
Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Softwrae Development in Technical Spaces

33. Macromodel Single Underlying Model (SUM)
with Orthographic Software Modeling (OSM) -
A 1-TS-Megamodel with Total Consistency

Prof. Dr. U. Aßmann

Technische Universität Dresden

Institut für Software- und
Multimediatechnik

http://st.inf.tu-dresden.de/teaching/
most

Version 21-1.1, 22.01.22

1) The megamodel “Single Underlying
Model (SUM)”

2) Skeleton-SUM

3) Flat Context-Based Skeleton SUM

1) Orthographic Software Modeling
(OSM)

4) Hierarchic Context-Based Skeleton
SUM

5) Multi-Skeleton SUM

6) Delta-Based Lenses

7) SUM on ROSI-CROM

8) Disjoint SkeletonSUM

9) Heterogeneous Language-SUM

 ©
 P

ro
f.

U
. A

ß
m

an
n

2 Model-Driven Software Development in Technical Spaces (MOST)

Software Factories with Only 1 Technical Space

Mega- and Macromodels

Tool Engineering

Model Management
Mapping, Transf., Composition

Technical
Space
Bridges

Technical Space

Meta-
modeling

Model Analysis
Querying, Interpretation

Metapyramid (Metahierarchy) for Token Modeling

Software Factory

Multi-TS Megamodel

In this chapter:
1-TS Megamodel
SUM

 ©
 P

ro
f.

U
. A

ß
m

an
n

3 Model-Driven Software Development in Technical Spaces (MOST)

References

► [Atkinson19] Johannes Meier, Heiko Klare, Christian Tunjic, Colin Atkinson, Erik Burger, Ralf
Reussner, and Andreas Winter. Single underlying models for projectional, multi-view
environments. In Proceedings of the 7th International Conference on Model-Driven Engineering
and Software Development - Volume 1: MODELSWARD, pages 119--130. INSTICC, SciTePress,
2019.

► Hettel, Thomas and Lawley, Michael J. and Raymond, Kerry (2008). Model Synchronisation:
Definitions for Round-Trip Engineering. In Proceedings ICMT2008 - International Conference on
Model Transformation: Theory and Practice of Model Transformations LNCS 5063/2008, pages
pp. 31-45, Zurich, Switzerland.

► Thomas Hettel. Model Round-Trip Engineering. PhD Thesis. Queensland University of Technology,
2010

► Zinovy Diskin and Yingfei Xiong and Krzysztof Czarnecki. From State- to Delta-Based Bidirectional
Model Transformations: the Asymmetric Case. Journal of Object Technology, 2011, vol. 10, 6, pp.
1-25,

■ http://dx.doi.org/10.5381/jot.2011.10.1.a6

► J. Nathan Foster and Michael B. Greenwald and Jonathan T. Moore and Benjamin C. Pierce and
Alan Schmitt. Combinators for Bi-Directional Tree Transformations: A Linguistic Approach to the
View Update Problem, ACM Transactions on Programming Languages and Systems, Vol 29(3), pp.
17, 2007

■ http://www.cis.upenn.edu/~bcpierce/papers/newlenses-popl.pdf

 ©
 P

ro
f.

U
. A

ß
m

an
n

4 Model-Driven Software Development in Technical Spaces (MOST)

Overview Table for Link-Tree Macromodels

► A tree node abstracts a subtree (representant)
■ Attributes and attributions are composable partial mappings from treenodes

► RAGs are useful for all kinds of structure- and function-modeling in Link-Tree
Macromodels, because they abbreviate dependencies in several models with cross-
model relations.

■ In a macromodel under an artificial root (rooted macromodel), attributions can work
on the SUM to ensure the constraints

► Relational RAGs (RelRAGs) are useful, because they have bidirectional constraints

(Plain) MDA General SUM Skeleton SUM (partial function extension)

RAGs in Repositories Markings Repository-SUM: get/put as higher-order
attributions of link trees

● Javadoc-SUM

RAGs in Data-flow architectures Needs trace models get/put as model
transformations (lenses)

Flow-SUM: Communicating link trees; In-place
transformations of SUM

● Google Docs, Stream-Based MDA

The Link-Treeware TS is well apt for macromodel construction in a software factory

5

Software Engineering
Prof. Dr. Colin Atkinson

Overview

1. Find out why software engineering is important
■ see some software engineering failures

2. Get acquainted with –
■ the Chair of Software Engineering

■ the research

■ the people

■ the teaching

Synchronization of Projective Views on
a Single Underlying Model
(A Orthographic Macromodel)

Many slides are courtesy to:
Christian Vjekoslav Tunjic,
Prof. Colin Atkinson

Used by permission

L‘Aquila. Italy
21 July, 2015

Presented at: VAO 2015

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Softwrae Development in Technical Spaces

33.1. The Macromodel “Single-Underlying Model
(SUM)”

• is based on a repository (repository-based SUM) [Atkinson19]

7

Software Engineering
Prof. Dr. Colin Atkinson

Traditional View-based Software Engineering
(VOSE)

Java sourceUML classes

Behavior

code
RegEx

test
casesXMI

AFD

OpSpec

system

8

Software Engineering
Prof. Dr. Colin Atkinson

View 5

View 4

View 3

View 2

View 1

On-Demand View Generation in a SUM
(Flat Contexts Correspond to Colors or Tags)

Java sourceUML classes

Behavior

Single Underlying Model (SUM)
(all views merged)

Context 1

Context 2

Context 3

Context 4

Context 5
Requirements
texts

Deployment
diagrams

The SUM, if editable, provide a single-source view

9

Software Engineering
Prof. Dr. Colin Atkinson

Orthographic Software Modeling (OSM) as a SUM

■ Many engineering disciplines have a long and successful tradition of
technical drawing - orthographic projection

■ so why don't we do this in software engineering?

Operational
projection

Behavioral
projection

Structural
projectioncom

ponent

■ On demand view generation
(projective views)

■ Dimension-based navigation

■ View-based methodology

■ Arrangement in a multidimentional
SUM

10

Software Engineering
Prof. Dr. Colin Atkinson

11

Software Engineering
Prof. Dr. Colin Atkinson

12

Software Engineering
Prof. Dr. Colin Atkinson

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Softwrae Development in Technical Spaces

33.2. The Skeleton-SUM

[Hettel08]

[Seifert11]

 ©
 P

ro
f.

U
. A

ß
m

an
n

14 Model-Driven Software Development in Technical Spaces (MOST)

Skeletons and Flesh

► Skeleton splits models into

■ Skeletons (redundant) (several contexts)

■ and flesh (clothing) (locally different stuff in views, mono-context)

► Global invariants on skeletons vs. local „flesh“ variants

► Flesh must be non-overlapping, extending the skeleton

► Skeletons can have isomorphic, homomorphic, monotonically extended “skeleton” mappings,

■ or may be non-morphic

■ Skeleton mapping is a trace mapping

■ Flesh/Clothing is not traced (private)

Flesh/
Clothing

Skeleton

 [Hettel08] [Seifert11]

non-morphic

non-morphic

isomorphic

 ©
 P

ro
f.

U
. A

ß
m

an
n

15 Model-Driven Software Development in Technical Spaces (MOST)

Mono-Skeleton-SUM

► Mono-Skeleton-SUM splits models into

■ One common Skeleton (redundant) (several contexts)

■ and flesh (clothing) (locally different stuff in views, mono-context) is stored in SUM together
with skeleton

► Flesh must be non-overlapping, extending the skeleton

► Isomorphic Skeleton mapping

Skeleton

Flesh

 [Hettel08] [Seifert11]

isomorphic

isomorphic

isomorphic

isomorphic

isomorphic

SUM

View 1
View 2

View 3

isom
orphic

 ©
 P

ro
f.

U
. A

ß
m

an
n

16 Model-Driven Software Development in Technical Spaces (MOST)

Get/Put in Mono-Skeleton-SUM

► From a Skeleton-SUM

■ get operation produces a view

■ put operation commits it into SUM

Skeleton

Flesh

 [Hettel08] [Seifert11]

isomorphic

isomorphic

isomorphic

isomorphic

isomorphic

SUM

View 1
View 2

View 3

isom
orphic

put

get

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

33.2.1 Javadoc-SUM, a Mono-Skeleton-SUM for
Documentation

 ©
 P

ro
f.

U
. A

ß
m

an
n

18 Model-Driven Software Development in Technical Spaces (MOST)

Pkg

Class

Method

Class

Method Method

Comments

comments

comments

code

code code
code

code

comments

comments

comments

Example Skeleton-SUM:
Scope tree of a program (static structuring)

Javadoc comment relies on several attributes of nodes of the syntax tree:

► Comments (package, class, method, parameter)

► Code (skeleton)

► Visibility

► Metadata

► Unit tests

 ©
 P

ro
f.

U
. A

ß
m

an
n

19 Model-Driven Software Development in Technical Spaces (MOST)

Pkg

Class

Method

Class

Method Method

Projecting A Scope Tree for Skeleton

► put/get operations transform SUM to views and back

► Get: partial function projection

► Put: merge of partial function of view and of SUM

► Exa.: result of get operation for Scope Tree “Skeleton”:

 ©
 P

ro
f.

U
. A

ß
m

an
n

20 Model-Driven Software Development in Technical Spaces (MOST)

Pkg

Class

Method

Class

Method Method

Comments

Comments

Comments

Projecting A Scope Tree for Skeleton

► Result of get operation for For Comment Context “Comment Flesh”:

 ©
 P

ro
f.

U
. A

ß
m

an
n

21 Model-Driven Software Development in Technical Spaces (MOST)

Pkg

Class

Method

Class

Method Method

Code

Code Code Code

Code

Projecting A Scope Tree for Skeleton

► Result of get operation for Code Context “Code Flesh”:

 ©
 P

ro
f.

U
. A

ß
m

an
n

22 Model-Driven Software Development in Technical Spaces (MOST)

Merge of Partial Functions and Partial Trees in a Mono-
Skeleton-SUM

► Given two partial functions on tree-node domain D and two domains E, F:

■ attr: D E → and
■ attr2: D F→

► Their merge merged-attr:D E F→ ◊
■ merged-attr(d) = attr (d) attr2(d)◊

► Skeleton-SUM are trees of objects
which work on a partial function space of attributes

■ Every view adds a new partial function

Method

Class

Method

code

code code

comments

comments

comments

Method

Class

Method

comments

comments

comments

Method

Class

Method

code

code
code

attr

attr2

attr

attr2

 ©
 P

ro
f.

U
. A

ß
m

an
n

23 Model-Driven Software Development in Technical Spaces (MOST)

Javadoc-SUM:
A Simple Metamodel-based Mono-Skeleton-SUM

SUM

Comment
View

Code
View

CodeView and CommentView
unify along the skeleton

put

get
put

get

 ©
 P

ro
f.

U
. A

ß
m

an
n

24 Model-Driven Software Development in Technical Spaces (MOST)

Remarks on Mono-Skeleton-SUM

► Generality: The Skeleton need not be a link tree; it can be an arbitrary graph data
structure

■ But RAGs can model Mono-Skeleton-SUMs very easily: inherit the flesh attributes to
all nodes

► Between Skeleton and Flesh there holds a key dependency
■ A partial function describes the mapping between skeleton and flesh
■ Different partial functions exist for every view
■ Flesh-skeleton unification employs partial function merge (feature term unification)

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Softwrae Development in Technical Spaces

33.3. Context-Based Skeleton-SUM

[Hettel08]

[Seifert11]

 ©
 P

ro
f.

U
. A

ß
m

an
n

26 Model-Driven Software Development in Technical Spaces (MOST)

Skeleton-SUM

► Clothing can be associated to context (context-aware clothing)
■ Code context
■ Comment context

► If all clothings have mono-context, the SUM is called flat contextual SUM.

Context Context
Context
Hierarchy

 ©
 P

ro
f.

U
. A

ß
m

an
n

27 Model-Driven Software Development in Technical Spaces (MOST)

A Metamodel-based Skeleton-SUM with Flat Context Hierarchy

SUM

Comment
View

Code
View

Signature
View

TestCase
View

Views unify along the skeleton
Context

Context
Hierarchy

Active context determines
the view

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

33.3.1. Orthographic Software Modeling (OSM)
as a Dimensional, Context-Based Skeleton-SUM

[Hettel08]

[Seifert11]

29

Software Engineering
Prof. Dr. Colin Atkinson

Orthographic Software Modeling (OSM) as a
Dimensional Skeleton-SUM

■ Many engineering disciplines have a long and successful tradition of
technical drawing - orthographic projection

■ so why don't we do this in software engineering?

Operational
projection

Behavioral
projection

Structural
projectioncom

ponent

■ On demand view generation
(projective views)

■ Dimension-based navigation

■ View-based methodology

30

Software Engineering
Prof. Dr. Colin Atkinson

Dimension Based Navigation

■ views organized in a multi-dimensional cube

■ one choice always “selected” from each dimension

■ each cell represents a viewpoint

30

Cell

...

...

... ...

 ©
 P

ro
f.

U
. A

ß
m

an
n

31 Model-Driven Software Development in Technical Spaces (MOST)

OSM is a Flat Contextual Skeleton-SUM

► OSM defines n-dimensional contexts, i.e., every model element is related to n contexts.

► OSM can be realized by a Skeleton-SUM providing n mono-contextual clothings
■ i.e., n mono-contextual attributes for every model element (link tree node).

► The n dimensions (contexts) are used for projection

► Instead of attributes, model elements have roles (CROM-Skeleton-SUM)

► ROSIMA is a CROM-Skeleton-SUM

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Softwrae Development in Technical Spaces

33.4. Hierarchic Context-Based Skeleton-SUM

[Hettel08]

[Seifert11]

 ©
 P

ro
f.

U
. A

ß
m

an
n

33 Model-Driven Software Development in Technical Spaces (MOST)

Hierarchic Skeleton-SUM

► Clothing can be associated to structured context
■ Code context

. Signatures

. Implementation
■ Comment context

► If som clothings have an inner (structured) context, the SUM is called hierarchic
contextual SUM.

Context
Context
Hierarchy

Test Comment

Implementation Signature

Code

 ©
 P

ro
f.

U
. A

ß
m

an
n

34 Model-Driven Software Development in Technical Spaces (MOST)

A Mono-Skeleton-SUM
with Hierarchic Contexts

SUM

Comment
View

Code
View

Code
View

TestCase
View

Context
Context
Hierarchy

Views of
structured context
can be further
decomposed

Signature
View

Implementation
View

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Softwrae Development in Technical Spaces

33.5. Multi-Skeleton-SUM

[Seifert11]

 ©
 P

ro
f.

U
. A

ß
m

an
n

36 Model-Driven Software Development in Technical Spaces (MOST)

Multi-Skeleton-SUM

► In SUMs, not all
Skeletons need not be a
linked by isomorphic
mappings

► A Skeleton mapping is
isomorphic to a subset
of the skeleton of the
SUM, not touching
private clothes of
others

isomorphic

iso
m

orp
hic

SUM

View 1
View 2

View 3

isom
orphic

► Every Skeleton must be invariant, and
within the SUM, a Skeleton—Skeleton
mapping must exist

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Softwrae Development in Technical Spaces

33.5.2 Put Operations in the MDA-Multi-Skeleton-
SUM

 ©
 P

ro
f.

U
. A

ß
m

an
n

38 Model-Driven Software Development in Technical Spaces (MOST)

► A single underlying model (SUM) is a
cultimodel with views

► MDA can be arranged as MDA-SUM

► A evolution operation changes a
global name or definition in one model
tree a view, which used in several
other model trees in the SUM

► To synchronize dependent model
elements, we need a commit/put

operation (“commit/put to SUM”)

► Its implementation needs to repeat
the rewrite in all referencing places

■ Follow the references introduced
by global name analysis

■ Standard process in RAG

► Easy traceability by dependency graph
between global names

38

Model Synchronization in RAG-MDA by Put Operations on Single

Underlying Models (SUM)

-int sum

Status: {<<changed>>}
Name: Loan->Rental

+withdraw()

Dependent
Tree in

SUM

Model
tree

(view)

-int sum +withdraw()

commit/
put

Status: {<<committed>>}
Name: Loan->Rental

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Softwrae Development in Technical Spaces

33.6 Delta-Based Lenses for Incremental
Modifications for Scalability and Applicability of
Skeleton-SUMs

[Diskin]

41

Software Engineering
Prof. Dr. Colin Atkinson

Delta-Based Lenses for
Scalability and Applicability

■ Simple minded implementation approach –
■ uni-directional exhaustive transformations

● get: SUM-to-view, put: view-to-SUM
■ create a new (version of the) view whenever there is a change in the

SUM

■ create a new (version of the) SUM whenever there is a change in a
view

■ Would work but too large grained
■ Not scalable (inefficient)

■ No incrementality

■ transformation more complex than necessary

Þ The necessary get/put operations are called bidirectional lenses

42

Software Engineering
Prof. Dr. Colin Atkinson

Delta-Based Lenses and Skeleton SUMs

■ Lenses (Pierce et al. 2007) are pairs of bidirectional transformations based on
get (exhaustive projection, decomposition, checkout) and put (exhaustive
integration, checkin) operations on models
■ axioms for well-behaved lenses

■ axiom for very well behaved lenses: “intermediary puts can be forgotten”

■ Delta-based Lenses optimize the checkin/checkout (Diskin et al. 2011)
■ Incremental delta operations dput and dget are driven by the changes to

the views

■ axiom for delta-put: “If a delta-commit results in a delta of the SUM, then
the next delta-checkout refers only to this delta of the SUM”

■ much more fine-grained and scalable

if s = dput(v, s), then dget(s) = v // DeltaPUTPUT rule

v: View; s:SUM
get(put(v, s)) = v // PUTGET invariant rule
put(get(s), s) = s // GETPUT invariant rule

put(v’, put(v, s)) = put(v’, s) // PUTPUT invariant rule

43

Software Engineering
Prof. Dr. Colin Atkinson

The Background of
Orthographic Software Modeling (OSM)

■ In OSM, the SUM is much larger than the views
■ the views are relatively small and compact

■ Views can be updated concurrently
■ axioms only applicable locally (i.e. to one view at a time)

■ Usually have one-to-one correspondences between view elements and SUM
elements
■ changes can conveniently be

traced to the affected element

■ View elements cannot be changed
just locally
■ for example, cannot delete

an element from just the
view, but not the SUM

44

Software Engineering
Prof. Dr. Colin Atkinson

Hybrid Approach with dput

■ use get to create views from the SUM

■ use dput (delta put) to update the SUM when a view is changed

– incremental put operation only transmits the delta (increment)

get

v
dput

s

if s = dput(v, s), then dget(s) = v // DeltaPUTPUT rule

 ©
 P

ro
f.

U
. A

ß
m

an
n

45 Model-Driven Software Development in Technical Spaces (MOST)

Skeleton-SUM and DeltaPutPut

► Reason:
■ Partial functions are independent
■ Skeleton stays invariant

► Corollary
■ therefore OSM
■ therefore Javadoc-SUM

A Skeleton-SUM fulfills the DeltaPutPut rule.

SUM

Comment
View

Code
View

put
get put

get

46

Software Engineering
Prof. Dr. Colin Atkinson

Pros and Cons of the Hybrid Approach

■ Traces allow affected SUM elements to be efficiently identified
■ can be generated most mainstream transformation engines

■ Traces also allow the open views impacted by a change to be identified

■ Traces must be updated dynamically a la MVC pattern

■ Use of get to create views reduces the complexity of the transformation with
little extra overhead
■ no need to update trace information

■ Use of dput to update the SUM greatly enhances the efficiency of updating
SUM
■ the SUM is only ever updated via changes to views

■ However, it increases the amount of information that needs to be stored on
the server
■ part of the SUM?

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Softwrae Development in Technical Spaces

33.7 Skeleton-SUM on RoSI CROM

 ©
 P

ro
f.

U
. A

ß
m

an
n

48 Model-Driven Software Development in Technical Spaces (MOST)

Skeleton-SUM on RoSI CROM

► The SUM principle can be played on all metalanguages, e.g., CROM

► CROM supports Mono-Skeleton-SUM for all
■ Contexts provide viewpoints
■ Cores provide Skeleton, Roles provide flesh/clothing
■ Role-play provides partial functions from objects to roles for a SkeletonSUM over cores

and roles

Theorem: A CROM-based Skeleton-SUM fulfils the delta-putput invariant.

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Softwrae Development in Technical Spaces

33.8. Disjoint-Skeleton-SUM

[Seifert11]

 ©
 P

ro
f.

U
. A

ß
m

an
n

50 Model-Driven Software Development in Technical Spaces (MOST)

SUM2

Disjoint-Skeleton-SUM

► Skeletons can be
disjoint, though related
by isomorphic
mappings and
homomorphic mappings

► Then, the SUM can be
thought of as hierarchic

SUM1

View 1a
View 1b

View 2a

hom
om

orphic

isomorphic

hom
om

orphic

homomorphic

SUM

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Softwrae Development in Technical Spaces

33.8.1 Heterogeneous-Language-Skeleton-SUM

[Seifert11]

 ©
 P

ro
f.

U
. A

ß
m

an
n

52 Model-Driven Software Development in Technical Spaces (MOST)

SUM2

Heterogeneous-Language-Skeleton-SUM

► Disjoing Skeletons can
be of different
languages
(heterogeneous)

► Then, Roundtrip
Scenarios between
different languages can
be described

SUM1

View 1a
View 1b

View 2a

hom
om

orphic

isomorphic

hom
om

orphic

homomorphic

SUM

 ©
 P

ro
f.

U
. A

ß
m

an
n

53 Model-Driven Software Development in Technical Spaces (MOST)

SUM2

Heterogeneous-Language-Skeleton-SUM with Templates

► When skeletons have
slots (parameters) they
are templates

► They can be filled with
snippets from
attributes

SUM1

View 1a
View 1b

View 2a

hom
om

orphic

isomorphic

hom
om

orphic

homomorphic

SUM

 ©
 P

ro
f.

U
. A

ß
m

an
n

54 Model-Driven Software Development in Technical Spaces (MOST)

The End

► Explain, how partial functions between objects and attributes enable the projections
(get) and the merge functions (put) of a Skeleton-SUM

► Why are contexts important for views?

► What happens if the SUM has several skeletons?

► Which are the contexts of Javadoc-SUM? Why does Javadoc-SUM fulfill the
DeltaPutPut rule?

► Which are the contexts of OSM? Why does OSM fulfill the DeltaPutPut rule?

► Why does ROSI-CROM enable Skeleton-SUM?

► Some slides are courtesy to Prof. Colin Atkinson, Mannheim. Used by permission.

