
Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Software Development in Technical Spaces

IV. The Technical Space Graphware

40. Flat Analysis in Graphware:
Graph Querying, Metrics, Reachability Analysis
and Megamodel Dependency Analysis

Prof. Dr. U. Aßmann

Technische Universität Dresden

Institut für Software- und
Multimediatechnik

http://st.inf.tu-dresden.de

Version 21-1.2, 29.01.22

1) Graph-Based DDL and CDL

1) Relational Schema

2) Entity-Relationship Diagrams

3) MOF and ERD

2) Graph Query Languages

1) QL

2) Metrics with QL

3) Lifting Info to the Macromodel Level

4) Macromodel Dependency Analysis

5) Other graph query languages

http://st.inf.tu-dresden.de/
http://st.inf.tu-dresden.de/

 ©
 P

ro
f.

U
. A

ß
m

an
n

2 Model-Driven Software Development in Technical Spaces (MOST)

Obligatory Literature

► http://en.wikipedia.org/wiki/List_of_UML_tools

► http://en.wikipedia.org/wiki/Entity-relationship_model

► http://www.utexas.edu/its/archive/windows/database/datamodeling/index.html

► [deMoor] Oege de Moor, Mathieu Verbaere, Elnar Hajiyev, Pavel Avgustinov, Torbjorn Ekman, Neil
Ongkingco, Damien Sereni, Julian Tibble, "Keynote Address: .QL for Source Code Analysis", SCAM,
2007, 2013 IEEE 13th International Working Conference on Source Code Analysis and
Manipulation (SCAM), pp. 3-16, doi:10.1109/SCAM.2007.31

► CodeQL is free now (via github): https://github.com/github/codeql

► https://semmle.com/codeql, https://help.semmle.com/QL/learn-ql/

► https://help.semmle.com/QL/learn-ql/java/ql-for-java.html

► Language handbook https://help.semmle.com/QL/ql-handbook/index.html

■ Specification https://help.semmle.com/QL/ql-spec/language.html

► Thief detective game: https://help.semmle.com/QL/learn-ql/beginner/find-thief-1.html

► Industrial case studies: https://semmle.com/case-studies

► Community-driven security analysis:

■ Github repo of LGTM examples https://github.com/Semmle/ql
https://securitylab.github.com/tools/codeql https://lgtm.com/help/lgtm/about-lgtm

■ Query console https://lgtm.com/query

■ https://lgtm.com/help/lgtm/console/ql-java-basic-example

http://en.wikipedia.org/wiki/Entity-relationship_model
https://github.com/github/codeql
https://semmle.com/codeql
https://help.semmle.com/QL/learn-ql/
https://help.semmle.com/QL/learn-ql/java/ql-for-java.html
https://help.semmle.com/QL/ql-handbook/index.html
https://help.semmle.com/QL/ql-spec/language.html
https://help.semmle.com/QL/learn-ql/beginner/find-thief-1.html
https://semmle.com/case-studies
https://github.com/Semmle/ql
https://securitylab.github.com/tools/codeql
https://lgtm.com/help/lgtm/about-lgtm
https://lgtm.com/query
https://lgtm.com/help/lgtm/console/ql-java-basic-example
http://en.wikipedia.org/wiki/Entity-relationship_model
https://github.com/github/codeql
https://semmle.com/codeql
https://help.semmle.com/QL/learn-ql/
https://help.semmle.com/QL/learn-ql/java/ql-for-java.html
https://help.semmle.com/QL/ql-handbook/index.html
https://help.semmle.com/QL/ql-spec/language.html
https://help.semmle.com/QL/learn-ql/beginner/find-thief-1.html
https://semmle.com/case-studies
https://github.com/Semmle/ql
https://securitylab.github.com/tools/codeql
https://lgtm.com/help/lgtm/about-lgtm
https://lgtm.com/query
https://lgtm.com/help/lgtm/console/ql-java-basic-example

 ©
 P

ro
f.

U
. A

ß
m

an
n

3 Model-Driven Software Development in Technical Spaces (MOST)

References

► [Chen] P. P.-S. Chen. The entity-relationship model - towards a unified view of data.
Transactions on Database Systems, 1(1):9-36, 1976

► A Comparison of ATL and Story-Driven Modeling (Fujaba-style GRS)

http://www.es.tu-darmstadt.de/fileadmin/download/publications/spatzina/PP_AGTIVE_
2011.pdf

http://www.es.tu-darmstadt.de/fileadmin/download/publications/spatzina/PP_AGTIVE_2011.pdf
http://www.es.tu-darmstadt.de/fileadmin/download/publications/spatzina/PP_AGTIVE_2011.pdf
http://www.es.tu-darmstadt.de/fileadmin/download/publications/spatzina/PP_AGTIVE_2011.pdf
http://www.es.tu-darmstadt.de/fileadmin/download/publications/spatzina/PP_AGTIVE_2011.pdf

 ©
 P

ro
f.

U
. A

ß
m

an
n

4 Model-Driven Software Development in Technical Spaces (MOST)

Q10: The House of a Technical Space

Mega- and Macromodels
Tracing, Regeneration, Synchronization

Tool Engineering
Composition, Extension

Model Management
Composition, Mapping, Transformation

Technical
Space
Bridges

Technical Space

Meta-
modeling

Model Analysis
Querying, Attribution, Analysis, Interpretation

Metapyramid (Metahierarchy)

 ©
 P

ro
f.

U
. A

ß
m

an
n

5 Model-Driven Software Development in Technical Spaces (MOST)

Q11: Overview of Technical Spaces in the Classical
Metahierarchy

Gramm
arware
(String
s)

Text-
ware

Table-ware Treewar
e
(trees)

Link-Tree-
ware

Graph
ware/
Model
ware

Role-
Ware

CROM-
Ware

Ontology
-ware

Strings Text Text-
Table

Relationa
l Algebra

NF2 XML Link
trees

MOF Eclipse CDI
F

MetaEdit+ Context-
role graphs

OWL-Ware

M
3

EBNF EBNF CWM
(common
warehou
se model)

NF2-
language

XSD JastAd
d,
Silver

MOF Ecore,
EMOF

ERD GOPPR CROM RDFS
OWL

M
2

Gramma
r of a
language

Gramm
ar with
line
delimite
rs

csv-
heade
r

Relationa
l Schema

NF2-
Schema

XML
Schema
, e.g.
xhtml

Specific
RAG

UML-
CD, -SC,
OCL

UML,
many
others

CDI
F-
lang
uage
s

UML,
many
others

CROM HTML
XML
MOF UML
DSL

M
1

String,
Program

Text in
lines

csv
Table

Relation
s

NF2-tree
relation

XML-
Docum
ents

Link-
Syntax-
Trees

Classes,
Progra
ms

Classes,
Program
s

CDI
F-
Mod
els

Classes,
Programs

CROM
models

Facts (T-
Box)

M
0

Objects Sequenc
es of
lines

Seque
nces of
rows

Sets of
tuples

trees dynami
c
semanti
cs in
browse
r

Object
nets

Hierarch
ical
graphs

Obje
ct
nets

Object nets Context-
Object-Role
Nets

A-Box
(RDF-
Graphs)

today

 ©
 P

ro
f.

U
. A

ß
m

an
n

6 Model-Driven Software Development in Technical Spaces (MOST)

From Syntax Trees to Syntax Graphs

► In the TS Graphware, the secondary relations of link trees become primary relations, i.e.,
we treat real graphs

► Abstract syntax trees (AST) change to Abstract Syntax Graphs (ASG)

► Attributed link trees (ALT) change to Attributed Program Graphs (APG)

 ©
 P

ro
f.

U
. A

ß
m

an
n

7 Model-Driven Software Development in Technical Spaces (MOST)

Flat and Deep Model and Code Analysis

► DQL answer questions about the materials in a repository or in a stream
■ Analytics for one document alone (metrics, “Business Intelligence”)
■ Filtering of a stream
■ Combining input streams

CQL do the same for programs and models:

► Flat model analysis asks questions on
■ the direct context of a model element (context-free queries, pattern matching)
■ the global knowledge about a model element
■ Software metrics: counting objects, relationships, dependencies
■ Inter-model dependencies between models in a megamodel

► Deep model analysis (value flow analysis, data-flow analysis, inter-procedural analysis,
inter-component analysis) respects the main structure of a model and asks the question

■ whether certain parts of a model are reachable from each other (connected)
■ what is the context of a model element in a structured environment (abstract

syntax tree, control flow graph, value flow graph, dependency graph)
■ where do attributes flow (in an attribution)

 ©
 P

ro
f.

U
. A

ß
m

an
n

8 Model-Driven Software Development in Technical Spaces (MOST)

Q16: Languages in Software Factories

General
Purpose

Language

Domain-
Specific

Language

Controlled
Natural

Language

Markup
Languages

Metamodels + Grammars

diagram-
matic

textual

modeling programming graph-like

term-like

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Software Development in Technical Spaces

40.1 DDL in the Graph-Based Technical Spaces

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Model-Driven Software Development in Technical Spaces (MOST)

40.1.1 Technical Space RelationWare with
DDL Relational Schema

Relational Algebra works with typed relations

 ©
 P

ro
f.

U
. A

ß
m

an
n

11 Model-Driven Software Development in Technical Spaces (MOST)

Technical Space Relational Algebra mit
Metalanguage Relational Schema

► Relational Algebra (Codd) works on tables of tuples with attributes
– See courses on databases

Relational Schema
Metamodel

Table

Record

Column

Attribute

Type

Key FirstName Surname Street Town

@1 Uwe Aßmann Bakerstreet
5

New York

@2 Frank Miller Northstreet
9

Pittsburgh

@3 Mary Baker Magdalenstr
eet

Oxford

Key

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Model-Driven Software Development in Technical Spaces (MOST)

40.1.2 Excursion: Textual Notation for Graphs

Relational Algebra works with typed relations

 ©
 P

ro
f.

U
. A

ß
m

an
n

13 Model-Driven Software Development in Technical Spaces (MOST)

Textual Notation for Graphs and Diagrams

► A hierarchic structure (tree or term) can
be expressed in term-like syntax:

Table

Record

Column

Attribute

Type

Key

Table

Record

Column

Attribute

Type

Key

► A real graph or diagram can be split into
terms and joined by conjunction
(spanning tree decomposition)

// without edges

Table [Record [Attribute [Key]],

 Column [Type]

]

// without edges

Table [Record [Attribute [Key]],

 Column [Type]]

AND Column [Attribute]

AND Attribute [Type]

// with edges

Table [has [Record [has [Attribute [

 subclasses [Key]]]]],

 has [Column [has [Type]]]

]

// with edges

Table [has[Record[has[Attribute[subclasses[Key]]]]],

 has[Column [has[Type]]]]

AND Column[has[Attribute]]

AND Attribute[has[Type]]

 ©
 P

ro
f.

U
. A

ß
m

an
n

14 Model-Driven Software Development in Technical Spaces (MOST)

Textual Notation for Graphs and Diagrams

► A real graph or diagram can be split into
flat terms (triples) and joined by
conjunction (edge decomposition, triple
decomposition)

Table

Record

Column

Attribute

Type

Key

► Most query and transformation
languages in Graphware use either

■ spanning tree decomposition
■ edge decomposition.

► Ontology languages (such as OWL and
RDFS) use triple decomposition

// with edges

has[Table, Record] AND has[Table,Column]

AND has[Record,Attribute] AND subclasses[Attribute,Key]

AND has[Column [Type]] AND has[Column,Attribute]

AND has[Attribute,Type]

 ©
 P

ro
f.

U
. A

ß
m

an
n

15 Model-Driven Software Development in Technical Spaces (MOST)

Different Notations for Node-Edge Patterns in Edge
Decomposition

► In edge decomposition of query graphs, for notation of edges (and predicates), textual
as well as graphical notations exist

Datalog
Prolog

Graphic
(Optimix, EARS)

Textual
graphics
(TgreQL,
GrGen)

Juxtaposition Object-
oriented
(.QL)

edges e(N,M) -N-e-M->
N -e-> M

N e M N.e(M)

recursi
on

r(N,M) :-
e(N,Z),
r(Z,M)

N -e*→ M N e* M N.e*(M)

Goto
label=“X“

Label
value=“X“Jump

Goto
label=“X“

Label
value=“X“Jump Next

Assign
Jump

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Model-Driven Software Development in Technical Spaces (MOST)

40.1.2 Technical Space ER-Ware with
DDL Entity-Relationship-Diagrams (ERD)

A Simple DDL/CDL with Mapping to the
Relational Algebra

Relations and Entities (without inheritance)

 ©
 P

ro
f.

U
. A

ß
m

an
n

17 Model-Driven Software Development in Technical Spaces (MOST)

Modeling with Entity-Relationship-Diagrams (ERD)

► ERD can be mapped easily to relational schema (with an invertible 1:n-mapping, ER-RS-
mapping)

■ Entities form special relations with “identifer” (key, surrogate)
■ ER-diagrams can be stored easily in databases (simple persistence)

► ERD is often used as CDL in larger integrated development environments (simple
persistence of code and models)

ER-Diagram

Relational Schema

 ©
 P

ro
f.

U
. A

ß
m

an
n

18 Model-Driven Software Development in Technical Spaces (MOST)

ERD-Relationships in Chen-Notation (unlike UML)

treats

orders

contains Disease

Date

Patient

Catalogue

Patient

Doctor

Treatment

Cardinality

optional relationship

N-ary associations

1 n

0<1 0<n

n m

1

"optional"

consists-of ER-DiagramER-Model
1 1<m

Hierarchic
Modeling

► All “entities” (classes) are represented as “entity-”tables

 ©
 P

ro
f.

U
. A

ß
m

an
n

19 Model-Driven Software Development in Technical Spaces (MOST)

Mapping of Entity Type "Patient" to the Relational Schema

Attribute

Tupel

Cardinality

@BirthDay Name Sex Disease

40.40.10 Meier m 367

53.11.30 Lehmann w 407

62.02.29 Schmidt m 123

Relation
head

Relation
body

Relation

Primary key

Set of
all

calendar
days

Set
of all
names

Set
of Sexes

Set
Of keys

of diseases

 ©
 P

ro
f.

U
. A

ß
m

an
n

20 Model-Driven Software Development in Technical Spaces (MOST)

Importance of ERD

► ERD is the “better” relational schema, because it treats objects (entities)
■ Often used for data dictionaries in information systems

► ERD, however, does not support inheritance
■ Applications can easier be verified, e.g., for embedded or safety-critical systems

► Typical Tool: MID Innovator for database architects:

http://www.mid.de/index.php?id=541
http://www.mid.de/uploads/pics/Banner_Modellierungsplattform_03.jpg

http://www.mid.de/index.php?id=541
http://www.mid.de/index.php?id=541

 ©
 P

ro
f.

U
. A

ß
m

an
n

21 Model-Driven Software Development in Technical Spaces (MOST)

Mapping ERD
to RS in MID

ht
tp

:/
/w

w
w

.m
id

.d
e/

ty
p

o3
te

m
p/

p
ic

s/
f0

df
65

b 8
a

2.
jp

g

 ©
 P

ro
f.

U
. A

ß
m

an
n

22 Model-Driven Software Development in Technical Spaces (MOST)

Extended ERD (EERD) Uses Inheritance
Example: Patient Record

Immobile Mobile

lies_in

receives Meal

@Pat-Nr

Name

Medicine

Hospital

n

1

1<nm

Patient-of-
Orthopaedia

Patient

Attribute

 ©
 P

ro
f.

U
. A

ß
m

an
n

23 Model-Driven Software Development in Technical Spaces (MOST)

Entity type Relation type

Attribute type
(Oval)

Relates-to
(diamond)

Simply-relates-to
(line)

Relates-to
(diamond)

The Metamodel of ERD in ERD (lifted ERD Metamodel)

@Name @Name

Name

 ©
 P

ro
f.

U
. A

ß
m

an
n

24 Model-Driven Software Development in Technical Spaces (MOST)

Name Price

Customer Part

Address Date Number PartNumber

Metametamodel

Metamodels

Models
Order

Entity type Relation type

Name
Name

Attributs-
Typ

Name

Metahierarchy with ERD as Metalanguage
(lifted metamodel)

M3

M2

M1

Entity type Relation type

Name
Name

Attributs-
Typ

Name

 ©
 P

ro
f.

U
. A

ß
m

an
n

25 Model-Driven Software Development in Technical Spaces (MOST)

MOF is ERD with Inheritance
Meta-Modell of Entity-Relationship-Diagramms (in MOF)

ER-Modell

Generate-SQL-DDL-Code()

er-modell 1..1

Element

Elemente 0..*

Relation

Cardinality1 : Cardinality
Cardinality2 : Cardinality

Entity

Attribut

ist Schlüsselelement : BOOL
Typ

Rolle1

Rollen1

1..1

0..*

Rolle2 Rollen2

entität

1..1
1..1

0..*

attribute typ

0..* 1..1

Attribute 0..*

 ©
 P

ro
f.

U
. A

ß
m

an
n

26 Model-Driven Software Development in Technical Spaces (MOST)

Name Price

Customer Teil

Address Date Number PartNumber

Order

Entity type Relation type

Name
Name

Attributs-
Typ

Name

Metahierarchy with MOF as Metalanguage (non-lifted)

Element

RelationEntityAttribute

Type

ER-Model

Metametamodel

Metamodels

Models

M3

M2

M1

 ©
 P

ro
f.

U
. A

ß
m

an
n

27 Model-Driven Software Development in Technical Spaces (MOST)

Consistency Constraints in ERD Models

Order

Customer

Offer

1

receives

wants

1

0<n
0<n

1

starts

0<n

after: [Raasch]

► An ERD can contain integrity constraints (consistency constraints)

► Ex.: Cycle-freedom constraint: Check: find cycles in the graph of a ER diagram

► Correct by
■ cutting a cycle at the least important position (human intervention)
■ Finding a spanning tree and cutting all other edges

► Instead of cutting, edges can be made secondary links (then we have link trees)

 ©
 P

ro
f.

U
. A

ß
m

an
n

28 Model-Driven Software Development in Technical Spaces (MOST)

Other Consistency Constraints of ER-Models

► Range checks for attributes

► Key dependencies (functional dependencies):
■ Uniqueness of attribute values: An attribute K of a relation R is a key

candidate, if only one tuple has the same value of K
■ Key minimality: Is the attribute K compound, no component can be removed to

loose the key condition.
■ Primary key serves for identification of a tuple (“entity check”)
■ Secondary keys: other keys
■ Foreign key reference (primary key reference): A foreign key (link) is

referencing a tuple in another relation by its primary key

► Referential Integrity
■ The model does not contain undefined foreign keys (links)
■ i.e., all names (links) can be resolved by name analysis

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Model-Driven Software Development in Technical Spaces (MOST)

40.1.3 MOF as Extended ERD

 ©
 P

ro
f.

U
. A

ß
m

an
n

30 Model-Driven Software Development in Technical Spaces (MOST)

Data Modeling for Information Systems (Object-Relational
Mapping, ORM) with UML-CD, ERD and RS

MOF or
UML-Class diagram

ER-Diagram

Relational Schema

► For persistence, objects should be stored
with an object-relational mapping to a
database (OR-Mapping)

► OERM-Mapping of class diagrams to
ERD is (unfortunately) indeterministic

■ Inheritance mapping
■ Identification of keys (primary,

secondary, foreign)
■ Resolution of multiple inheritance

by copying
■ Cannot be inverted automatically

► Between ERD und RS exists a determistic,
bidirectional mapping (ER-Mapping) by
which the data models can be
synchronized (restored without
information loss)

OERM

ERM

ORM

 ©
 P

ro
f.

U
. A

ß
m

an
n

31 Model-Driven Software Development in Technical Spaces (MOST)

The Difference of ERD, MOF and EMOF

► MOF extends ERD with multiple
inheritance and method signatures

► However, MOF must be mapped down
to Java

■ Inheritance
■ Bidirectional associations

► EMOF has only directed references, no
bidirectional associations

■ Only simple inheritance

► EMOF can directly be mapped down to
Java, C++, or C#

ERD

MOF
(multiple inheritance)

EMOF
(single inheritance,

directional references)

EERD

RS

Java

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Software Development in Technical Spaces

40.2 Flat Model Analysis with Graph Query
Languages (Graph QL)

DQL – Data Query Languages
CQL – Code Query Languages

 ©
 P

ro
f.

U
. A

ß
m

an
n

33 Model-Driven Software Development in Technical Spaces (MOST)

Graph Pattern Matching of Non-Tree Patterns

► Graph pattern matching works by mapping a graph pattern (graphlet) to the
manipulated graph.

► Ex.: Linking gotos and Block-entry statements to build up the control-flow graph

-- Datalog notation (edge decomposition):

JumpsTo(Goto,Label) :-

 Blocks(Proc,B1:Block),

 Blocks(Proc,B2:Block),
 Stmts(B1,Goto),Stmts(B2,Label),

 Goto.label==X, Label.value==X.

-- Optimix notation with if-then rules
(edge decomposition):

If Blocks(Proc,B1:Block),
 Blocks(Proc,B2:Block),
 Stmts(B1,Goto),Stmts(B2,Label),
 Goto.label==X, Label.value==X
Then
 JumpsTo(Goto,Label).

– regular expression notation (TGreQL):

JumpsTo := Proc.Blocks.Stmts.Goto.label(X)
AND Prod.Blocks.Stmts.Label.value(X)

Proc

Goto
label=“X“

 B1:Block

Blocks

Stmts

 B2:Block

Label
value=“X“

Stmts

JumpsTo

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Model-Driven Software Development in Technical Spaces (MOST)

41.1. Introduction to Diagrammatic Storyboard Rule
Notation for Graph Rewriting

Coloring for rules originally introduced by Fujaba
www.fujaba.de (tool now unsupported)

http://www.fujaba.de/
http://www.fujaba.de/

 ©
 P

ro
f.

U
. A

ß
m

an
n

35 Model-Driven Software Development in Technical Spaces (MOST)

Fujaba

► Fujaba is a MetaCASE-tool based on GRS with home-grown metalanguage and metamodel

► Basic technology: graph pattern matching and rewriting

http://www.fujaba.de/typo3temp/pics/604c5c6c9e.png

 ©
 P

ro
f.

U
. A

ß
m

an
n

41 Model-Driven Software Development in Technical Spaces (MOST)

Pattern Matching of Non-Tree Patterns

► Flat analysis does not interprete the
program while analysing

► Deep analysis interprets the primary
graph (ASG) to use the program
semantics

-- Datalog notation (edge decomposition):

JumpsToSelf(Goto,Label) :-

 Blocks(Proc,B1:Block),

 Blocks(Proc,B2:Block),id(B1,B2)
 Stmts(B1,Goto),Stmts(B2,Label),

 Goto.label==X, Label.value==X.

Proc

Goto
label=“X“

 B1:Block

Blocks

Stmts

 B2:Block

Label
value=“X“

Stmts

id

► Query: Which blocks jump to themselves?

JumpsToSelf

 ©
 P

ro
f.

U
. A

ß
m

an
n

42 Model-Driven Software Development in Technical Spaces (MOST)

Definition of Attributions, Access and Query Functions

From the metamodel, we can define access, helper, query and attribution functions,
functions to access, query attributes or neighbors:

► (Local) Attribute access functions:
■ ModelElement.hasName()
■ ModelElement.getDeclaringType()

► Neighbor access functions (via references):

■ Class.getPackage(): for neighbor Package

■ Class.getUpperClass(): get the direct upper class

■ Class.getDeclaresMethod(): for contained Method

► Query functions looking up information in the abstract syntax graph (ASG) or model:

■ Expr.getUsedTypes(): search all types which are used in Expr (type analysis, type
resolution)

■ Name.getType(): search the type object to the Name

■ Name.getMeaning(): search the definition of the Name

■ Stmt.getProcedure(): search out to find the procedure of the Stmt

► Pattern match functions assemble all matching redexes of a pattern
■ findRedexes (Pattern) Redexes→

 ©
 P

ro
f.

U
. A

ß
m

an
n

43 Model-Driven Software Development in Technical Spaces (MOST)

Name and Type Analysis: Caching a Query Function

► Some values of query functions change never, once they have been determined
■ The values can be cached

► Attribute caching is a mechanism to cache semantic attributes in an ASG or model for
faster access

► A definition table (often called symbol table) is a set of cached attributes.

First Call to the
Query Function

Analysis

Cached Value
(Cached Attribute)

Subsequent Calls to the
Query Function

Definition
Table

*

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Model-Driven Software Development in Technical Spaces (MOST)

40.2.1 QL and CodeQL – Relational Queries on
Source Code in Technical Space Java

QL uses edge decomposition (Datalog style) to express graph queries

Courtesy to Florian Heidenreich and
http://semmle.com (Semmle now part of Github)

http://semmle.com/
http://semmle.com/

 ©
 P

ro
f.

U
. A

ß
m

an
n

45 Model-Driven Software Development in Technical Spaces (MOST)

SQL-Like Code Query Language QL

► QL is an object-oriented query language in the spirit of SQL and Datalog
■ Developed in the group of Prof. Oege de Moor (Oxford)
■ Marketed by Semmle.com
■ In 2019 bought by github

► Queries, metrics, visualizations are supported
■ Repositories with Java and Objective-C code
■ Works also now on C/C++

► Metamodel is EMOF-like (single inheritance, references)
■ Classes, Methods, Blocks are interpreted as basic sets of objects, relational

tables (sets of tuples over member entries), resp. Predicates (telling whether a
tuple exists)

. from Class c, Methods

■ Definition and use of access functions:

. Class.getDeclaresMethod(): for neighbor Method

. Class.getPackage(): for neighbor Package

. ModelElement.hasName(): get the Name

. ModelElement.getDeclaringType(): get the Type

 ©
 P

ro
f.

U
. A

ß
m

an
n

46 Model-Driven Software Development in Technical Spaces (MOST)

Query form: Extended Where- Select Clauses

► Expressions like in Xcerpt and SQL:
■ FROM <classes> WHERE <conditions> SELECT <variables>

FROM ..base sets..

WHERE

..and/or/not predicate list..

..call of helper functions..

..call of predicates..

..check on equalities, inequalities..

SELECT variable list

 ©
 P

ro
f.

U
. A

ß
m

an
n

47 Model-Driven Software Development in Technical Spaces (MOST)

Code Display

 ©
 P

ro
f.

U
. A

ß
m

an
n

48 Model-Driven Software Development in Technical Spaces (MOST)

Graph Visualization of the Resulting Structures (here:
Package Call Graph)

 ©
 P

ro
f.

U
. A

ß
m

an
n

49 Model-Driven Software Development in Technical Spaces (MOST)

A Simple Model (Schema) of Semmle-Java-DDL in EMOF

Package

Class

Stmt

Feature

Field
(Attribute)

Method Plus IntConst

Expr

Exprs
Stmts

Left

Program representation
Analysis information

Right

Program representation

Model
Element

declares

declares

RefType

hasSuperType

 ©
 P

ro
f.

U
. A

ß
m

an
n

50 Model-Driven Software Development in Technical Spaces (MOST)

SemmleCode – SQL-Like Query Language on Semmle-DDL

► Query examples:
■ Select Statements on classes, methods, statements, expressions

► Language features:
■ Queries embedded in classes, shareable with inheritance
■ User defined query classes
■ Local Variables in queries
■ Non-deterministic methods returning sets and streams
■ Casts
■ Chaining
■ Lifting-queries

► Metric examples:
■ Aggregation functions
■ SLOC metrics
■ #Methods

►

[deMoor]

 ©
 P

ro
f.

U
. A

ß
m

an
n

51 Model-Driven Software Development in Technical Spaces (MOST)

Select Statements (1)

► The where-clause uses edge decomposition of a query graph
► Example:
► Find all classes c implementing compareTo, but do not overwrite equals

► Find their packages
► Return tuples of package and class

from Class c
where

c.declaresMethod("compareTo")
 and not (c.declaresMethod("equals"))
select

c.getPackage(), c

 ©
 P

ro
f.

U
. A

ß
m

an
n

52 Model-Driven Software Development in Technical Spaces (MOST)

Select Statements (2)

► Find all main-methods declared in a package ending with „demo“

► Return tuples (package, declaring type, method)
► Also called pattern matching

from Method m
where

m.hasName(“main")
 and m.getDeclaringType().getPackage().getName().matches("%demo")
select

m.getDeclaringType().getPackage(),
m.getDeclaringType(),
m

 ©
 P

ro
f.

U
. A

ß
m

an
n

53 Model-Driven Software Development in Technical Spaces (MOST)

Definition of New Functions and Predicates

► Definition of new query functions by declaring query functions/methods in a class (note: this is
similar to attributions in JastAdd)

■ Remark: Methods may be indeterministic, i.e., return collections of objects

predicate isJDKMethod (Method m) {
 m.hasName(”equals”)
 or m.hasName(”hashCode”)
 or m.hasName(”toString”)
 or m.hasName(”clone”)
}

► Definition of new predicates as methods in a class, using a domain-specific language
language extension of Java

► Testing on or-conditions:

class Classinfo {
 Method findMethod(Class c) {
 c.declaresMethod("sumUpBill")
 }
}

 ©
 P

ro
f.

U
. A

ß
m

an
n

54 Model-Driven Software Development in Technical Spaces (MOST)

Definition of New Predicates

► Use of Kleene Star for transitive closure on prediates/edges
► The Kleene star expands the relation transitively (transitive closure)

► Here, hasSupertype is deeply searched:

predicate controlflowReach(Stmt first, Stmt reachable) {
 first.successor∗(reachable)
}

► Reachability in contro-flow graph over statements

predicate upperClass(RefType down, RefType up) {
 down.hasSupertype∗(up)
}

 ©
 P

ro
f.

U
. A

ß
m

an
n

55 Model-Driven Software Development in Technical Spaces (MOST)

Definition of New Predicates

► Complicated, composed path expressions become possible

► Query: Check for a middle class in the inheritance hierarchy:

predicate inTheMiddle(RefType down, RefType middle, RefType up) {
 down.hasSupertype∗(middle) and
 middle.hasSupertype∗(up)
}

 ©
 P

ro
f.

U
. A

ß
m

an
n

56 Model-Driven Software Development in Technical Spaces (MOST)

Local Variables in Queries

Query: Find all methods calling System.exit(…)

Sysexit is a local variable

from Method m, Method sysexit, Class system
where

system.hasQualifiedName("java.lang", "System")
 and sysexit.hasName("exit")
 and sysexit.getDeclaringType() = system

and m.getACall() = sysexit
select m

 ©
 P

ro
f.

U
. A

ß
m

an
n

57 Model-Driven Software Development in Technical Spaces (MOST)

The Use of Non-deterministic Methods

► Query: Synthesize a call graph between the methods of two packages
■ Call graph is retured as a set of tuples of (caller, callee)

► getARefType and getACallable are indeterminstic, i.e., return collections of objects

from Package caller, Package callee
where caller.getARefType().getACallable().calls(
 callee.getARefType().getACallable())
 and caller.fromSource()
 and callee.fromSource()
 and caller != callee
select caller, callee

 ©
 P

ro
f.

U
. A

ß
m

an
n

59 Model-Driven Software Development in Technical Spaces (MOST)

Chaining (Multiple Source - Multiple Target Graph
Reachability Problem, MSMT)

► MSMT problems connect a set of source nodes with a set of target nodes (reachability)

Query: Find all Pairs (s,t) such that
► t is a direct superclass of s
► s is superclass of org.jfree.data.gantt.TaskSeriesCollection

► t is superclass of s
► and t is not java.lang.Object

from RefType tsc, RefType s, RefType t
where

tsc.hasQualifiedName("org.jfree.data.gantt","TaskSeriesCollection")
and s.hasSubtype*(tsc)
and t.hasSubtype(s)

 and not(t.hasName("java.lang.Object"))
select s,t

 ©
 P

ro
f.

U
. A

ß
m

an
n

60 Model-Driven Software Development in Technical Spaces (MOST)

QL-Query Classes (Dynamic Classes/Sets)

// definition of a query class as subclass of a metaclass
class VisibleInstanceField extends Field {
 VisibleInstanceField() {
 not (this.hasModifier("private")) and
 not (this.hasModifier("static"))
 }
 predicate readExternally() {
 exists (FieldRead fr |
 fr.getField()=this and
 fr.getSite().getDeclaringType()

 != this.getDeclaringType())
 }
}

// use of a query class
from VisibleInstanceField vif
where vif.fromSource() and not

(vif.readExternally())
select vif.getDeclaringType().getPackage(),
 vif.getDeclaringType(),
 vif

► Query classes in QL are sets described by special predicates and nested other predicates
■ They define “synthetic” objects and “truths” about the model
■ Their constructors define restrictions of metaclasses

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Model-Driven Software Development in Technical Spaces (MOST)

40.2.2 Metrics with QL

 ©
 P

ro
f.

U
. A

ß
m

an
n

62 Model-Driven Software Development in Technical Spaces (MOST)

Aggregation Functions for Computing Metrics

► Compute the average number of methods per type and package
■ Other aggregation functions: count, sum, max, min, avg

► Employs „Eindhoven Quantifier Notation“ (Dijkstra et al.)
■ C | <predicate>

► Query: „Compute the average number of methods in all type c of a package p”

from Package p
where p.fromSource()
select p, avg(RefType c |

c.getPackage() = p |
c.getNumberOfMethods())

 ©
 P

ro
f.

U
. A

ß
m

an
n

63 Model-Driven Software Development in Technical Spaces (MOST)

Aggregation Functions for Computing SLOC Metrics

► Query: “Calculate a SLOC metrics on package “Billing” in the current compilation unit”
► Grammar rules:

► Aggr ::= aggregationFunction '('
 localvars // FROM
 '|' condition // WHERE
 '|' aggregatedValue ')' // SELECT

► AggregationFunction ::= 'sum' | 'count' | 'avg' | 'max' | 'min'

from Package pkg
where pkg.hasName(”Billing”)
select sum(CompilationUnit comp | //FROM
 comp.getPackage()=pkg | // WHERE
 comp.getNumberOfLines()) // SELECT

 ©
 P

ro
f.

U
. A

ß
m

an
n

64 Model-Driven Software Development in Technical Spaces (MOST)

Statistics (Metrics) Uses Aggregation Functions

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Software Development in Technical Spaces

40.3. Lifting Information Up the Containment
Hierarchy

 ©
 P

ro
f.

U
. A

ß
m

an
n

66 Model-Driven Software Development in Technical Spaces (MOST)

Block Containment Structure (Scope Structure in the ASG) of
a Model

► Languages are block-
structured, i.e., live in a
containment hierarchy.

► A model has model elements

► A class has inter-method
relationship (e.g., the call
graph)

► A package has inter-class
relationships between these
model elements

► A model has inter-package
relationships between these
model elements

Package

Class

Feature

Attribute Method

Model
Element

declares

declares

Inter-
Package-
Relation

Model

Inter-
Class-

Relation

Inter-
Method-
Relation

A macromodel builds
on graphs, at least on link
trees, no longer on trees

 ©
 P

ro
f.

U
. A

ß
m

an
n

67 Model-Driven Software Development in Technical Spaces (MOST)

Lifting Information Along the Block Containment Structure
(Scope Structure of the ASG) by Synthesized Attribution

► Dependency lifting means to
lift information up in along the
containment hierarchy by a
synthesized attribution

■ from an inter-method
relationship to a inter-class
relationship

■ from an inter-class
relationship to a inter-
package relationship

► Dependency lifting propagates
information up the abstract
syntax tree and the
containment tree

► Dependency lifting is an
important process to
summarize dependencies among
siblings in containment
hierarchies in models

Package

Class

Feature

Attribute Method

Model
Element

declares

declares

Inter-
Package-
Relation

Model

Inter-
Class-

Relation

Inter-
Method-
Relation

 ©
 P

ro
f.

U
. A

ß
m

an
n

68 Model-Driven Software Development in Technical Spaces (MOST)

Dependency Lifting Information Along the Block
Containment Structure

► Dependency lifting lifts dependency information up the containment structure in a
model, thereby summarizing the dependencies at the level of the model

► Dependency lifting queries are defined on an enclosed type

► result is an implicitly defined default return parameter of a query

// Lifting a pair of class dependencies to
// a pair of packages
// getDependentPackage() is a synthesized
// attribution of Package.Class
class Class {
 Package getDependentPackage() {
 exists (Class cl |
 depends(this.getPackage(),cl)
 and result = cl.getPackage()
)
 and result != this
 }
}

// Lifting a pair of method dependencies
// on a pair of classes
// getDependentClass() is a synthesized
// attribution of Class.Method
class Method {
 Class getDependentClass() {
 exists (Method m |
 depends(this.getClass(),m)
 and result = m.getClass()
)
 and result != this
 }
}

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Software Development in Technical Spaces

40.4 Macromodel Dependency Analysis

• Remember: A macromodel is a multimodel with consistent dependencies

 ©
 P

ro
f.

U
. A

ß
m

an
n

70 Model-Driven Software Development in Technical Spaces (MOST)

Q12: The ReDoDeCT Problem and its Macromodel

► The ReDoDeCT problem is the problem how requirements, documentation, design,
code, and tests are related (V model)→

► Mappings between the Requirements model, Documentation files, Design model, Code,
Test cases

► A ReDoDeCT macromodel has maintained mappings between all 5 models

Requirements Design Code Test

Package Bill {
 Uses Order;
 Class Counting {
 Procedure count IS
 End;
}
}

Package Order {
 Uses Bill;
 Class Ordering {
 Procedure count IS
 End;
}
}

Package TestBill {
 Uses TestOrder;
 Proc testCounting
IS
….
 End;
}
}
Package TestOrder {
 Uses Bill;
 Class TestOrdering {
 Procedure
testCount IS
 End;
}
}

Node

Node

Component

Component

System

DocumentationNon-Functional
Requirement A Non-Functional

Requiremens B
Goal BGoal A

 ©
 P

ro
f.

U
. A

ß
m

an
n

71 Model-Driven Software Development in Technical Spaces (MOST)

Inter-Model Relationships in The ReDoDeCT Macromodel

► An inter-model relationship is a relationship between model elements of different
models (usually link or graph relationship)

■ Here: expresses mapping between the Requirements model, Design model, Code,
Test cases

► The ReDoDeCT macromodel relies on inter-model relationships between all 5 models

Requirements Design Code Test

Package Bill {
 Uses Order;
 Class Counting {
 Procedure count IS
 End;
}
}

Package Order {
 Uses Bill;
 Class Ordering {
 Procedure count IS
 End;
}
}

Package TestBill {
 Uses TestOrder;
 Proc testCounting
IS
….
 End;
}
}
Package TestOrder {
 Uses Bill;
 Class TestOrdering {
 Procedure
testCount IS
 End;
}
}

Node

Node

Component

Component

System

DocumentationNon-Functional
Requirement A Non-Functional

Requiremens B
Goal BGoal A

 ©
 P

ro
f.

U
. A

ß
m

an
n

72 Model-Driven Software Development in Technical Spaces (MOST)

Lifting Information Along the Block Containment Structure
Between Models in the Macromodel

► Macromodel-Dependency
Lifting means to lift
information up in along the
containment hierarchy from
between the packages of a
model to between the models
of the macromodel

■ from an intra-model
relationships to a inter-model
relationship

► Megamodel-Dependency-
Lifting propagates information
up into the megamodel

► Megamodel-Dependency-
Lifting is an important process
to summarize dependencies
among models

► Result: a macromodel

Package

Class

Feature

Model
Element

declares

declares

Inter-
Package-
Relation

Model

Inter-
Class-

Relation

Inter-
Method-
Relation

Macromodel
Inter-

Model-
Relation

 ©
 P

ro
f.

U
. A

ß
m

an
n

73 Model-Driven Software Development in Technical Spaces (MOST)

Cultimodel Dependency Lifting in Semmle QL

► The lifting procedure also works for lifting package dependencies within a model to
model dependencies.

■ Consider models as “normal” objects in the repository
■ Formulate queries about model-element relationships and lift them to model

relationships

// Lifting a pair of package
dependencies to
// a pair of models
class Package {
 Model getDependentModel() {
 exists (Model mod |
 depends(this.getModel(),mod)
 and result = mod.getModel()
)
 and result != this
 }
}

// Lifting a pair of class dependencies to
// a pair of packages
class Class {
 Package getDependentPackage() {
 exists (Class cl |
 depends(this.getPackage(),cl)
 and result = cl.getPackage()
)
 and result != this
 }
}

 ©
 P

ro
f.

U
. A

ß
m

an
n

74 Model-Driven Software Development in Technical Spaces (MOST)

How to Discover Dependencies Between Models in a
Multimodel

► After analysis of all models, lift the information up the containment hierarchy into the
multimodel

■ Construct inter-model relationships by lifting from inter-package relationships

► This turns the multimodel into a macromodel, a multimodel with model-element
constraints

► The lifted dependencies allow for discovering dependencies between models in a multi-
model
■ The precise detailed dependencies give tracing to update models in a multimodel, if

something changes

Macromodel dependency analysis consists of
lifting model-level dependency analysis to inter-model relationships

by synthesized attribution

Macromodel consistency consists of updating
all inter-model relationships and all induced model-level dependencies

 ©
 P

ro
f.

U
. A

ß
m

an
n

75 Model-Driven Software Development in Technical Spaces (MOST)

The End

► Why does ERD and MOF help to define link-consistent link trees?

► Explain why TgreQL and Xcerpt have similar query styles

► Why does a megamodel usually build on graphs, not on trees?

► Why do we need graph query and transformation languages?

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Software Development in Technical Spaces

40.5. Other Graph Query Languages

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Software Development in Technical Spaces

40.5.1. Writing Model Constraints
by Graph Querying with OCL

• The DDL of OCL is MOF

• .QL is for Java and other GPL

• OCL is for UML-CD

 ©
 P

ro
f.

U
. A

ß
m

an
n

78 Model-Driven Software Development in Technical Spaces (MOST)

78

OCL for Invariants in UML-Class Diagrams

► → course Softwaretechnologie-II

 ©
 P

ro
f.

U
. A

ß
m

an
n

79 Model-Driven Software Development in Technical Spaces (MOST)

Examples OCL Invariants

► OCL queries usually start at a specific class; their results define invariants on the
objects of the class

■ All attributes of a class are visible by default in OCL.
■ Relations between classes define functions

► Query language uses expressions over these functions
Example of Invariant:

context Meeting inv: self.end > self.start
Equivalent:

context Meeting inv: end > start
-- self is the context of the query, from which processing starts

Equivalent named constraint:
context Meeting inv startEndConstraint:
self.end > self.start

-- Constraints can constrain attribute values
► FROM and SELECT clauses are modeled via functions:

Selection constraint:
context Person inv searchForPerson:
allInstances()->select(p:Person|p.name.StartsWith(„Uwe“))

-- FROM clause is modeled via allInstances() function
-- SELECT clause is modeled via select() function

 ©
 P

ro
f.

U
. A

ß
m

an
n

80 Model-Driven Software Development in Technical Spaces (MOST)

Examples OCL Invariants

► Selection constraint:
context Person inv searchNames:
allInstances()->collect(name)
context Person inv countNames:
allInstances()->collect(name)->size()

► Multiplicity constraint:
context Person inv countNames:
allInstances()->collect(name)->size() < 15

► More on OCL: Course Softwaretechnologie-II, Ch. “Konsistenzprüfung mit OCL”, Dr. →
Birgit Demuth

► Www.dresden-ocl.de

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Model-Driven Software Development in Technical Spaces (MOST)

40.5.2. Graph Querying with GReQL

► Open source, from University of Koblenz-Landau, Prof. Ebert

► Applicable to a subset of UML (GrUML)

 ©
 P

ro
f.

U
. A

ß
m

an
n

82 Model-Driven Software Development in Technical Spaces (MOST)

TGreQL is similar to .QL

► But uses a relational notation, from-with-report clauses

from RefType tsc, RefType s, RefType t
where

tsc.hasQualifiedName("org.jfree.data.gantt","TaskSeriesCollection")
and s.hasSubtype*(tsc)
and t.hasSubtype(s)

 and not(t.hasName("Object"))
select s,t

from RefType tsc, RefType s, RefType t
with

s hasSubtype*->tsc,
tsc.hasQualifiedName("org.jfree.data.gantt","TaskSeriesCollection"),
t hasSubtype->s,

 not t.hasName("Object")
report s,t

 .QL

TGreQL

 ©
 P

ro
f.

U
. A

ß
m

an
n

83 Model-Driven Software Development in Technical Spaces (MOST)

The Query Language TGreQL

► TgreQL style is very similar to Xcerpt

► Implements F-Datalog incl. Transitive closure operator

► Prof. J. Ebert U Koblenz

// construct a call graph
From caller, callee: V{Method}
With caller (
 {isStatementIn}
 [{isReturnValueOf}]
 {isActualParameterOf} *
 {isCalleeOf}
) + callee
Report
 caller.name as „Caller“
 callee.name as „Callee“

Caller Callee

main System.out.println

main compute

main twice

main add

compute twice

compute add

Operators:
• * Transitive closure operator
• + positive transitive closure
• →← navigation direction
• [] optional path
• () sequence of paths or edges
• | alternative path

Result (example):

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Model-Driven Software Development in Technical Spaces (MOST)

40.5.3 Model Mappings with Query-View-
Transformations (QVT)

The language of the OMG for model transformations within MDA

OMG: MOF 2.0 Query / Views / Transformations RFP. ad/2002-04-
10. Needham, MA: Object Management Group, April 2002.

http://www.omg.org/cgi-bin/doc?ad/2002-4-10

 ©
 P

ro
f.

U
. A

ß
m

an
n

85 Model-Driven Software Development in Technical Spaces (MOST)

QVT Dialects

From: [https://de.wikipedia.org/wiki/Datei:QVT-Language-Architecture_591x387.jpg]

 ©
 P

ro
f.

U
. A

ß
m

an
n

86 Model-Driven Software Development in Technical Spaces (MOST)

Transitive Closure with QVT Relations

// Transitive Closure in QVT relations,
// Modeled with recursive relation
“transitiverelation”
relation transitiverelation {
 domain node:Node {
 // matching attributes
 name = sameName;
 }
 domain node2:Node {
 // node2 must have the
 // same name as node
 name = sameName;
 }
 domain node3:Node {
 // node3 must also
 // have the same name
 name = sameName;
 }

when {
 // conditions: base relation must exist
 baserelation(node,node2) or
 // or a transitive relation to a base relation
 (transitiverelation(node,neighbor)
 and baserelation(neighbor,node2));
 }
 where { // Aufruf einer Transformation
 makeNodeSound(node);
 }
}

► QVT relations uses logic expressions on base and derived relations (graph-logic
isomorphism)

 ©
 P

ro
f.

U
. A

ß
m

an
n

87 Model-Driven Software Development in Technical Spaces (MOST)

QVT Tools

Tool

Eclipse M2M
Project

Operational http://www.eclipse.org/m2m/

Magic Draw Operational

MediniQVT Relational http://projects.ikv.de/qvt/wiki

 ©
 P

ro
f.

U
. A

ß
m

an
n

88 Model-Driven Software Development in Technical Spaces (MOST)

// this is QVT
rule checkNoDoubleFeatureInSuperClasses(name:String) {
 from node: Class (
 –- OCL query
 node->TransitiveClosure()->collect.().exists(s | s.name() = name);
)
 to
 System.out.println("Error: super class has doubly defined feature:
"+s.name());
}

QVT-R uses OCL for Model Search, Query, and Mapping

► OCL can be called within QVT scripts
■ Two different DQL are combined within a single language

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Model-Driven Software Development in Technical Spaces (MOST)

40.5.4. Graph Invariant Specification with Spider
Diagrams

 ©
 P

ro
f.

U
. A

ß
m

an
n

90 Model-Driven Software Development in Technical Spaces (MOST)

Spider Diagrams

► http://en.wikipedia.org/wiki/Spider_diagram
► S. Kent. Constraint Diagrams: Visualizing Invariants in OO Modelling. Proceedings of

OOPSA 97, ACM Press, Oct. 97, pp. 327-341.
► S. Kent and J. Howse. Mixing Visual and Textual Constraint Languages, UML 99,

IEEE press, Oct 1999.

► Spider-Diagramme are equivalent to monadic second-order logic 2. Stufe (MSOL).
– They include OCL (first-order logic)

► Source of diagrams: J. Lövdahl, Towards a Visual Editing Environment for the
Semantic Web. Linköpings universitet, 2002.

http://en.wikipedia.org/wiki/Spider_diagram
http://en.wikipedia.org/wiki/Spider_diagram

 ©
 P

ro
f.

U
. A

ß
m

an
n

91 Model-Driven Software Development in Technical Spaces (MOST)

Simple Spider Diagrams are Extended Venn Diagrams

► Classes are visualized as venn ellipsoids

► Set algebra is expressed by intersection of ellipsoids

► Existential Logic (propositional logic with existential quantifiers) is expressed by
spiders (hyperedges) An object of class1 has an object of class2

and an object in class1^class2^class3
and class3\class1\class2 is not empty

Result =
class1^class2

 ©
 P

ro
f.

U
. A

ß
m

an
n

92 Model-Driven Software Development in Technical Spaces (MOST)

► All quantifiers are possible (star symbol)

All cars must be driven
by a person older than 18

There are no two names that have the same string

 ©
 P

ro
f.

U
. A

ß
m

an
n

93 Model-Driven Software Development in Technical Spaces (MOST)

Other Constraints

All Break statements must have a LoopStatement as ancestor,
which is related to a Switch statement

For every person, there is no child that has no parent

 ©
 P

ro
f.

U
. A

ß
m

an
n

95 Model-Driven Software Development in Technical Spaces (MOST)

40.5.5. URML – A UML-like Spider Notation

► URML http://oxygen.informatik.tu-cottbus.de/rewerse-i1/?q=URML

► Emilian Pascalau and Adrian Giurca. Can URML model successfully Drools rules? Proceedings of
the 2nd East European Workshop on Rule-Based Applications (RuleApps 2008) at the 18th
European Conference on Artificial Intelligence. Patras, Greece, July 23, 2008.

■ http://ceur-ws.org/Vol-428/paper5.pdf

► Ex: Modeling a Derivation Rule for
Defining an Association

If a rental car is stored at a branch, is
not assigned to a rental and is not
scheduled for service, then the rental
car is available at the branch.

http://oxygen.informatik.tu-cottbus.de/rewerse-i1/?q=URML
http://oxygen.informatik.tu-cottbus.de/rewerse-i1/?q=URML

 ©
 P

ro
f.

U
. A

ß
m

an
n

96 Model-Driven Software Development in Technical Spaces (MOST)

Modeling a Derivation Rule with a Role Condition

A bachelor is a male that is not a husband.

 ©
 P

ro
f.

U
. A

ß
m

an
n

97 Model-Driven Software Development in Technical Spaces (MOST)

The End

► Why does ERD and MOF help to define link-consistent link trees?

► Explain why TgreQL and Xcerpt have similar query styles

► Why does a megamodel usually build on graphs, not on trees?

► Why do we need graph query and transformation languages?

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Software Development in Technical Spaces

Appendix

 ©
 P

ro
f.

U
. A

ß
m

an
n

99 Model-Driven Software Development in Technical Spaces (MOST)

A Simple ER-Model

Name Price

Customer PartNumber

Address

Date Number

PartNumber

Order

► All “entities” (classes) are represented as “entity-”tables

 ©
 P

ro
f.

U
. A

ß
m

an
n

100 Model-Driven Software Development in Technical Spaces (MOST)

Notation

ERD Model Elements [Chen]

name

Entity type: Set of objects

Relationship type: Set of relations between entity
types

name

Attribute: Describes a function or a predicate
over an entity

1, n
0 < n

Cardinality of a relationship type: minimum and
maximum amout of neighbors in a
relation

Meaning

Name

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Software Development in Technical Spaces

IV. The Technical Space Graphware

40. Flat Analysis in Graphware:
Graph Querying, Metrics, Reachability Analysis
and Megamodel Dependency Analysis

Prof. Dr. U. Aßmann
Technische Universität Dresden

Institut für Software- und
Multimediatechnik

http://st.inf.tu-dresden.de

Version 21-1.2, 29.01.22

1) Graph-Based DDL and CDL

1) Relational Schema

2) Entity-Relationship Diagrams

3) MOF and ERD

2) Graph Query Languages

1) QL

2) Metrics with QL

3) Lifting Info to the Macromodel Level

4) Macromodel Dependency Analysis

5) Other graph query languages

OO

In a tree, there are paths bottum-up and top-
down.
In a graph, there are paths everywhere.
If one removes the color from links in a link
tree, graphs result.

 ©
 P

ro
f.

U
. A

ß
m

an
n

2 Model-Driven Software Development in Technical Spaces (MOST)

Obligatory Literature

► http://en.wikipedia.org/wiki/List_of_UML_tools

► http://en.wikipedia.org/wiki/Entity-relationship_model

► http://www.utexas.edu/its/archive/windows/database/datamodeling/index.html

► [deMoor] Oege de Moor, Mathieu Verbaere, Elnar Hajiyev, Pavel Avgustinov, Torbjorn Ekman, Neil
Ongkingco, Damien Sereni, Julian Tibble, "Keynote Address: .QL for Source Code Analysis", SCAM,
2007, 2013 IEEE 13th International Working Conference on Source Code Analysis and
Manipulation (SCAM), pp. 3-16, doi:10.1109/SCAM.2007.31

► CodeQL is free now (via github): https://github.com/github/codeql

► https://semmle.com/codeql, https://help.semmle.com/QL/learn-ql/

► https://help.semmle.com/QL/learn-ql/java/ql-for-java.html

► Language handbook https://help.semmle.com/QL/ql-handbook/index.html

■ Specification https://help.semmle.com/QL/ql-spec/language.html

► Thief detective game: https://help.semmle.com/QL/learn-ql/beginner/find-thief-1.html

► Industrial case studies: https://semmle.com/case-studies

► Community-driven security analysis:

■ Github repo of LGTM examples https://github.com/Semmle/ql
https://securitylab.github.com/tools/codeql https://lgtm.com/help/lgtm/about-lgtm

■ Query console https://lgtm.com/query

■ https://lgtm.com/help/lgtm/console/ql-java-basic-example

 ©
 P

ro
f.

U
. A

ß
m

an
n

3 Model-Driven Software Development in Technical Spaces (MOST)

References

► [Chen] P. P.-S. Chen. The entity-relationship model - towards a unified view of data.
Transactions on Database Systems, 1(1):9-36, 1976

► A Comparison of ATL and Story-Driven Modeling (Fujaba-style GRS)

http://www.es.tu-darmstadt.de/fileadmin/download/publications/spatzina/PP_AGTIVE_
2011.pdf

 ©
 P

ro
f.

U
. A

ß
m

an
n

4 Model-Driven Software Development in Technical Spaces (MOST)

Q10: The House of a Technical Space

Mega- and Macromodels
Tracing, Regeneration, Synchronization

Tool Engineering
Composition, Extension

Model Management
Composition, Mapping, Transformation

Technical
Space
Bridges

Technical Space

Meta-
modeling

Model Analysis
Querying, Attribution, Analysis, Interpretation

Metapyramid (Metahierarchy)

 ©
 P

ro
f.

U
. A

ß
m

an
n

5 Model-Driven Software Development in Technical Spaces (MOST)

Q11: Overview of Technical Spaces in the Classical
Metahierarchy

Gramm
arware
(String
s)

Text-
ware

Table-ware Treewar
e
(trees)

Link-Tree-
ware

Graph
ware/
Model
ware

Role-
Ware

CROM-
Ware

Ontology
-ware

Strings Text Text-
Table

Relationa
l Algebra

NF2 XML Link
trees

MOF Eclipse CDI
F

MetaEdit+ Context-
role graphs

OWL-Ware

M
3

EBNF EBNF CWM
(common
warehou
se model)

NF2-
language

XSD JastAd
d,
Silver

MOF Ecore,
EMOF

ERD GOPPR CROM RDFS
OWL

M
2

Gramma
r of a
language

Gramm
ar with
line
delimite
rs

csv-
heade
r

Relationa
l Schema

NF2-
Schema

XML
Schema
, e.g.
xhtml

Specific
RAG

UML-
CD, -SC,
OCL

UML,
many
others

CDI
F-
lang
uage
s

UML,
many
others

CROM HTML
XML
MOF UML
DSL

M
1

String,
Program

Text in
lines

csv
Table

Relation
s

NF2-tree
relation

XML-
Docum
ents

Link-
Syntax-
Trees

Classes,
Progra
ms

Classes,
Program
s

CDI
F-
Mod
els

Classes,
Programs

CROM
models

Facts (T-
Box)

M
0

Objects Sequenc
es of
lines

Seque
nces of
rows

Sets of
tuples

trees dynami
c
semanti
cs in
browse
r

Object
nets

Hierarch
ical
graphs

Obje
ct
nets

Object nets Context-
Object-Role
Nets

A-Box
(RDF-
Graphs)

today

 ©
 P

ro
f.

U
. A

ß
m

an
n

6 Model-Driven Software Development in Technical Spaces (MOST)

From Syntax Trees to Syntax Graphs

► In the TS Graphware, the secondary relations of link trees become primary relations, i.e.,
we treat real graphs

► Abstract syntax trees (AST) change to Abstract Syntax Graphs (ASG)

► Attributed link trees (ALT) change to Attributed Program Graphs (APG)

 ©
 P

ro
f.

U
. A

ß
m

an
n

7 Model-Driven Software Development in Technical Spaces (MOST)

Flat and Deep Model and Code Analysis

► DQL answer questions about the materials in a repository or in a stream
■ Analytics for one document alone (metrics, “Business Intelligence”)
■ Filtering of a stream
■ Combining input streams

CQL do the same for programs and models:

► Flat model analysis asks questions on
■ the direct context of a model element (context-free queries, pattern matching)
■ the global knowledge about a model element
■ Software metrics: counting objects, relationships, dependencies
■ Inter-model dependencies between models in a megamodel

► Deep model analysis (value flow analysis, data-flow analysis, inter-procedural analysis,
inter-component analysis) respects the main structure of a model and asks the question

■ whether certain parts of a model are reachable from each other (connected)
■ what is the context of a model element in a structured environment (abstract

syntax tree, control flow graph, value flow graph, dependency graph)
■ where do attributes flow (in an attribution)

 ©
 P

ro
f.

U
. A

ß
m

an
n

8 Model-Driven Software Development in Technical Spaces (MOST)

Q16: Languages in Software Factories

General
Purpose

Language

Domain-
Specific

Language

Controlled
Natural

Language

Markup
Languages

Metamodels + Grammars

diagram-
matic

textual

modeling programming graph-like

term-like

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Software Development in Technical Spaces

40.1 DDL in the Graph-Based Technical Spaces

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Model-Driven Software Development in Technical Spaces (MOST)

40.1.1 Technical Space RelationWare with
DDL Relational Schema

Relational Algebra works with typed relations

 ©
 P

ro
f.

U
. A

ß
m

an
n

11 Model-Driven Software Development in Technical Spaces (MOST)

Technical Space Relational Algebra mit
Metalanguage Relational Schema

► Relational Algebra (Codd) works on tables of tuples with attributes
– See courses on databases

Relational Schema
Metamodel

Table

Record

Column

Attribute

Type

Key FirstName Surname Street Town

@1 Uwe Aßmann Bakerstreet
5

New York

@2 Frank Miller Northstreet
9

Pittsburgh

@3 Mary Baker Magdalenstr
eet

Oxford

Key

RS muss metamodelliert werden.
RS ist Teil von ERD von eMOF

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Model-Driven Software Development in Technical Spaces (MOST)

40.1.2 Excursion: Textual Notation for Graphs

Relational Algebra works with typed relations

 ©
 P

ro
f.

U
. A

ß
m

an
n

13 Model-Driven Software Development in Technical Spaces (MOST)

Textual Notation for Graphs and Diagrams

► A hierarchic structure (tree or term) can
be expressed in term-like syntax:

Table

Record

Column

Attribute

Type

Key

Table

Record

Column

Attribute

Type

Key

► A real graph or diagram can be split into
terms and joined by conjunction
(spanning tree decomposition)

// without edges

Table [Record [Attribute [Key]],

 Column [Type]

]

// without edges

Table [Record [Attribute [Key]],

 Column [Type]]

AND Column [Attribute]

AND Attribute [Type]

// with edges

Table [has [Record [has [Attribute [

 subclasses [Key]]]]],

 has [Column [has [Type]]]

]

// with edges

Table [has[Record[has[Attribute[subclasses[Key]]]]],

 has[Column [has[Type]]]]

AND Column[has[Attribute]]

AND Attribute[has[Type]]

 ©
 P

ro
f.

U
. A

ß
m

an
n

14 Model-Driven Software Development in Technical Spaces (MOST)

Textual Notation for Graphs and Diagrams

► A real graph or diagram can be split into
flat terms (triples) and joined by
conjunction (edge decomposition, triple
decomposition)

Table

Record

Column

Attribute

Type

Key

► Most query and transformation
languages in Graphware use either

■ spanning tree decomposition
■ edge decomposition.

► Ontology languages (such as OWL and
RDFS) use triple decomposition

// with edges

has[Table, Record] AND has[Table,Column]

AND has[Record,Attribute] AND subclasses[Attribute,Key]

AND has[Column [Type]] AND has[Column,Attribute]

AND has[Attribute,Type]

 ©
 P

ro
f.

U
. A

ß
m

an
n

15 Model-Driven Software Development in Technical Spaces (MOST)

Different Notations for Node-Edge Patterns in Edge
Decomposition

► In edge decomposition of query graphs, for notation of edges (and predicates), textual
as well as graphical notations exist

Datalog
Prolog

Graphic
(Optimix, EARS)

Textual
graphics
(TgreQL,
GrGen)

Juxtaposition Object-
oriented
(.QL)

edges e(N,M) -N-e-M->
N -e-> M

N e M N.e(M)

recursi
on

r(N,M) :-
e(N,Z),
r(Z,M)

N -e*→ M N e* M N.e*(M)

Goto
label=“X“

Label
value=“X“Jump

Goto
label=“X“

Label
value=“X“Jump Next

Assign
Jump

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Model-Driven Software Development in Technical Spaces (MOST)

40.1.2 Technical Space ER-Ware with
DDL Entity-Relationship-Diagrams (ERD)

A Simple DDL/CDL with Mapping to the
Relational Algebra

Relations and Entities (without inheritance)

 ©
 P

ro
f.

U
. A

ß
m

an
n

17 Model-Driven Software Development in Technical Spaces (MOST)

Modeling with Entity-Relationship-Diagrams (ERD)

► ERD can be mapped easily to relational schema (with an invertible 1:n-mapping, ER-RS-
mapping)

■ Entities form special relations with “identifer” (key, surrogate)
■ ER-diagrams can be stored easily in databases (simple persistence)

► ERD is often used as CDL in larger integrated development environments (simple
persistence of code and models)

ER-Diagram

Relational Schema

Diskussino
Abbildung Vererbung
Hibernate??

 ©
 P

ro
f.

U
. A

ß
m

an
n

18 Model-Driven Software Development in Technical Spaces (MOST)

ERD-Relationships in Chen-Notation (unlike UML)

treats

orders

contains Disease

Date

Patient

Catalogue

Patient

Doctor

Treatment

Cardinality

optional relationship

N-ary associations

1 n

0<1 0<n

n m

1

"optional"

consists-of ER-DiagramER-Model
1 1<m

Hierarchic
Modeling

► All “entities” (classes) are represented as “entity-”tables

contains(Catalogue, Disease).

 ©
 P

ro
f.

U
. A

ß
m

an
n

19 Model-Driven Software Development in Technical Spaces (MOST)

Mapping of Entity Type "Patient" to the Relational Schema

Attribute

Tupel

Cardinality

@BirthDay Name Sex Disease

40.40.10 Meier m 367

53.11.30 Lehmann w 407

62.02.29 Schmidt m 123

Relation
head

Relation
body

Relation

Primary key

Set of
all

calendar
days

Set
of all
names

Set
of Sexes

Set
Of keys

of diseases

Geburtstag ist kein Primärschlüssel..

 ©
 P

ro
f.

U
. A

ß
m

an
n

20 Model-Driven Software Development in Technical Spaces (MOST)

Importance of ERD

► ERD is the “better” relational schema, because it treats objects (entities)
■ Often used for data dictionaries in information systems

► ERD, however, does not support inheritance
■ Applications can easier be verified, e.g., for embedded or safety-critical systems

► Typical Tool: MID Innovator for database architects:

http://www.mid.de/index.php?id=541
http://www.mid.de/uploads/pics/Banner_Modellierungsplattform_03.jpg

 ©
 P

ro
f.

U
. A

ß
m

an
n

21 Model-Driven Software Development in Technical Spaces (MOST)

Mapping ERD
to RS in MID

ht
tp

:/
/w

w
w

.m
id

.d
e/

ty
po

3t
em

p/
pi

cs
/

f0
df

65
b

8a
2.

jp
g

 ©
 P

ro
f.

U
. A

ß
m

an
n

22 Model-Driven Software Development in Technical Spaces (MOST)

Extended ERD (EERD) Uses Inheritance
Example: Patient Record

Immobile Mobile

lies_in

receives Meal

@Pat-Nr

Name

Medicine

Hospital

n

1

1<nm

Patient-of-
Orthopaedia

Patient

Attribute

Schlechtes Beispiel, da mit Vererbung

 ©
 P

ro
f.

U
. A

ß
m

an
n

23 Model-Driven Software Development in Technical Spaces (MOST)

Entity type Relation type

Attribute type
(Oval)

Relates-to
(diamond)

Simply-relates-to
(line)

Relates-to
(diamond)

The Metamodel of ERD in ERD (lifted ERD Metamodel)

@Name @Name

Name

 ©
 P

ro
f.

U
. A

ß
m

an
n

24 Model-Driven Software Development in Technical Spaces (MOST)

Name Price

Customer Part

Address Date Number PartNumber

Metametamodel

Metamodels

Models
Order

Entity type Relation type

Name
Name

Attributs-
Typ

Name

Metahierarchy with ERD as Metalanguage
(lifted metamodel)

M3

M2

M1

Entity type Relation type

Name
Name

Attributs-
Typ

Name

Sollte mit zweiter Folie auf M3 kontrastiert werden
Was bedeutet Kreis?
M3/M2 embedding erklären für DDL

 ©
 P

ro
f.

U
. A

ß
m

an
n

25 Model-Driven Software Development in Technical Spaces (MOST)

MOF is ERD with Inheritance
Meta-Modell of Entity-Relationship-Diagramms (in MOF)

ER-Modell

Generate-SQL-DDL-Code()

er-modell 1..1

Element

Elemente 0..*

Relation

Cardinality1 : Cardinality
Cardinality2 : Cardinality

Entity

Attribut

ist Schlüsselelement : BOOL
Typ

Rolle1

Rollen1

1..1

0..*

Rolle2 Rollen2

entität

1..1
1..1

0..*

attribute typ

0..* 1..1

Attribute 0..*

 ©
 P

ro
f.

U
. A

ß
m

an
n

26 Model-Driven Software Development in Technical Spaces (MOST)

Name Price

Customer Teil

Address Date Number PartNumber

Order

Entity type Relation type

Name
Name

Attributs-
Typ

Name

Metahierarchy with MOF as Metalanguage (non-lifted)

Element

RelationEntityAttribute

Type

ER-Model

Metametamodel

Metamodels

Models

M3

M2

M1

Sollte mit zweiter Folie auf M3 kontrastiert werden
Was bedeutet Kreis?
M3/M2 embedding erklären für DDL

 ©
 P

ro
f.

U
. A

ß
m

an
n

27 Model-Driven Software Development in Technical Spaces (MOST)

Consistency Constraints in ERD Models

Order

Customer

Offer

1

receives

wants

1

0<n
0<n

1

starts

0<n

after: [Raasch]

► An ERD can contain integrity constraints (consistency constraints)

► Ex.: Cycle-freedom constraint: Check: find cycles in the graph of a ER diagram

► Correct by
■ cutting a cycle at the least important position (human intervention)
■ Finding a spanning tree and cutting all other edges

► Instead of cutting, edges can be made secondary links (then we have link trees)

Viel zu detailliert

 ©
 P

ro
f.

U
. A

ß
m

an
n

28 Model-Driven Software Development in Technical Spaces (MOST)

Other Consistency Constraints of ER-Models

► Range checks for attributes

► Key dependencies (functional dependencies):
■ Uniqueness of attribute values: An attribute K of a relation R is a key

candidate, if only one tuple has the same value of K
■ Key minimality: Is the attribute K compound, no component can be removed to

loose the key condition.
■ Primary key serves for identification of a tuple (“entity check”)
■ Secondary keys: other keys
■ Foreign key reference (primary key reference): A foreign key (link) is

referencing a tuple in another relation by its primary key

► Referential Integrity
■ The model does not contain undefined foreign keys (links)
■ i.e., all names (links) can be resolved by name analysis

Allgemeiner fassen, mehr Beispiele.

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Model-Driven Software Development in Technical Spaces (MOST)

40.1.3 MOF as Extended ERD

 ©
 P

ro
f.

U
. A

ß
m

an
n

30 Model-Driven Software Development in Technical Spaces (MOST)

Data Modeling for Information Systems (Object-Relational
Mapping, ORM) with UML-CD, ERD and RS

MOF or
UML-Class diagram

ER-Diagram

Relational Schema

► For persistence, objects should be stored
with an object-relational mapping to a
database (OR-Mapping)

► OERM-Mapping of class diagrams to
ERD is (unfortunately) indeterministic

■ Inheritance mapping
■ Identification of keys (primary,

secondary, foreign)
■ Resolution of multiple inheritance

by copying
■ Cannot be inverted automatically

► Between ERD und RS exists a determistic,
bidirectional mapping (ER-Mapping) by
which the data models can be
synchronized (restored without
information loss)

OERM

ERM

ORM

 ©
 P

ro
f.

U
. A

ß
m

an
n

31 Model-Driven Software Development in Technical Spaces (MOST)

The Difference of ERD, MOF and EMOF

► MOF extends ERD with multiple
inheritance and method signatures

► However, MOF must be mapped down
to Java

■ Inheritance
■ Bidirectional associations

► EMOF has only directed references, no
bidirectional associations

■ Only simple inheritance

► EMOF can directly be mapped down to
Java, C++, or C#

ERD

MOF
(multiple inheritance)

EMOF
(single inheritance,

directional references)

EERD

RS

Java

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Software Development in Technical Spaces

40.2 Flat Model Analysis with Graph Query
Languages (Graph QL)

DQL – Data Query Languages
CQL – Code Query Languages

 ©
 P

ro
f.

U
. A

ß
m

an
n

33 Model-Driven Software Development in Technical Spaces (MOST)

Graph Pattern Matching of Non-Tree Patterns

► Graph pattern matching works by mapping a graph pattern (graphlet) to the
manipulated graph.

► Ex.: Linking gotos and Block-entry statements to build up the control-flow graph

-- Datalog notation (edge decomposition):

JumpsTo(Goto,Label) :-

 Blocks(Proc,B1:Block),

 Blocks(Proc,B2:Block),
 Stmts(B1,Goto),Stmts(B2,Label),

 Goto.label==X, Label.value==X.

-- Optimix notation with if-then rules
(edge decomposition):

If Blocks(Proc,B1:Block),
 Blocks(Proc,B2:Block),
 Stmts(B1,Goto),Stmts(B2,Label),
 Goto.label==X, Label.value==X
Then
 JumpsTo(Goto,Label).

– regular expression notation (TGreQL):

JumpsTo := Proc.Blocks.Stmts.Goto.label(X)
AND Prod.Blocks.Stmts.Label.value(X)

Proc

Goto
label=“X“

 B1:Block

Blocks

Stmts

 B2:Block

Label
value=“X“

Stmts

JumpsTo

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Model-Driven Software Development in Technical Spaces (MOST)

41.1. Introduction to Diagrammatic Storyboard Rule
Notation for Graph Rewriting

Coloring for rules originally introduced by Fujaba
www.fujaba.de (tool now unsupported)

 ©
 P

ro
f.

U
. A

ß
m

an
n

35 Model-Driven Software Development in Technical Spaces (MOST)

Fujaba

► Fujaba is a MetaCASE-tool based on GRS with home-grown metalanguage and metamodel

► Basic technology: graph pattern matching and rewriting

http://www.fujaba.de/typo3temp/pics/604c5c6c9e.png

 ©
 P

ro
f.

U
. A

ß
m

an
n

41 Model-Driven Software Development in Technical Spaces (MOST)

Pattern Matching of Non-Tree Patterns

► Flat analysis does not interprete the
program while analysing

► Deep analysis interprets the primary
graph (ASG) to use the program
semantics

-- Datalog notation (edge decomposition):

JumpsToSelf(Goto,Label) :-

 Blocks(Proc,B1:Block),

 Blocks(Proc,B2:Block),id(B1,B2)
 Stmts(B1,Goto),Stmts(B2,Label),

 Goto.label==X, Label.value==X.

Proc

Goto
label=“X“

 B1:Block

Blocks

Stmts

 B2:Block

Label
value=“X“

Stmts

id

► Query: Which blocks jump to themselves?

JumpsToSelf

 ©
 P

ro
f.

U
. A

ß
m

an
n

42 Model-Driven Software Development in Technical Spaces (MOST)

Definition of Attributions, Access and Query Functions

From the metamodel, we can define access, helper, query and attribution functions,
functions to access, query attributes or neighbors:

► (Local) Attribute access functions:
■ ModelElement.hasName()
■ ModelElement.getDeclaringType()

► Neighbor access functions (via references):

■ Class.getPackage(): for neighbor Package

■ Class.getUpperClass(): get the direct upper class

■ Class.getDeclaresMethod(): for contained Method

► Query functions looking up information in the abstract syntax graph (ASG) or model:
■ Expr.getUsedTypes(): search all types which are used in Expr (type analysis, type

resolution)

■ Name.getType(): search the type object to the Name

■ Name.getMeaning(): search the definition of the Name

■ Stmt.getProcedure(): search out to find the procedure of the Stmt

► Pattern match functions assemble all matching redexes of a pattern
■ findRedexes (Pattern) Redexes→

 ©
 P

ro
f.

U
. A

ß
m

an
n

43 Model-Driven Software Development in Technical Spaces (MOST)

Name and Type Analysis: Caching a Query Function

► Some values of query functions change never, once they have been determined
■ The values can be cached

► Attribute caching is a mechanism to cache semantic attributes in an ASG or model for
faster access

► A definition table (often called symbol table) is a set of cached attributes.

First Call to the
Query Function

Analysis

Cached Value
(Cached Attribute)

Subsequent Calls to the
Query Function

Definition
Table

*

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Model-Driven Software Development in Technical Spaces (MOST)

40.2.1 QL and CodeQL – Relational Queries on
Source Code in Technical Space Java

QL uses edge decomposition (Datalog style) to express graph queries

Courtesy to Florian Heidenreich and
http://semmle.com (Semmle now part of Github)

 ©
 P

ro
f.

U
. A

ß
m

an
n

45 Model-Driven Software Development in Technical Spaces (MOST)

SQL-Like Code Query Language QL

► QL is an object-oriented query language in the spirit of SQL and Datalog
■ Developed in the group of Prof. Oege de Moor (Oxford)
■ Marketed by Semmle.com
■ In 2019 bought by github

► Queries, metrics, visualizations are supported
■ Repositories with Java and Objective-C code
■ Works also now on C/C++

► Metamodel is EMOF-like (single inheritance, references)
■ Classes, Methods, Blocks are interpreted as basic sets of objects, relational

tables (sets of tuples over member entries), resp. Predicates (telling whether a
tuple exists)

. from Class c, Methods

■ Definition and use of access functions:

. Class.getDeclaresMethod(): for neighbor Method

. Class.getPackage(): for neighbor Package

. ModelElement.hasName(): get the Name

. ModelElement.getDeclaringType(): get the Type

 ©
 P

ro
f.

U
. A

ß
m

an
n

46 Model-Driven Software Development in Technical Spaces (MOST)

Query form: Extended Where- Select Clauses

► Expressions like in Xcerpt and SQL:
■ FROM <classes> WHERE <conditions> SELECT <variables>

FROM ..base sets..

WHERE

..and/or/not predicate list..

..call of helper functions..

..call of predicates..

..check on equalities, inequalities..

SELECT variable list

 ©
 P

ro
f.

U
. A

ß
m

an
n

47 Model-Driven Software Development in Technical Spaces (MOST)

Code Display

 ©
 P

ro
f.

U
. A

ß
m

an
n

48 Model-Driven Software Development in Technical Spaces (MOST)

Graph Visualization of the Resulting Structures (here:
Package Call Graph)

 ©
 P

ro
f.

U
. A

ß
m

an
n

49 Model-Driven Software Development in Technical Spaces (MOST)

A Simple Model (Schema) of Semmle-Java-DDL in EMOF

Package

Class

Stmt

Feature

Field
(Attribute)

Method Plus IntConst

Expr

Exprs
Stmts

Left

Program representation
Analysis information

Right

Program representation

Model
Element

declares

declares

RefType

hasSuperType

 ©
 P

ro
f.

U
. A

ß
m

an
n

50 Model-Driven Software Development in Technical Spaces (MOST)

SemmleCode – SQL-Like Query Language on Semmle-DDL

► Query examples:
■ Select Statements on classes, methods, statements, expressions

► Language features:
■ Queries embedded in classes, shareable with inheritance
■ User defined query classes
■ Local Variables in queries
■ Non-deterministic methods returning sets and streams
■ Casts
■ Chaining
■ Lifting-queries

► Metric examples:
■ Aggregation functions
■ SLOC metrics
■ #Methods

►

[deMoor]

 ©
 P

ro
f.

U
. A

ß
m

an
n

51 Model-Driven Software Development in Technical Spaces (MOST)

Select Statements (1)

► The where-clause uses edge decomposition of a query graph
► Example:
► Find all classes c implementing compareTo, but do not overwrite equals

► Find their packages
► Return tuples of package and class

from Class c
where

c.declaresMethod("compareTo")
 and not (c.declaresMethod("equals"))
select

c.getPackage(), c

 ©
 P

ro
f.

U
. A

ß
m

an
n

52 Model-Driven Software Development in Technical Spaces (MOST)

Select Statements (2)

► Find all main-methods declared in a package ending with „demo“

► Return tuples (package, declaring type, method)
► Also called pattern matching

from Method m
where

m.hasName(“main")
 and m.getDeclaringType().getPackage().getName().matches("%demo")
select

m.getDeclaringType().getPackage(),
m.getDeclaringType(),
m

 ©
 P

ro
f.

U
. A

ß
m

an
n

53 Model-Driven Software Development in Technical Spaces (MOST)

Definition of New Functions and Predicates

► Definition of new query functions by declaring query functions/methods in a class (note: this is
similar to attributions in JastAdd)

■ Remark: Methods may be indeterministic, i.e., return collections of objects

predicate isJDKMethod (Method m) {
 m.hasName(”equals”)
 or m.hasName(”hashCode”)
 or m.hasName(”toString”)
 or m.hasName(”clone”)
}

► Definition of new predicates as methods in a class, using a domain-specific language
language extension of Java

► Testing on or-conditions:

class Classinfo {
 Method findMethod(Class c) {
 c.declaresMethod("sumUpBill")
 }
}

 ©
 P

ro
f.

U
. A

ß
m

an
n

54 Model-Driven Software Development in Technical Spaces (MOST)

Definition of New Predicates

► Use of Kleene Star for transitive closure on prediates/edges
► The Kleene star expands the relation transitively (transitive closure)

► Here, hasSupertype is deeply searched:

predicate controlflowReach(Stmt first, Stmt reachable) {
 first.successor∗(reachable)
}

► Reachability in contro-flow graph over statements

predicate upperClass(RefType down, RefType up) {
 down.hasSupertype∗(up)
}

 ©
 P

ro
f.

U
. A

ß
m

an
n

55 Model-Driven Software Development in Technical Spaces (MOST)

Definition of New Predicates

► Complicated, composed path expressions become possible

► Query: Check for a middle class in the inheritance hierarchy:

predicate inTheMiddle(RefType down, RefType middle, RefType up) {
 down.hasSupertype∗(middle) and
 middle.hasSupertype∗(up)
}

 ©
 P

ro
f.

U
. A

ß
m

an
n

56 Model-Driven Software Development in Technical Spaces (MOST)

Local Variables in Queries

Query: Find all methods calling System.exit(…)

Sysexit is a local variable

from Method m, Method sysexit, Class system
where

system.hasQualifiedName("java.lang", "System")
 and sysexit.hasName("exit")
 and sysexit.getDeclaringType() = system

and m.getACall() = sysexit
select m

 ©
 P

ro
f.

U
. A

ß
m

an
n

57 Model-Driven Software Development in Technical Spaces (MOST)

The Use of Non-deterministic Methods

► Query: Synthesize a call graph between the methods of two packages
■ Call graph is retured as a set of tuples of (caller, callee)

► getARefType and getACallable are indeterminstic, i.e., return collections of objects

from Package caller, Package callee
where caller.getARefType().getACallable().calls(
 callee.getARefType().getACallable())
 and caller.fromSource()
 and callee.fromSource()
 and caller != callee
select caller, callee

 ©
 P

ro
f.

U
. A

ß
m

an
n

59 Model-Driven Software Development in Technical Spaces (MOST)

Chaining (Multiple Source - Multiple Target Graph
Reachability Problem, MSMT)

► MSMT problems connect a set of source nodes with a set of target nodes (reachability)

Query: Find all Pairs (s,t) such that
► t is a direct superclass of s
► s is superclass of org.jfree.data.gantt.TaskSeriesCollection

► t is superclass of s
► and t is not java.lang.Object

from RefType tsc, RefType s, RefType t
where

tsc.hasQualifiedName("org.jfree.data.gantt","TaskSeriesCollection")
and s.hasSubtype*(tsc)
and t.hasSubtype(s)

 and not(t.hasName("java.lang.Object"))
select s,t

 ©
 P

ro
f.

U
. A

ß
m

an
n

60 Model-Driven Software Development in Technical Spaces (MOST)

QL-Query Classes (Dynamic Classes/Sets)

// definition of a query class as subclass of a metaclass
class VisibleInstanceField extends Field {
 VisibleInstanceField() {
 not (this.hasModifier("private")) and
 not (this.hasModifier("static"))
 }
 predicate readExternally() {
 exists (FieldRead fr |
 fr.getField()=this and
 fr.getSite().getDeclaringType()

 != this.getDeclaringType())
 }
}

// use of a query class
from VisibleInstanceField vif
where vif.fromSource() and not

(vif.readExternally())
select vif.getDeclaringType().getPackage(),
 vif.getDeclaringType(),
 vif

► Query classes in QL are sets described by special predicates and nested other predicates
■ They define “synthetic” objects and “truths” about the model
■ Their constructors define restrictions of metaclasses

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Model-Driven Software Development in Technical Spaces (MOST)

40.2.2 Metrics with QL

 ©
 P

ro
f.

U
. A

ß
m

an
n

62 Model-Driven Software Development in Technical Spaces (MOST)

Aggregation Functions for Computing Metrics

► Compute the average number of methods per type and package
■ Other aggregation functions: count, sum, max, min, avg

► Employs „Eindhoven Quantifier Notation“ (Dijkstra et al.)
■ C | <predicate>

► Query: „Compute the average number of methods in all type c of a package p”

from Package p
where p.fromSource()
select p, avg(RefType c |

c.getPackage() = p |
c.getNumberOfMethods())

 ©
 P

ro
f.

U
. A

ß
m

an
n

63 Model-Driven Software Development in Technical Spaces (MOST)

Aggregation Functions for Computing SLOC Metrics

► Query: “Calculate a SLOC metrics on package “Billing” in the current compilation unit”
► Grammar rules:

► Aggr ::= aggregationFunction '('
 localvars // FROM
 '|' condition // WHERE
 '|' aggregatedValue ')' // SELECT

► AggregationFunction ::= 'sum' | 'count' | 'avg' | 'max' | 'min'

from Package pkg
where pkg.hasName(”Billing”)
select sum(CompilationUnit comp | //FROM
 comp.getPackage()=pkg | // WHERE
 comp.getNumberOfLines()) // SELECT

 ©
 P

ro
f.

U
. A

ß
m

an
n

64 Model-Driven Software Development in Technical Spaces (MOST)

Statistics (Metrics) Uses Aggregation Functions

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Software Development in Technical Spaces

40.3. Lifting Information Up the Containment
Hierarchy

 ©
 P

ro
f.

U
. A

ß
m

an
n

66 Model-Driven Software Development in Technical Spaces (MOST)

Block Containment Structure (Scope Structure in the ASG) of
a Model

► Languages are block-
structured, i.e., live in a
containment hierarchy.

► A model has model elements

► A class has inter-method
relationship (e.g., the call
graph)

► A package has inter-class
relationships between these
model elements

► A model has inter-package
relationships between these
model elements

Package

Class

Feature

Attribute Method

Model
Element

declares

declares

Inter-
Package-
Relation

Model

Inter-
Class-

Relation

Inter-
Method-
Relation

A macromodel builds
on graphs, at least on link
trees, no longer on trees

 ©
 P

ro
f.

U
. A

ß
m

an
n

67 Model-Driven Software Development in Technical Spaces (MOST)

Lifting Information Along the Block Containment Structure
(Scope Structure of the ASG) by Synthesized Attribution

► Dependency lifting means to
lift information up in along the
containment hierarchy by a
synthesized attribution

■ from an inter-method
relationship to a inter-class
relationship

■ from an inter-class
relationship to a inter-
package relationship

► Dependency lifting propagates
information up the abstract
syntax tree and the
containment tree

► Dependency lifting is an
important process to
summarize dependencies among
siblings in containment
hierarchies in models

Package

Class

Feature

Attribute Method

Model
Element

declares

declares

Inter-
Package-
Relation

Model

Inter-
Class-

Relation

Inter-
Method-
Relation

 ©
 P

ro
f.

U
. A

ß
m

an
n

68 Model-Driven Software Development in Technical Spaces (MOST)

Dependency Lifting Information Along the Block
Containment Structure

► Dependency lifting lifts dependency information up the containment structure in a
model, thereby summarizing the dependencies at the level of the model

► Dependency lifting queries are defined on an enclosed type

► result is an implicitly defined default return parameter of a query

// Lifting a pair of class dependencies to
// a pair of packages
// getDependentPackage() is a synthesized
// attribution of Package.Class
class Class {
 Package getDependentPackage() {
 exists (Class cl |
 depends(this.getPackage(),cl)
 and result = cl.getPackage()
)
 and result != this
 }
}

// Lifting a pair of method dependencies
// on a pair of classes
// getDependentClass() is a synthesized
// attribution of Class.Method
class Method {
 Class getDependentClass() {
 exists (Method m |
 depends(this.getClass(),m)
 and result = m.getClass()
)
 and result != this
 }
}

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Software Development in Technical Spaces

40.4 Macromodel Dependency Analysis

• Remember: A macromodel is a multimodel with consistent dependencies

 ©
 P

ro
f.

U
. A

ß
m

an
n

70 Model-Driven Software Development in Technical Spaces (MOST)

Q12: The ReDoDeCT Problem and its Macromodel

► The ReDoDeCT problem is the problem how requirements, documentation, design,
code, and tests are related (V model)→

► Mappings between the Requirements model, Documentation files, Design model, Code,
Test cases

► A ReDoDeCT macromodel has maintained mappings between all 5 models

Requirements Design Code Test

Package Bill {
 Uses Order;
 Class Counting {
 Procedure count IS
 End;
}
}

Package Order {
 Uses Bill;
 Class Ordering {
 Procedure count IS
 End;
}
}

Package TestBill {
 Uses TestOrder;
 Proc testCounting
IS
….
 End;
}
}
Package TestOrder {
 Uses Bill;
 Class TestOrdering {
 Procedure
testCount IS
 End;
}
}

Node

Node

Component

Component

System

DocumentationNon-Functional
Requirement A Non-Functional

Requiremens B
Goal BGoal A

 ©
 P

ro
f.

U
. A

ß
m

an
n

71 Model-Driven Software Development in Technical Spaces (MOST)

Inter-Model Relationships in The ReDoDeCT Macromodel

► An inter-model relationship is a relationship between model elements of different
models (usually link or graph relationship)

■ Here: expresses mapping between the Requirements model, Design model, Code,
Test cases

► The ReDoDeCT macromodel relies on inter-model relationships between all 5 models

Requirements Design Code Test

Package Bill {
 Uses Order;
 Class Counting {
 Procedure count IS
 End;
}
}

Package Order {
 Uses Bill;
 Class Ordering {
 Procedure count IS
 End;
}
}

Package TestBill {
 Uses TestOrder;
 Proc testCounting
IS
….
 End;
}
}
Package TestOrder {
 Uses Bill;
 Class TestOrdering {
 Procedure
testCount IS
 End;
}
}

Node

Node

Component

Component

System

DocumentationNon-Functional
Requirement A Non-Functional

Requiremens B
Goal BGoal A

 ©
 P

ro
f.

U
. A

ß
m

an
n

72 Model-Driven Software Development in Technical Spaces (MOST)

Lifting Information Along the Block Containment Structure
Between Models in the Macromodel

► Macromodel-Dependency
Lifting means to lift
information up in along the
containment hierarchy from
between the packages of a
model to between the models
of the macromodel

■ from an intra-model
relationships to a inter-model
relationship

► Megamodel-Dependency-
Lifting propagates information
up into the megamodel

► Megamodel-Dependency-
Lifting is an important process
to summarize dependencies
among models

► Result: a macromodel

Package

Class

Feature

Model
Element

declares

declares

Inter-
Package-
Relation

Model

Inter-
Class-

Relation

Inter-
Method-
Relation

Macromodel
Inter-

Model-
Relation

 ©
 P

ro
f.

U
. A

ß
m

an
n

73 Model-Driven Software Development in Technical Spaces (MOST)

Cultimodel Dependency Lifting in Semmle QL

► The lifting procedure also works for lifting package dependencies within a model to
model dependencies.

■ Consider models as “normal” objects in the repository
■ Formulate queries about model-element relationships and lift them to model

relationships

// Lifting a pair of package
dependencies to
// a pair of models
class Package {
 Model getDependentModel() {
 exists (Model mod |
 depends(this.getModel(),mod)
 and result = mod.getModel()
)
 and result != this
 }
}

// Lifting a pair of class dependencies to
// a pair of packages
class Class {
 Package getDependentPackage() {
 exists (Class cl |
 depends(this.getPackage(),cl)
 and result = cl.getPackage()
)
 and result != this
 }
}

 ©
 P

ro
f.

U
. A

ß
m

an
n

74 Model-Driven Software Development in Technical Spaces (MOST)

How to Discover Dependencies Between Models in a
Multimodel

► After analysis of all models, lift the information up the containment hierarchy into the
multimodel

■ Construct inter-model relationships by lifting from inter-package relationships

► This turns the multimodel into a macromodel, a multimodel with model-element
constraints

► The lifted dependencies allow for discovering dependencies between models in a multi-
model
■ The precise detailed dependencies give tracing to update models in a multimodel, if

something changes

Macromodel dependency analysis consists of
lifting model-level dependency analysis to inter-model relationships

by synthesized attribution

Macromodel consistency consists of updating
all inter-model relationships and all induced model-level dependencies

 ©
 P

ro
f.

U
. A

ß
m

an
n

75 Model-Driven Software Development in Technical Spaces (MOST)

The End

► Why does ERD and MOF help to define link-consistent link trees?

► Explain why TgreQL and Xcerpt have similar query styles

► Why does a megamodel usually build on graphs, not on trees?

► Why do we need graph query and transformation languages?

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Software Development in Technical Spaces

40.5. Other Graph Query Languages

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Software Development in Technical Spaces

40.5.1. Writing Model Constraints
by Graph Querying with OCL

• The DDL of OCL is MOF

• .QL is for Java and other GPL

• OCL is for UML-CD

78

 ©
 P

ro
f.

U
. A

ß
m

an
n

78 Model-Driven Software Development in Technical Spaces (MOST)

78

OCL for Invariants in UML-Class Diagrams

► → course Softwaretechnologie-II

79

 ©
 P

ro
f.

U
. A

ß
m

an
n

79 Model-Driven Software Development in Technical Spaces (MOST)

Examples OCL Invariants

► OCL queries usually start at a specific class; their results define invariants on the
objects of the class

■ All attributes of a class are visible by default in OCL.
■ Relations between classes define functions

► Query language uses expressions over these functions
Example of Invariant:

context Meeting inv: self.end > self.start
Equivalent:

context Meeting inv: end > start
-- self is the context of the query, from which processing starts

Equivalent named constraint:
context Meeting inv startEndConstraint:
self.end > self.start

-- Constraints can constrain attribute values
► FROM and SELECT clauses are modeled via functions:

Selection constraint:
context Person inv searchForPerson:
allInstances()->select(p:Person|p.name.StartsWith(„Uwe“))

-- FROM clause is modeled via allInstances() function
-- SELECT clause is modeled via select() function

 ©
 P

ro
f.

U
. A

ß
m

an
n

80 Model-Driven Software Development in Technical Spaces (MOST)

Examples OCL Invariants

► Selection constraint:
context Person inv searchNames:
allInstances()->collect(name)
context Person inv countNames:
allInstances()->collect(name)->size()

► Multiplicity constraint:
context Person inv countNames:
allInstances()->collect(name)->size() < 15

► More on OCL: Course Softwaretechnologie-II, Ch. “Konsistenzprüfung mit OCL”, Dr. →
Birgit Demuth

► Www.dresden-ocl.de

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Model-Driven Software Development in Technical Spaces (MOST)

40.5.2. Graph Querying with GReQL

► Open source, from University of Koblenz-Landau, Prof. Ebert

► Applicable to a subset of UML (GrUML)

 ©
 P

ro
f.

U
. A

ß
m

an
n

82 Model-Driven Software Development in Technical Spaces (MOST)

TGreQL is similar to .QL

► But uses a relational notation, from-with-report clauses

from RefType tsc, RefType s, RefType t
where

tsc.hasQualifiedName("org.jfree.data.gantt","TaskSeriesCollection")
and s.hasSubtype*(tsc)
and t.hasSubtype(s)

 and not(t.hasName("Object"))
select s,t

from RefType tsc, RefType s, RefType t
with

s hasSubtype*->tsc,
tsc.hasQualifiedName("org.jfree.data.gantt","TaskSeriesCollection"),
t hasSubtype->s,

 not t.hasName("Object")
report s,t

 .QL

TGreQL

 ©
 P

ro
f.

U
. A

ß
m

an
n

83 Model-Driven Software Development in Technical Spaces (MOST)

The Query Language TGreQL

► TgreQL style is very similar to Xcerpt

► Implements F-Datalog incl. Transitive closure operator

► Prof. J. Ebert U Koblenz

// construct a call graph
From caller, callee: V{Method}
With caller (
 {isStatementIn}
 [{isReturnValueOf}]
 {isActualParameterOf} *
 {isCalleeOf}
) + callee
Report
 caller.name as „Caller“
 callee.name as „Callee“

Caller Callee

main System.out.println

main compute

main twice

main add

compute twice

compute add

Operators:
• * Transitive closure operator
• + positive transitive closure
• →← navigation direction
• [] optional path
• () sequence of paths or edges
• | alternative path

Result (example):

 84

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Model-Driven Software Development in Technical Spaces (MOST)

40.5.3 Model Mappings with Query-View-
Transformations (QVT)

The language of the OMG for model transformations within MDA

OMG: MOF 2.0 Query / Views / Transformations RFP. ad/2002-04-
10. Needham, MA: Object Management Group, April 2002.

http://www.omg.org/cgi-bin/doc?ad/2002-4-10

 ©
 P

ro
f.

U
. A

ß
m

an
n

85 Model-Driven Software Development in Technical Spaces (MOST)

QVT Dialects

From: [https://de.wikipedia.org/wiki/Datei:QVT-Language-Architecture_591x387.jpg]

 ©
 P

ro
f.

U
. A

ß
m

an
n

86 Model-Driven Software Development in Technical Spaces (MOST)

Transitive Closure with QVT Relations

// Transitive Closure in QVT relations,
// Modeled with recursive relation
“transitiverelation”
relation transitiverelation {
 domain node:Node {
 // matching attributes
 name = sameName;
 }
 domain node2:Node {
 // node2 must have the
 // same name as node
 name = sameName;
 }
 domain node3:Node {
 // node3 must also
 // have the same name
 name = sameName;
 }

when {
 // conditions: base relation must exist
 baserelation(node,node2) or
 // or a transitive relation to a base relation
 (transitiverelation(node,neighbor)
 and baserelation(neighbor,node2));
 }
 where { // Aufruf einer Transformation
 makeNodeSound(node);
 }
}

► QVT relations uses logic expressions on base and derived relations (graph-logic
isomorphism)

 ©
 P

ro
f.

U
. A

ß
m

an
n

87 Model-Driven Software Development in Technical Spaces (MOST)

QVT Tools

Tool

Eclipse M2M
Project

Operational http://www.eclipse.org/m2m/

Magic Draw Operational

MediniQVT Relational http://projects.ikv.de/qvt/wiki

 ©
 P

ro
f.

U
. A

ß
m

an
n

88 Model-Driven Software Development in Technical Spaces (MOST)

// this is QVT
rule checkNoDoubleFeatureInSuperClasses(name:String) {
 from node: Class (
 –- OCL query
 node->TransitiveClosure()->collect.().exists(s | s.name() = name);
)
 to
 System.out.println("Error: super class has doubly defined feature:
"+s.name());
}

QVT-R uses OCL for Model Search, Query, and Mapping

► OCL can be called within QVT scripts
■ Two different DQL are combined within a single language

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Model-Driven Software Development in Technical Spaces (MOST)

40.5.4. Graph Invariant Specification with Spider
Diagrams

 ©
 P

ro
f.

U
. A

ß
m

an
n

90 Model-Driven Software Development in Technical Spaces (MOST)

Spider Diagrams

► http://en.wikipedia.org/wiki/Spider_diagram
► S. Kent. Constraint Diagrams: Visualizing Invariants in OO Modelling. Proceedings of

OOPSA 97, ACM Press, Oct. 97, pp. 327-341.
► S. Kent and J. Howse. Mixing Visual and Textual Constraint Languages, UML 99,

IEEE press, Oct 1999.

► Spider-Diagramme are equivalent to monadic second-order logic 2. Stufe (MSOL).
– They include OCL (first-order logic)

► Source of diagrams: J. Lövdahl, Towards a Visual Editing Environment for the
Semantic Web. Linköpings universitet, 2002.

 ©
 P

ro
f.

U
. A

ß
m

an
n

91 Model-Driven Software Development in Technical Spaces (MOST)

Simple Spider Diagrams are Extended Venn Diagrams

► Classes are visualized as venn ellipsoids

► Set algebra is expressed by intersection of ellipsoids

► Existential Logic (propositional logic with existential quantifiers) is expressed by
spiders (hyperedges) An object of class1 has an object of class2

and an object in class1^class2^class3
and class3\class1\class2 is not empty

Result =
class1^class2

 ©
 P

ro
f.

U
. A

ß
m

an
n

92 Model-Driven Software Development in Technical Spaces (MOST)

► All quantifiers are possible (star symbol)

All cars must be driven
by a person older than 18

There are no two names that have the same string

 ©
 P

ro
f.

U
. A

ß
m

an
n

93 Model-Driven Software Development in Technical Spaces (MOST)

Other Constraints

All Break statements must have a LoopStatement as ancestor,
which is related to a Switch statement

For every person, there is no child that has no parent

 ©
 P

ro
f.

U
. A

ß
m

an
n

95 Model-Driven Software Development in Technical Spaces (MOST)

40.5.5. URML – A UML-like Spider Notation

► URML http://oxygen.informatik.tu-cottbus.de/rewerse-i1/?q=URML

► Emilian Pascalau and Adrian Giurca. Can URML model successfully Drools rules? Proceedings of
the 2nd East European Workshop on Rule-Based Applications (RuleApps 2008) at the 18th
European Conference on Artificial Intelligence. Patras, Greece, July 23, 2008.

■ http://ceur-ws.org/Vol-428/paper5.pdf

► Ex: Modeling a Derivation Rule for
Defining an Association

If a rental car is stored at a branch, is
not assigned to a rental and is not
scheduled for service, then the rental
car is available at the branch.

 ©
 P

ro
f.

U
. A

ß
m

an
n

96 Model-Driven Software Development in Technical Spaces (MOST)

Modeling a Derivation Rule with a Role Condition

A bachelor is a male that is not a husband.

 ©
 P

ro
f.

U
. A

ß
m

an
n

97 Model-Driven Software Development in Technical Spaces (MOST)

The End

► Why does ERD and MOF help to define link-consistent link trees?

► Explain why TgreQL and Xcerpt have similar query styles

► Why does a megamodel usually build on graphs, not on trees?

► Why do we need graph query and transformation languages?

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Software Development in Technical Spaces

Appendix

 ©
 P

ro
f.

U
. A

ß
m

an
n

99 Model-Driven Software Development in Technical Spaces (MOST)

A Simple ER-Model

Name Price

Customer PartNumber

Address

Date Number

PartNumber

Order

► All “entities” (classes) are represented as “entity-”tables

 ©
 P

ro
f.

U
. A

ß
m

an
n

100 Model-Driven Software Development in Technical Spaces (MOST)

Notation

ERD Model Elements [Chen]

name

Entity type: Set of objects

Relationship type: Set of relations between entity
types

name

Attribute: Describes a function or a predicate
over an entity

1, n
0 < n

Cardinality of a relationship type: minimum and
maximum amout of neighbors in a
relation

Meaning

Name

