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33. Macromodel Single Underlying Model (SUM)
with Orthographic Software Modeling (OSM) -
A 1-TS-Megamodel with Total Consistency
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Software Factories with Only 1 Technical Space

2 Model-Driven Software Development in Technical Spaces (MOST)
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Overview Table for Link-Tree Macromodels

4 Model-Driven Software Development in Technical Spaces (MOST)

The Link-Treeware TS is well apt for macromodel construction in a software factory I

» Atree node abstracts a subtree (representant)
= Attributes and attributions are composable partial mappings from treenodes
» RAGs are useful for all kinds of structure- and function-modeling in Link-Tree
Macromodels, because they abbreviate dependencies in several models with cross-
model relations.
= Inamacromodel under an artificial root (rooted macromodel), attributions can work
on the SUM to ensure the constraints
> Relational RAGs (RelRAGs) are useful, because they have bidirectional constraints

(Plain) MDA General SUM Skeleton SUM (partial function extension)

Markings Repository-SUM: get/put as higher-order

RAGs in Repositories
attributions of link trees

* Javadoc-SUM
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5 RAGs in Data-flow architectures Needs trace models get/put as model Flow-SUM: Communicating link trees; In-place
5 transformations (lenses)  transformations of SUM
a
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Other Examples form

*Olympic ring decomposition (EAI) marks all modules
with “rings” and thereby decomposes them (course ST-

1)
*VVSUM (Reussner, Burger et al) generates dependent
parts by create trace links
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33.1. The Macromodel “Single-Underlying Model
(SUM)”

e isbased on a repository (repository-based SUM) [Atkinson19]



let's take a ook again at the current status
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On-Demand View Generation in a SUM
(Flat Contexts Correspond to Colors or Tags)

The SUM, if editable, provide a single-source view
Single Underlying Model (SUM)
(all views merged)
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o
Orthographic Software Modeling (OSM) as a SUM-'

m  Many engineering disciplines have a long and successful tradition of
technical drawing - orthographic projection
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= so why don't we do this in software engineering?

structral  ®  On demand view generation

projection (projective views)

Operationa m  Dimension-based navigation

rojection s : .

prel = m  View-based methodology

L2 Behavioral
projection ®  Arrangement in a multidimentional
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33.2. The Skeleton-SUM

[Hettel08]
[Seifert11]



Skeletons and Flesh

14 Model-Driven Software Development in Technical Spaces (MOST) [Hettelos] [Selfertl 1]

>

>

>

>

b
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Skeleton splits models into

Skeletons (redundant) (several contexts)
and flesh (clothing) (locally different stuff in views, mono-context)

Global invariants on skeletons vs. local ,flesh” variants

Flesh must be non-overlapping, extending the skeleton

Skeletons can have isomorphic, homomorphic, monotonically extended “skeleton” mappings,
or may be non-morphic
Skeleton mapping is a trace mapping
Flesh/Clothing is not traced (private)




Mono-Skeleton-SUM

[HettelO8] [Seifert11]

15 Model-Driven Software Development in Technical Spaces (MOST)

> Mono-Skeleton-SUM splits models into
= One common Skeleton (redundant) (several contexts)
= and flesh (clothing) (locally different stuff in views, mono-context) is stored in SUM together
with skeleton
>  Flesh must be non-overlapping, extending the skeleton

> Isomorphic Skeleton mapping

@ © Prof.U. ABmann e.



Get/Put in Mono-Skeleton-SUM

16 Model-Driven Software Development in Technical Spaces (MOST)

[HettelO8] [Seifert11]

> From a Skeleton-SUM
= get operation produces a view
= put operation commits it into SUM

@ © Prof.U. ABmann e.
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33.2.1 Javadoc-SUM, a Mono-Skeleton-SUM for
Documentation
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Example Skeleton-SUM:
Scope tree of a program (static structuring)

18

Model-Driven Software Development in Technical Spaces (MOST)
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Javadoc comment relies on several attributes of nodes of the syntax tree:

» Comments (package, class, method, parameter)

> Code (ske
> Visibility

leton)

> Metadata

> Unit tests

Comments

/

comments

< Wethod
I

_Method >

comments

comments

< Method >

comments

(I _code ]



Projecting A Scope Tree for Skeleton

19

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof.U. ABmann

> put/get operations transform SUM to views and back
> Get: partial function projection
» Put: merge of partial function of view and of SUM

J

» Exa.:result of get operation for Scope Tree “Skeleton”:



Projecting A Scope Tree for Skeleton

20

Model-Driven Software Development in Technical Spaces (MOST)
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» Result of get operation for For Comment Context “Comment Flesh”:

Comments

_—



Projecting A Scope Tree for Skeleton

21 Model-Driven Software Development in Technical Spaces (MOST)

» Result of get operation for Code Context “Code Flesh”:

@ © Prof.U. ABmann



Merge of Partial Functions and Partial Trees in a Mono-
Skeleton-SUM

22

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof.U. ABmann

» Given two partial functions on tree-node domain D and two domains E, F:

= attr: D » E and

=« attr2: D - F
» Their mergemerged-attr:D - E { F @

. merged-attr(d) = attr (d) { attr2(d)

» Skeleton-SUM are trees of objects
which work on a partial function space of attributes

= Every view adds a new partial function

g ]

W T\
< Method >



Javadoc-SUM:
A Simple Metamodel-based Mono-Skeleton-SUM

23 Model-Driven Software Development in Technical Spaces (MOST)

-

CodeView and CommentView
unify along the skeleton

]

LAY 5

' Code
View

' Comment
View




Remarks on Mono-Skeleton-SUM

24

Model-Driven Software Development in Technical Spaces (MOST)
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> Generality: The Skeleton need not be a link tree; it can be an arbitrary graph data
structure
= But RAGs can model Mono-Skeleton-SUMs very easily: inherit the flesh attributes to
all nodes
» Between Skeleton and Flesh there holds a key dependency
= A partial function describes the mapping between skeleton and flesh
= Different partial functions exist for every view
= Flesh-skeleton unification employs partial function merge (feature term unification)
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33.3. Context-Based Skeleton-SUM

[Hettel08]
[Seifert11]



Skeleton-SUM

26

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof.U. ABmann

» Clothing can be associated to context (context-aware clothing)
= Code context
= Comment context
> If all clothings have mono-context, the SUM is called flat contextual SUM.




A Metamodel-based Skeleton-SUM with Flat Context Hierarchy

27 Model-Driven Software Development in Technical Spaces (MOST)

/

TestCase
View

[ SUM QCl

/

' Comment
View

I\

Context
Hierarchy

L

' Signature
View

L

Active context determines
the view
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~

\
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33.3.1. Orthographic Software Modeling (OSM)
as a Dimensional, Context-Based Skeleton-SUM

[Hettel08]
[Seifert11]
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Orthographic Software Modeling (OSM) as a
Dimensional Skeleton-SUM

m  Many engineering disciplines have a long and successful tradition of
technical drawing - orthographic projection

&
, 7 &
4 (\ = VAN
i o8 =) 2 -, e Ll
\Q \L? e /\ \l N
"l;‘rt Q,f‘ﬂ ﬁ
N

= so why don't we do this in software engineering?

structral  ®  On demand view generation
projection (projective views)

) m  Dimension-based navigation
Operational

projection

Behavioral
projection

L 2l ; m  View-based methodology

Software Engineering

A ' SITA
Prof. Dr. Colin Atkinson L\ COMMIt SIVER AIAR}\ITNHEIM

apply this metaphor to SE



Dimension Based Navigation

= views organized in a multi-dimensional cube
= one choice always “selected” from each dimension

m  each cell represents a viewpoint

Cell

30



OSMis a Flat Contextual Skeleton-SUM

31

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof.U. ABmann

OSM defines n-dimensional contexts, i.e., every model element is related to n contexts.
OSM can be realized by a Skeleton-SUM providing n mono-contextual clothings
= i.e.,, n mono-contextual attributes for every model element (link tree node).
The n dimensions (contexts) are used for projection
Instead of attributes, model elements have roles (CROM-Skeleton-SUM)

v

v

v

v

ROSIMA is a CROM-Skeleton-SUM

v
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33.4. Hierarchic Context-Based Skeleton-SUM

[Hettel08]
[Seifert11]



Hierarchic Skeleton-SUM

33 Model-Driven Software Development in Technical Spaces (MOST)

> Clothing can be associated to structured context
= Code context
Signatures
Implementation
= Comment context
> If som clothings have an inner (structured) context, the SUM is called hierarchic
contextual SUM.

@ © Prof.U. ABmann




A Mono-Skeleton-SUM
with Hierarchic Contexts

Signature
View

34 Model-Driven Software Development in Technical Spaces (MOST)

/

TestCase

[ SUM

Context
Hierarchy

Comment
View

'p

Views of
structured context
can be further
decomposed

Implementation
View
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33.5. Multi-Skeleton-SUM

[Seifert11]



Multi-Skeleton-SUM

36

Model-Driven Software Development in Technical Spaces (MOST)
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>

In SUMs, not all > Every Skeleton must be invariant, and
Skeletons need not be a within the SUM, a Skeleton—Skeleton
linked by isomorphic mapping must exist

mappings

A Skeleton mapping is
isomorphic to a subset
of the skeleton of the
SUM, not touching
private clothes of
others

View 2



TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultét Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Prof. ABmann - Model-Driven Softwrae Development in Technical Spaces

33.5.2 Put Operations in the MDA-Multi-Skeleton-
SUM



Model Synchronization in RAG-MDA by Put Operations on Single
Underlying Models (SUM)

38

Model-Driven Software Development in Technical Spaces (MOST)
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A single underlying model (SUM) is a
cultimodel with views
MDA can be arranged as MDA-SUM
A evolution operation changes a
global name or definition in one model
tree a view, which used in several
other model trees in the SUM
To synchronize dependent model
elements, we need a commit/put
operation (“commit/put to SUM")
Its implementation needs to repeat
the rewrite in all referencing places

= Follow the references introduced

by global name analysis
= Standard processin RAG

Easy traceability by dependency graph
between global names

Dependent
Treein

Name: Loan->Rental

-int sum +withdraw()

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Status: {<<committed>>}
Name: Lean—>Rental

-int sum

+withdraw()

Example: different class implementations of a
connector class in a PIM

N

Status: {<<changed>>} }
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33.6 Delta-Based Lenses for Incremental
Modifications for Scalability and Applicability of
Skeleton-SUMs

[Diskin]



Delta-Based Lenses for
Scalability and Applicability

m  Simple minded implementation approach —
m uni-directional exhaustive transformations

* get: SUM-to-view, put: view-to-SUM

m create a new (version of the) view whenever there is a change in the
SUM

m create a new (version of the) SUM whenever there is a change in a
view

= Would work but too large grained
m  Not scalable (inefficient)
m  No incrementality

m transformation more complex than necessary

= The necessary get/put operations are called bidirectional lenses

Software Engineering A . ‘RS -
Prof. Dr. Colin Atkinson L\ COMMIt NIVER AIAR;?\ITNHEIM



o
Delta-Based Lenses and Skeleton SUMs E-'

= Lenses (Pierce et al. 2007) are pairs of bidirectional transformations based on
get (exhaustive projection, decomposition, checkout) and put (exhaustive
integration, checkin) operations on models

m axioms for well-behaved lenses

v: View; s:SUM

get(put(v, s)) =v  // PUTGET invariant rule
put(get(s), s)=s  // GETPUT invariant rule

m axiom for very well behaved lenses: ‘intermediary puts can be forgotten”

‘ put(v’, put(v, s)) = put(v’,s)  // PUTPUT invariant rule ‘

= Delta-based Lenses optimize the checkin/checkout (Diskin et al. 2011)

m /ncremental delta operations dput and dget are driven by the changes to
the views

m axiom for delta-put: “If a delta-commit results in a delta of the SUM, then
the next delta-checkout refers only to this delta of the SUM*

if As = dput(Av, s), then dget(As) = Av  // DeltaPUTPUT rule

®  much more fine-grained and scalable

Software Engineering A . :RSI 3
Prof. Dr. Colin Atkinson L\ COMMIt NIVER A[AT«\%\ITNHEIM



The Background of
Orthographic Software Modeling (OSM)

m  In OSM, the SUM is much larger than the views
m the views are relatively small and compact

m Views can be updated concurrently
m axioms only applicable locally (i.e. to one view at a time)

m  Usually have one-to-one correspondences between view elements and SUM
elements

m changes can conveniently be

traced to the affected element

= View elements cannot be changed
just locally
m for example, cannot delete
an element from just the
view, but not the SUM

Software Engineering A . RS -
Prof. Dr. Colin Atkinson L\ COMMIt SIVER AIAR}\ITNHEIM



Hybrid Approach with dput

u use get to create views from the SUM
= use dput (delta put) to update the SUM when a view is changed

- incremental put operation only transmits the delta (increment)

if As = dput(Av, s), then dget(As) = Av  // DeltaPUTPUT rule

Software Engineering A . .
Prof. Dr. Colin Atkinson L COMMIt NIVER AIA-I.;/}\ITNHEIM



Skeleton-SUM and DeltaPutPut

45

Model-Driven Software Development in Technical Spaces (MOST)
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>

>

A Skeleton-SUM fulfills the DeltaPutPut rule.

Reason: SUM
= Partial functions are independent
= Skeleton staysinvariant
Corollary
therefore OSM

View

= therefore Javadoc-SUM % ?) \‘7 &
e
o ) Code
View

Comment a § ?




Pros and Cons of the Hybrid Approach

Traces allow affected SUM elements to be efficiently identified
m can be generated most mainstream transformation engines
m  Traces also allow the open views impacted by a change to be identified
m  Traces must be updated dynamically a la MVC pattern
Use of get to create views reduces the complexity of the transformation with
little extra overhead
® no need to update trace information
Use of dput to update the SUM greatly enhances the efficiency of updating
SUM
m the SUM is only ever updated via changes to views
However, it increases the amount of information that needs to be stored on
the server
m part of the SUM?

Software Engineering A . RS P
Prof. Dr. Colin Atkinson L\ COMMIt NIVER A[A&;?\ITNHEIM
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Skeleton-SUM on RoSI CROM
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> The SUM principle can be played on all metalanguages, e.g., CROM
» CROM supports Mono-Skeleton-SUM for all
= Contexts provide viewpoints
= Cores provide Skeleton, Roles provide flesh/clothing
= Role-play provides partial functions from objects to roles for a SkeletonSUM over cores
and roles

Theorem: A CROM-based Skeleton-SUM fulfils the delta-putput invariant.

@ © Prof.U. ABmann
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Disjoint-Skeleton-SUM
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» Skeletons can be
disjoint, though related
by isomorphic
mappings and
homomorphic mappings e ~ e .

» Then, the SUM can be 4 ‘ ' :
thought of as hierarchic

View 2a

Viewla

Viewtb %

@ © Prof.U. ABmann
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Heterogeneous-Language-Skeleton-SUM
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> Disjoing Skeletons can

be of different

languages -

(heterogeneous)
> Then, Roundtrip

(] )
Scenarios between ’ ) ®
different languages can (‘ 5
be described 6

@ © Prof.U. ABmann
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Heterogeneous-Language-Skeleton-SUM with Templates
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When skeletons have
slots (parameters) they
are templates

They can be filled with
snippets from
attributes

View 2a

Viewla

Vvl Nl e ‘



The End

54

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof.U. ABmann

> Explain, how partial functions between objects and attributes enable the projections
(get) and the merge functions (put) of a Skeleton-SUM

» Why are contexts important for views?
>  What happens if the SUM has several skeletons?

» Which are the contexts of Javadoc-SUM? Why does Javadoc-SUM fulfill the
DeltaPutPut rule?

» Which are the contexts of OSM? Why does OSM fulfill the DeltaPutPut rule?
>  Why does ROSI-CROM enable Skeleton-SUM?
> Some slides are courtesy to Prof. Colin Atkinson, Mannheim. Used by permission.



