
> If all clothings have mono-context, the SUM is called flat contextual SUM.

A Metamodel-based Skeleton-SUM with Flat Context Hierarchy

27 Model-Driven Software Development in Technical Spaces (MOST)

/

TestCase
View

[SUM QCl

/

' Comment
View

I\

Context
Hierarchy

L

' Signature
View

L

Active context determines
the view

B

~

\

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

33.3.1. Orthographic Software Modeling (OSM)
as a Dimensional, Context-Based Skeleton-SUM

[Hettel08]
[Seifert11]

DRESDEN
<o t

Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. ABmann

28

Orthographic Software Modeling (OSM) as a
Dimensional Skeleton-SUM

m Many engineering disciplines have a long and successful tradition of
technical drawing - orthographic projection

&
, 7 &
4 (\ = VAN
i o8 =) 2 -, e Ll
\Q \L? e /\ \l N
"l;‘rt Q,f‘ﬂ ﬁ
N

= so why don't we do this in software engineering?

structral ® On demand view generation
projection (projective views)

) m Dimension-based navigation
Operational

projection

Behavioral
projection

L 2l ; m View-based methodology

Software Engineering

A ' SITA
Prof. Dr. Colin Atkinson L\ COMMIt SIVER AIAR}\ITNHEIM

apply this metaphor to SE

Dimension Based Navigation

= views organized in a multi-dimensional cube
= one choice always “selected” from each dimension

m each cell represents a viewpoint

Cell

30

OSMis a Flat Contextual Skeleton-SUM

31

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof.U. ABmann

OSM defines n-dimensional contexts, i.e., every model element is related to n contexts.
OSM can be realized by a Skeleton-SUM providing n mono-contextual clothings
= i.e.,, n mono-contextual attributes for every model element (link tree node).
The n dimensions (contexts) are used for projection
Instead of attributes, model elements have roles (CROM-Skeleton-SUM)

v

v

v

v

ROSIMA is a CROM-Skeleton-SUM

v

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Prof. ABmann - Model-Driven Softwrae Development in Technical Spaces

33.4. Hierarchic Context-Based Skeleton-SUM

[Hettel08]
[Seifert11]

Hierarchic Skeleton-SUM

33 Model-Driven Software Development in Technical Spaces (MOST)

> Clothing can be associated to structured context
= Code context
Signatures
Implementation
= Comment context
> If som clothings have an inner (structured) context, the SUM is called hierarchic
contextual SUM.

@ © Prof.U. ABmann

A Mono-Skeleton-SUM
with Hierarchic Contexts

Signature
View

34 Model-Driven Software Development in Technical Spaces (MOST)

/

TestCase

[SUM

Context
Hierarchy

Comment
View

'p

Views of
structured context
can be further
decomposed

Implementation
View

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Prof. ABmann - Model-Driven Softwrae Development in Technical Spaces

33.5. Multi-Skeleton-SUM

[Seifert11]

Multi-Skeleton-SUM

36

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof.U. ABmann

>

In SUMs, not all > Every Skeleton must be invariant, and
Skeletons need not be a within the SUM, a Skeleton—Skeleton
linked by isomorphic mapping must exist

mappings

A Skeleton mapping is
isomorphic to a subset
of the skeleton of the
SUM, not touching
private clothes of
others

View 2

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultét Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Prof. ABmann - Model-Driven Softwrae Development in Technical Spaces

33.5.2 Put Operations in the MDA-Multi-Skeleton-
SUM

Model Synchronization in RAG-MDA by Put Operations on Single
Underlying Models (SUM)

38

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

A single underlying model (SUM) is a
cultimodel with views
MDA can be arranged as MDA-SUM
A evolution operation changes a
global name or definition in one model
tree a view, which used in several
other model trees in the SUM
To synchronize dependent model
elements, we need a commit/put
operation (“commit/put to SUM")
Its implementation needs to repeat
the rewrite in all referencing places

= Follow the references introduced

by global name analysis
= Standard processin RAG

Easy traceability by dependency graph
between global names

Dependent
Treein

Name: Loan->Rental

-int sum +withdraw()

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Status: {<<committed>>}
Name: Lean—>Rental

-int sum

+withdraw()

Example: different class implementations of a
connector class in a PIM

N

Status: {<<changed>>} }

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Prof. ann - Model-Driven Softwrae Development in Technical Spaces

33.6 Delta-Based Lenses for Incremental
Modifications for Scalability and Applicability of
Skeleton-SUMs

[Diskin]

Delta-Based Lenses for
Scalability and Applicability

m Simple minded implementation approach —
m uni-directional exhaustive transformations

* get: SUM-to-view, put: view-to-SUM

m create a new (version of the) view whenever there is a change in the
SUM

m create a new (version of the) SUM whenever there is a change in a
view

= Would work but too large grained
m Not scalable (inefficient)
m No incrementality

m transformation more complex than necessary

= The necessary get/put operations are called bidirectional lenses

Software Engineering A . ‘RS -
Prof. Dr. Colin Atkinson L\ COMMIt NIVER AIAR;?\ITNHEIM

o
Delta-Based Lenses and Skeleton SUMs E-'

= Lenses (Pierce et al. 2007) are pairs of bidirectional transformations based on
get (exhaustive projection, decomposition, checkout) and put (exhaustive
integration, checkin) operations on models

m axioms for well-behaved lenses

v: View; s:SUM

get(put(v, s)) =v // PUTGET invariant rule
put(get(s), s)=s // GETPUT invariant rule

m axiom for very well behaved lenses: ‘intermediary puts can be forgotten”

‘ put(v’, put(v, s)) = put(v’,s) // PUTPUT invariant rule ‘

= Delta-based Lenses optimize the checkin/checkout (Diskin et al. 2011)

m /ncremental delta operations dput and dget are driven by the changes to
the views

m axiom for delta-put: “If a delta-commit results in a delta of the SUM, then
the next delta-checkout refers only to this delta of the SUM*

if As = dput(Av, s), then dget(As) = Av // DeltaPUTPUT rule

® much more fine-grained and scalable

Software Engineering A . :RSI 3
Prof. Dr. Colin Atkinson L\ COMMIt NIVER A[AT«\%\ITNHEIM

The Background of
Orthographic Software Modeling (OSM)

m In OSM, the SUM is much larger than the views
m the views are relatively small and compact

m Views can be updated concurrently
m axioms only applicable locally (i.e. to one view at a time)

m Usually have one-to-one correspondences between view elements and SUM
elements

m changes can conveniently be

traced to the affected element

= View elements cannot be changed
just locally
m for example, cannot delete
an element from just the
view, but not the SUM

Software Engineering A . RS -
Prof. Dr. Colin Atkinson L\ COMMIt SIVER AIAR}\ITNHEIM

Hybrid Approach with dput

u use get to create views from the SUM
= use dput (delta put) to update the SUM when a view is changed

- incremental put operation only transmits the delta (increment)

if As = dput(Av, s), then dget(As) = Av // DeltaPUTPUT rule

Software Engineering A . .
Prof. Dr. Colin Atkinson L COMMIt NIVER AIA-I.;/}\ITNHEIM

Skeleton-SUM and DeltaPutPut

45

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof.U. ABmann

>

>

A Skeleton-SUM fulfills the DeltaPutPut rule.

Reason: SUM
= Partial functions are independent
= Skeleton staysinvariant
Corollary
therefore OSM

View

= therefore Javadoc-SUM % ?) \‘7 &
e
o) Code
View

Comment a § ?

Pros and Cons of the Hybrid Approach

Traces allow affected SUM elements to be efficiently identified
m can be generated most mainstream transformation engines
m Traces also allow the open views impacted by a change to be identified
m Traces must be updated dynamically a la MVC pattern
Use of get to create views reduces the complexity of the transformation with
little extra overhead
® no need to update trace information
Use of dput to update the SUM greatly enhances the efficiency of updating
SUM
m the SUM is only ever updated via changes to views
However, it increases the amount of information that needs to be stored on
the server
m part of the SUM?

Software Engineering A . RS P
Prof. Dr. Colin Atkinson L\ COMMIt NIVER A[A&;?\ITNHEIM

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Prof. ABmann - Model-Driven Softwrae Development in Technical Spaces

33.7 Skeleton-SUM on RoSI CROM

Skeleton-SUM on RoSI CROM

48 Model-Driven Software Development in Technical Spaces (MOST)

> The SUM principle can be played on all metalanguages, e.g., CROM
» CROM supports Mono-Skeleton-SUM for all
= Contexts provide viewpoints
= Cores provide Skeleton, Roles provide flesh/clothing
= Role-play provides partial functions from objects to roles for a SkeletonSUM over cores
and roles

Theorem: A CROM-based Skeleton-SUM fulfils the delta-putput invariant.

@ © Prof.U. ABmann

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Prof. ABmann - Model-Driven Softwrae Development in Technical Spaces

33.8. Disjoint-Skeleton-SUM

[Seifert11]

Disjoint-Skeleton-SUM

50 Model-Driven Software Development in Technical Spaces (MOST)

» Skeletons can be
disjoint, though related
by isomorphic
mappings and
homomorphic mappings e ~ e .

» Then, the SUM can be 4 ‘ ' :
thought of as hierarchic

View 2a

Viewla

Viewtb %

@ © Prof.U. ABmann

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Prof. ABmann - Model-Driven Softwrae Development in Technical Spaces

33.8.1 Heterogeneous-Language-Skeleton-SUM

[Seifert11]

Heterogeneous-Language-Skeleton-SUM

52

Model-Driven Software Development in Technical Spaces (MOST)

> Disjoing Skeletons can

be of different

languages -

(heterogeneous)
> Then, Roundtrip

(])
Scenarios between ’) ®
different languages can (‘ 5
be described 6

@ © Prof.U. ABmann

Ry View 2a

g “
S .,
r Y
1 \
O' i
I}
' . -
» .
) n
) .
0y .
s o
s -

View ia

View 1b

Heterogeneous-Language-Skeleton-SUM with Templates

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof.U. ABmann

When skeletons have
slots (parameters) they
are templates

They can be filled with
snippets from
attributes

View 2a

Viewla

Vvl Nl e ‘

The End

54

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof.U. ABmann

> Explain, how partial functions between objects and attributes enable the projections
(get) and the merge functions (put) of a Skeleton-SUM

» Why are contexts important for views?
> What happens if the SUM has several skeletons?

» Which are the contexts of Javadoc-SUM? Why does Javadoc-SUM fulfill the
DeltaPutPut rule?

» Which are the contexts of OSM? Why does OSM fulfill the DeltaPutPut rule?
> Why does ROSI-CROM enable Skeleton-SUM?
> Some slides are courtesy to Prof. Colin Atkinson, Mannheim. Used by permission.

