TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Prof. ABmann - Model-Driven Software Development in Technical Spaces

41. Deep Graph Model Analysis and Macromodels:
Model and Program Analysis with (Recursive)
Graph Reachability

How Context-Sensitive Constraints can be Checked in a Model

Prof. Dr. Uwe AlBmann 1) Graph Reachability as Deep Analysis
1) EARS
1) Regular graph reachability and Slicing
2) Graph slicing
3) Value-flow analysis
1) Context-free graph reachability
4) More on the Graph-Logic Isomorphism
1) Implementation in Tools
5) Model Mappings in Megamodels

Softwaretechnologie
Technische Universitat Dresden
Version 21-1.1,29.01.22

Literature

2 Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

> GrGen web site http://www.info.uni-karlsruhe.de/software/grgen/

» GrGen User Manual
http://www.info.uni-karlsruhe.de/software/grgen/GrGenNET-Manual.pdf

> [ABmMann00] Uwe ABmann. Graph rewrite systems for program optimization. ACM
Transactions on Programming Languages and Systems (TOPLAS), 22(4):583-637, June
2000.

= http://portal.acm.org/citation.cfm?id=363914

» Tom Mens. On the Use of Graph Transformations for Model Refactorings. GTTSE
2005, Springer, LNCS 4143

- http://www.springerlink.com/content/5742246115107431/

» Thomas Reps. Program analysis via graph reachability. Information and Software
Technology, 40(11-12):701-726, November 1998. Special issue on program slicing.

» Mark Weiser. Program slicing. IEEE Transactions on Software Engineering, SE-
10(4):352-357, July 1984,

» Frank Tip. A survey of program slicing techniques. Journal of Programming Languages,
3:121-189, 1995.

http://www.info.uni-karlsruhe.de/software/grgen/
http://www.info.uni-karlsruhe.de/software/grgen/GrGenNET-Manual.pdf
http://portal.acm.org/citation.cfm?id=363914
http://www.info.uni-karlsruhe.de/software/grgen/
http://www.info.uni-karlsruhe.de/software/grgen/GrGenNET-Manual.pdf
http://portal.acm.org/citation.cfm?id=363914

Literature on the Graph-Logic-Isomorphism

3 Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

>

B. Courcelle. Graphs as relational structures: An algebraic and logical approach. In H.
Ehrig, H.-J. Kreowski, and G. Rozenberg, editors, 4" International Workshop On Graph
Grammars and Their Application to Computer Science, volume 532 of Lecture Notes in
Computer Science, pages 238-252. Springer, March 1990.

B. Courcelle. The logical expression of graph properties (abstract). In H. Ehrig, H.-)J.
Kreowski, and G. Rozenberg, editors, 4th International Workshop On Graph
Grammars and Their Application to Computer Science, volume 532 of Lecture Notes in

Computer Science, pages 38-40. Springer, March 1990.

B. Courcelle. Graph rewriting: An algebraic and logic approach. In Jan van Leeuwen,
editor, Handbook of Theoretical Computer Science, pages 193- 242, Amsterdam, 1990.

Elsevier Science Publishers.

Other References

4 Model-Driven Software Development in Technical Spaces (MOST)

> Uwe ABmann. OPTIMIX, A Tool for Rewriting and Optimizing Programs. In Graph
Grammar Handbook, Vol. Il. Chapman-Hall, 1999.

> K. Lano. Catalogue of Model Transformations
- http://www.dcs.kcl.ac.uk/staff/kcl/tcat.pdf

@ © Prof. U. ABmann

TECHNISCHE
@ UNIVERSITAT
DRESDEN

kultadt Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

41.1. Introduction to Diagrammatic Storyboard
Rule Notation for Graph Rewriting

Originally introduced by Fujaba www.fujaba.de (tool now
unsupported)

zzzzzzzzzzzz
Wissenschaft
uuuuuuuuu

Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. ABmann

http://www.fujaba.de/
http://www.fujaba.de/

Fujaba

6 Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

» Fujabais a MetaCASE-tool based on GRS with home-grown metalanguage and metamodel

» Basic technology: graph pattern matching and rewriting

[Project Explorer 5 2fgl” =0
5 WeathersBxample_20bs -
i e
B JRE System Library [jref_0_13]
| amnoxannotations

|| BehavioralPatternsCatalog.smi
% EchipsePatternsCatalogfpr.gz [Eclipse Ps
% Eclipse Patterns Catalog
% Dragrams
5 Model
2% Patterns
5 Behavioral Patterns
&% Structural Pattern Catalogs
@ Structural Pattemns
T Araybultifeference
77 AssocSetMethod
7 Associstion
1 Attributedccess
74 Bridge
4 Command
]‘ﬁl Composite
1 ContainerAccess
1 Delegation
], Genesalization
7 GethMethod
1 MultiDelegation
7, MultiLevelGeneralization
4 MultiReference

-

5 Gang o Four Pattem Catalog _ ({5 Eclipsa Patems Cataloa £, -
Et}hsemd * | 5 Falette 1]
stereo MLS5tere...
name: String = "interfac... Ly Selest
subject L.i Marquee
4 | stersctypes 74 Structural Pattern @
observerClass:UMLClass subjectClass:UMI Class £ Object
abstract: Boolean = true {additio... e i abstract: Boolean = true {additi... ("1 Annotation
i, R FE Link
e I N\ paramType < pomolMubtRet,, > methods /J i
o Constraint

it

'

F] Optional Fragment

] e—— ' Project | 77, Observer 5
25 Qutline 5 - . =) [=! Preperties 5 1 Generator Can:.ade-: E Annnu-liuns- Seructural lnFerm:eCansnl;:
| e
i narme: observerClass
I modifier: one
! trigger yES
type: UMLClass
classifien: class
e : weight: 10

http://www.fujaba.de/typo3temp/pics/604c5c6c9e.png

Fujaba Storyboard Diagrams for Adding and Removing Graph
Fragments

7 Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

» Storyboards are activity diagrams in which activities are GRS (graph notation with
colors)

» Green color: adding model fragments; Red color: deleting them

» Pool starts at node this and reaches into the object net

» GRS can be embedded into Petri Nets, DFG and other BSL

Storyboh

Diagram

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Prof. ABmann - Model-Driven Software Development in Technical Spaces

41.1 Using EARS (Binary Edge Addition)for Deep

Analysis of Models and Mappings of Models and
Code

- and as the Bridge to Graph Rewriting

e Graph reachability engines are analysis tools answering questions about the deeper structure of
models and programs

e EARS can be employed for regular graph reachability, context-free graph reachability, slicing,
data-flow analysis

e And traceability for inter-model relationships

EARS for Model Mapping

Q Model-Driven Software Development in Technical Spaces (MOST)

» Edge addition rewrite systems (EARS)
compute direct binary relations for
remotely reachable parts of a graph and
a model

= They abbreviate long pathsin
models Blocks

» EARS can be used for reachability of

elements in models and model mapping:
= Transitive closure EXPrs

= Regular path reachability

= Context-free path reachability

» EARS form the bridge to graph rewriting
and graph-rewriting based model
transformations

» They correspond to binary Datalog

@ © Prof. U. ABmann

Model Analysis with Graph Reachability

10 Model-Driven Software Development in Technical Spaces (MOST)

» Use the graph-logic-isomorphism: Represent everything in a program or a model as
directed graphs
— Program code (control flow, statements, procedures, classes)
- Model elements (states, transitions, ...)
- Analysis information (abstract domains, flow info ...)
— Directed graphs with node and edge types, node attributes, one-edge condition
(no multi-graphs)
» Use edge decomposition as textual notation

» Use edge addition rewrite systems (EARS), Datalog and other graph reachability
specification languages to

— Query the graphs (on values and patterns)
— Analyze the graphs (on reachability of nodes)
- Map the graphs to each other (model mapping)

» Later: Use graph rewrite systems (GRS) to construct and augment the graphs,
transform the graphs

@ © Prof. U. ABmann

Specification Process with Graph Rewrite Systems and
EARS

11 Model-Driven Software Development in Technical Spaces (MOST)

1)Specification of the data model (graph schema) with a graph-like DDL (ERD, MOF,
GXL, UML or similar);

* Schema of the program representation: program code as objects and basic
relationships. This data, i.e., the start graph, is provided as result of the parser

* Schema of analysis information (the infered predicates over the program objects)
as objects or relationships

2)Flat model and program analysis (preparing the abstract interpretation)
* Querying graphs, enlarging graphs, static slicing, Reachability
* Equivalence classing
* Materializing implicit knowledge to explicit knowledge
3)Deep model and program analysis
Inter-model reachability (traceability), materializing model mappings

* Abstract Interpretation (program analysis as interpretation)

* Specifying the transfer functions of an abstract interpretation of the program with
graph rewrite rules on the analysis information

4)Model and Program transformation Transforming the program representation
* Optimization such as peephole optimization or constant folding (context-free)

@ © Prof. U. ABmann

e Code motion (Context-sensitive)

Q14: A Simple Program (Code) Model (Schema) in MOF

12 Model-Driven Software Development in Technical Spaces (MOST)

Program representation:

Analysis information: InfoNode (blue)

ProgramNode (green) INSERT_IN ExpreqClass
Proc : INSERT_OUT InRelgister
LATEST IN
bIocksl _ @4— .
reach-in . eft

Block ' reach-out ght

stmts l statements ExprsOfStr Expr
Stmt SHCCCeSSOrs / \

Join

Binary Leaf
. Op =
Register
AsgdReg o
Plus | ring
AssReg UseReg ntConst Const

Deep Analysis and Abstract Interpretation with Graph
Rewriting

13 Model-Driven Software Development in Technical Spaces (MOST)

» A graph-rewriting based abstract interpreter stores, for every program element of the program
graph (Expr, Stmt, Block, Proc, Class < ProgramElement) three “truths” (values) for every node in

the analysis information (InfoNode):

= p:ProgramFElement -:predicate_in-> i:InfoNode
// predicate_in(p,i)

= p:ProgramElement -:predicate_ within-> i:-InfoNode
// predicate_within(p,i)

= p:ProgramElement -:predicate_out-> i:InfoNode
// predicate_ out(p,i)

» Values of program elements are encoded as an edge between program elements and InfoNodes

I/—> pred_in 4\‘

Program
Element | pred within |« | InfoNode

\' pred_out 4—/

@ © Prof. U. ABmann

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultit Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Model-Driven Software Development in Technical Spaces (MOST)

41.2. Reachability of Model Elements and Models for
Model Analysis and Mapping

» With model mapping languages, such as edge addition rewrite
systems or TGreQL

zzzzzzzzzzzz

Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. ABmann

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultit Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Model-Driven Software Development in Technical Spaces (MOST)

41.2.1. Simple Reachability of Model Elements and
Models:
Path Abbreviations in Graph Analysis

» With model mapping languages, such as edge addition rewrite
systems or TGreQL

zzzzzzzzzzzz

Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. ABmann

Path Abbreviations for Simple Reachability

-- GrGen notation:

rule collectAllExpr(p:Proc) {
p -:Blocks-> b:Block;

b -:Stmts-> s:Stmt;

17 Model-Driven Software Development in Technical Spaces (MOST)

» Path abbreviations shorten paths in the manipulated graph.
» They may collect nodes into the neighborhood of other nodes.

» Ex.: Collection of Expressions for a procedure: edge addition

-- F-Datalog notation (edge decomposition):
ALLExprs(Proc, Expr) :-
Blocks(Proc,Block),
Stmts(Block, Stmt),
Exprs(Stmt, Expr).
-- if-then rules:
if Blocks(Proc,Block),
Stmts(Block,Stmt),
Exprs(Stmt, Expr)
then
AllExprs(Proc, Expr);
- regular expression notation (TGreQL):
ALLExprs := Proc Blocks.Stmts.Exprs Expr

s -:Exprs-> e:Expr;
modify {

p —AllExprs-> e;

EXPrs

Forward Slicing from a Point in the ProgramGraph (Single-
Source Multiple-Target (SSMT) Problems)

18 Model-Driven Software Development in Technical Spaces (MOST)

> A forward slice (SSMT-region) has one source, many targets and all intermediate nodes

» Theslice border is the border of the region

Blocks

ef U. ABmann

Linear Recursion for Remote Reachability

© Prof. U. ABmann

&

20 Model-Driven Software Development in Technical Spaces (MOST) (SStmt | : ..
~_ 7 reach[gen]*

» Reachability most often can be reduced to transitive closure of one or several relations.

> Query: "Does an Stmt S reach a expression E7"

» TC combines path abbreviation with recursion reach
= F-Datalog, GrGen: Left or right recursion

. Kleene *inTGreQL GStQ @
= Thick arrow in Fujaba / gen >

// TGreQL not killed
reach[gen]*(S:Stmt, E:EXpr)

// GrGen can use inheritance on
// nodes and edges
rule reachability (s:Node) {

S -:BasicEdge-> p:Node;

p -:RecursiveEdge-> e:Node;

modify {
S -:RecursiveEdge-> e:Node
ks
i
// F-Datalog
reach(S:Stmt,E:Expr) :- gen(S:Stmt,E:Expr), not killed(S:Stmt,E:Expr).
reach(S:Stmt,E:Expr) :- pred(S:Stmt,P), reach(P,E:Expr).

Ex.: Relating Nodes into Equivalence Classes

21 Model-Driven Software Development in Technical Spaces (MOST)

» Ex.: Computing equivalent nodes
» Context-sensitive problem, because mis not in the context of n

[F-Datalog baserule:
eq(m:Proc,n:Proc) :-
m.name == n.name. > eq
-—- If-then: @
== n.name)

If (m:Proc, n:Proc) and m.name ==

eq(m,n)

m.nNname == n.name m.name == n.name

- TgreQL regular expression:
m:Proc eq n.Proc if

Mm.Nname == n.name

// GrGen eq

rule buildGraph(m:Node, n:Node) {
m.Name == n.Name, @
modify { m:-eq-> n } m.name == n.name

2’ © Prof. U. ABmann

Ex. Relating Nodes into Equivalence Classes (Here: Value
Numbering, Synt. Expression Equivalence)

22 Model-Driven Software Development in Technical Spaces (MOST)

» Ex.: Computing structurally equivalent expressions i1:IntConst
with bi-recursive reachability -

i2:IntConst
» Question: “Which expression trees have the same

€q
structure?” i1:IntConst

--- F-Datalog baserule: @ @
eq(il:IntConst,i2:IntConst) :-

i1 ~= IntConst(Value),

12 ~= IntConst(Value). eq

--- recursive_rule:

eq(pl:Plus,p2:Plus) :- = @
pl ~= Plus(Type), C<.EXpr eq

p2 ~= Plus(Type),
Left(pl,el),
Right(p1,e2),
Left(p2,el3),
Right(p2,e4).
eq(el,el3),
eq(e2,e4).

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Prof. ABmann - Model-Driven Software Development in Technical Spaces

41.3. Deep Model Analysis (Value-Flow Analysis,
Data-Flow Analysis)

as General (Recursive) Graph Reachability over
Values

e with edge addition rewrite systems and F-Datalog

Data-flow Analysis for Reachability and Traceability

24 Model-Driven Software Development in Technical Spaces (MOST)

» Value-flow analysis (data-flow analysis) is a specific form of deep model analysis
asking reachability questions, i.e., computing the flow of data (value flow) through the
model or program, from variable assignments to variable uses

= Result: the value-flow graph (data-flow graph)

= |f the value flow analysis is done along the control-flow graph, it is called an
abstract interpretation of a program

EARS can do an abstract interpretation of a program, if they are rewriting
on the control-flow graph. Then, their rules implement transfer functions of
an abstract interpreter

» Examples of reachability problems:
= AllSuperClasses: find out for a class transitively all superclasses
= AllEnclosingScopes: find out for a scope all enclosing scopes
= AllEnclosingWholes: find out, for a part, its wholes into which it is included

= Reaching Definitions Analysis: Which Assignments (Definitions) of a variable can
reach which statement?

= Live Variable Analysis: At which statement is a variable live, will further be used?
= Busy Expression Analysis: Which expression will be used on all outgoing paths?

@ © Prof. U. ABmann

Reaching Definition Analysis By Abstract Interpretation with
EARS (Reachable Statements from Expression Definition)

25 Model-Driven Software Development in Technical Spaces (MOST)

> Query: “Which definitions of expressions reach
which statement?" reach-out

Assignments of a variable, temporary, or \
register B:Stmt —
defines-within

Usually computed for all positions before
and after a statement

» Graphrewrite rules implement an abstract reach-out
interpreter
= Oninstructions or on blocks of instructions @Stmt reactl- @
= Flow information is expressed with edges not killed

of relations “reach-*"

» Recursive system (via edge reach-in)
= (B reach-out E) := (E reaches end of block B)

» GrGen can express this via its generic reachability
rules

reach-out

reach-in

reach-out(B,E) :- defines-within(B,E).
reach-out(B,E) :- reach-in(B,E), not killed(B,E).
reach-in(B,E) :- pred(B,P), reach-out(P,E).

@ © Prof. U. ABmann

Code Motion Analysis

26 Model-Driven Software Development in Technical Spaces (MOST)

» Code motion is an essential transformation to speed up the generated code. However,
it is a complex transformation:

— Discovering loop-invariant expressions by data-flow analysis
- Moving loop-invariant expressions out of loops upward
— Code motion needs complex data-flow analysis
> Busy Code Motion (BCM) moves expressions as upward (early) as possible
» Lazy Code Motion (LCM)
= Moving expressions out of loops to the front of the loop, upward, but carefully:

= Moving expressions to an optimal place so that register lifetimes are shorter and
not too long (optimally early)
= LCM analysis computes this optimal early place of an expression [Knoop/Steffen]

Analyze an optimally early place for the placement of an expression
About 6 equation systems similar to reaching-definitions
= Every equation system is an EARS [ABmannOO0]

@ © Prof. U. ABmann

Excerpt from LCM Analysis with Overlaps

27 Model-Driven Software Development in Technical Spaces (MOST)

» Compute an optlmally early block for an expression (out of a loop)

Query: “Which expression is not isolated (social) at the beginning of a block?"

social_in
NOT earliest_out
= >. - @NCT s °$t-
I
social_out social_out

'/
o
/

comp_soc_in

.

Query: “Which expression is 'noi' isolated (social) at the beginning of a block?"

7 isolated_and_latest _in
c A
5 NOT social_in I NOT social_in Y
o | . | _ A
@ latest_in latest_in

TECHNISCHE
@ UNIVERSITAT

DRESDEN

Fakultit Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Model-Driven Software Development in Technical Spaces (MOST)

41.3.2 Regular Graph Reachability and Slicing

(A
N\
‘\v)

DRESDEN
concept
Exzellenz aus

Wissenschaft
und Kultur

Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. ABmann

Regular Graph Reachability

29 Model-Driven Software Development in Technical Spaces (MOST)

> If the query can be expressed as a regular expression, the
query is a regular graph reachability problem

» Kleene star is used as transitive closure operator
» TgreQL and Fujaba are languages offering Kleene *

-- F-Datalog notation:
ALLEXprs(Proc, Expr) :-
Block*(Proc,Block),
Stmt*(Block, Stmt),
Expr*(Stmt, Expr).

-- GrGen if-then rules:
if Proc -:Block*-> Block,
Block -:Stmt*-> Stmt,
Stmt -:Expr*-> Expr
modify {

Proc -:AllExprs-> Expr

}

- regular expression notation (TGreQL):
ALLEXprs := Proc Block*.Stmt*.Expr* EXxpr

ﬂll © Prof. U. ABmann

Static Slicing: Single-Source-Multiple-Target Regular
Reachability (Regular Reachable Dependencies)

30 Model-Driven Software Development in Technical Spaces (MOST)

> [Weiser] [Tip]
» Astaticslice is the region of a program or model dependent from one source node
(reachable by a regular reachability query in a dependency graph)

= Astaticslice is a single-source path regular reachability problem (SSPP) on the
dependency graph

= Astaticslice introduces path abbreviations from one entity to a region
» Aforwardslice is a dependent region in forward direction of the program

= Theuses of avariable

= The callees of a call

= Theuses of atype
» A backwardslice is a dependent region in backward direction of the program

= The assignments which can influence the value of a variable

= The callers of a method

= Thetype of avariable

» Slicing can map arbitrary entities in programs and models to other entities, based on a
regular graph expression

@ © Prof. U. ABmann

Reachability within Models and
Traceability between Models

31 Model-Driven Software Development in Technical Spaces (MOST)

» Data-flow analysis (graph reachability, slicing) can be done
= |ntraprocedurally (within one procedure)
= Interprocedurally (program-wide)
> Traceability is inter-model slicing and graph reachability
= inter-model: then it creates trace relations between requirements models,
design models, and code models
= [ntra-megamodel: trace relations can trace dependencies between all models in a
megamodel, e.g.,in an MDA
> A model mapping is an inter-model trace(-ability) graph

= Model mappings are very important for the dependency analysis and traceability
in megamodels and the construction of macromodels

@ © Prof. U. ABmann

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultit Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Model-Driven Software Development in Technical Spaces (MOST)

41.3.3 Context-Free Graph Reachability

» If arbitrary recursion patterns are allowed in F-Datalog and EARS
queries, we arrive at context-free graph reachability.

Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. ABmann

'@

==
DRESDEN
concept
Exzellenz aus
Wissenschaft
und Kultur

4

Free Recursion

33 Model-Driven Software Development in Technical Spaces (MOST)

> Transitive closure and regular graph reachability rely on regular recursion (linear
recursion) expressible with the Kleene-* on relations

» Beyond that, F-Datalog and EARS can describe other recursions
= Context-free recursions
= Cross-recursions
> Then, we speak of context-free graph reachability
= A context-free language describes graph reachability
> Applications:
= Complexintraprocedural value flow analyses
= |nterprocedural, whole-program analysis
= Interprocedural IDFS framework (Reps)

= Model mappings in a megamodel

@ © Prof. U. ABmann

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultit Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Model-Driven Software Development in Technical Spaces (MOST)

41.4 More on the Logic-Graph Isomorphism

» [Courcelle] discovered that many problems can be expressed in
logic (on facts) and in graph rewriting (on graphs)

(A
N\
‘\v)

concept
Exzellenz aus

Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. ABmann

Program and Model Analyses Covered by Graph
Reachability

35

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

» Graph Reachability Analysis can do abstract interpretation
= |fit adds analysis information to the program elements and their control-flow
graph
= Slicing is a Single-Source-Multiple-Target reachability analysis
» Every abstract interpretation where a mapping of the abstract domains to graphs can
be found.
= Monotone and distributive data-flow analysis
Control flow analysis (and callee analysis)
= Static-single-assignment (SSA) construction
= |nterprocedural IDFS analysis framework (Reps)

The Common Core of Logic, Graph Rewriting and Program
Analysis

36 Model-Driven Software Development in Technical Spaces (MOST)

> Graphrewriting, DATALOG and data-flow analysis have a common core: EARS
» Datalog query languages such as .QL or TgreQL can be extended by GRS

Datalog
F-Datalog
SQL

abstract interpretatiq

@ © Prof. U. ABmann

Relation DFA/F-DATALOG/GRS

37 Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

> Abstract interpretation (Data-flow analysis), F-DATALOG and graph rewrite systems
have a common kernel: EARS

= AsF-DATALQOG, graph rewrite systems can be used to query the graph.
» Contrary to F-DATALOG and query languages, edge graph rewrite systems
materialize their results instantly.
= Therefore, they are amenable for model analysis and mappings
= Graphrewriting is restricted to binary predicates and always yields all solutions
» General graph rewriting can do transformation, i.e. is much more powerful than F-

DATALOG.

= Graphrewriting enables a uniform view of the entire optimization process

= Thereis no methodology on how to specify general abstract interpretations
with graph rewrite systems

= |ninterprocedural analysis, instead of chaotic iteration special evaluation
strategies must be used [Reps?5] [Knoop92]

= Currently strategies have to be modeled in the rewrite specifications explicitly
» Uniform Specification of Analysis and Transformation [ABmann00]

= |If the program analysis (including abstract interpretation) is specified with GRS,
it can be unified with program transformation

TECHNISCHE
@ UNIVERSITAT

DRESDEN

Fakultit Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Model-Driven Software Development in Technical Spaces (MOST)

41.4.1 Implementation of Data-Flow Analysis in Tools

(A
N\
‘\v)

DRESDEN
concept
Exzellenz aus

Wissenschaft
und Kultur

Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. ABmann

Graph Rewrite Tools for Graph Reachability

39 Model-Driven Software Development in Technical Spaces (MOST)

» GrGen graph rewriting system (U Karlsruhe)
= Www.grgen.net

» Fujaba graph rewrite system www.fujaba.de

> (e)MOFLON graph rewrite system www.moflon.de
= TGG for Model Mapping, similar to QVT-R
= See chapter MOFLON

» AGG graph rewrite system (From Berlin and Marburg)
= http://user.cs.tu-berlin.de/~gragra/agg/

» VIATRAZ2 graph rewrite system on EMF
= http://eclipse.org/gmt/VIATRA2/

» GROOVE for the construction of ilnterpreters
= http://groove.cs.utwente.nl/

@ © Prof. U. ABmann

http://Www.grgen.net/
http://www.fujaba.de/
http://www.moflon.de/
http://eclipse.org/gmt/VIATRA2/
http://Www.grgen.net/
http://www.fujaba.de/
http://www.moflon.de/
http://eclipse.org/gmt/VIATRA2/

Optimix: using Efficient Evaluation Algorithms from Logic
Programming

40 Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

> Tool OPTIMIX uses the ,Order algorithm® scheme [ARBmMann00]

>

Generates target code of a programming language
Code generation uses variants of nested loop join algorithm
Works effectively on very sparse directed graphs

Bottom-up evaluation, as in F-Datalog; top-down evaluation as in Prolog possible,
with resolution

Optimizations from Datalog and F-Datalog

Bottom-up evaluation is normal, as in Datalog

Top-down evaluation as in Prolog possible, with resolution
Sometimes fixpoint evaluations can be avoided

Use of index structures possible

Linear bitvector union operations can be used

semi-naive evaluation

index structures

magic set transformation

transitive closure optimizations

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Prof. ABmann - Model-Driven Software Development in Technical Spaces

41.5 Model Mappings in In-Memory Megamodels
(Modellverkniipfung) and Their Use for Traceability

e Model mapping languages are model query languages who enter their
results again into the models as analysis information.

e They create model mappings which are important for macromodels.

Obligatory Literature

4?2 Model-Driven Software Development in Technical Spaces (MOST)

» [BERSO08] Daniel Bildhauer, Jiirgen Ebert, Volker Riediger, and Hannes Schwarz. Using

the TGraph Approach for Model Fact Repositories. . In: Proceedings of the
International Workshop on Model Reuse Strategies (MoRSe 2008). S. 9--18.

» Hannes Schwarz, Jirgen Ebert, and Andreas Winter. Graph-based traceability: a
comprehensive approach. Software and System Modeling, 9 (4):473-492, 2010.

@ © Prof. U. ABmann

Inter-Model Analysis with Reachability

43 Model-Driven Software Development in Technical Spaces (MOST)

> Deep model analysis: Graph reachability analyzers create direct mappings (graphs)
from indirect mappings (abbreviate intensional or recursive mappings)

= for reachability of model elements

= to create model slicings (projections to some subgraphs)

= to preparerefactorings, transformers, and optimizers
For models: For model refactoring, adaptation and specialization, weaving
and composition
For code: Portability to new processor types and memory hierarchies

= For optimization (time, memory, energy consumption)

> For traceability of model elements in other models. Traceability is reachability of model
elements over several models

@ © Prof. U. ABmann

Inter-Model Relationships in The ReDoDeCT Macromodel

44 Model-Driven Software Development in Technical Spaces (MOST)

» Aninter-model relationship is a relationship between model elements of different

models
= Here: expresses mapping between the Requirements model,
Documentation, Design model, Code, Test cases

» The ReDoDeCT macromodel relies on inter-model relationships between all 4 models

@ © Prof. U. ABmann

Q12: The ReDoDeCT Problem and its Macromodel

45 Model-Driven Software Development in Technical Spaces (MOST)

» The ReDoDeCT problem is the problem how requirements, documentation, design,
code, and tests are related (— V model)

» Mappings between the Requirements model, Documentation files, Design model, Code,
Test cases
> A ReDoDeCT macromodel has maintained mappings between all 5 models

Requirements Design Code Test

Package Bill {Hkage TestBill {
Uses Order; ses TestOrder;

Class Counting { Proc testCounting

Procedure count IS IS
End;
P }
X ”e Test er{
rder { Uses Bill;
Uses Biir, s TestOrd| ring{
)4 Class Ordering rocedure
X Procedure count IS testCount IS
End;

}
}

“ Documentation

@ © Prof. U. ABmann

<
=

@ © Prof. U. ABmann

» An(direct) inter-model relationship is defined between top-level metaclasses in the models of the macromodel
» The ReDoDeCT macromodel defines on direct inter-model relationships on RequirementsElement, DesignElement,
CodeElement, TestElement, DocumentationElement
46 Madel-Driven Saftware Develanment in Technical Shaces (MOST)

Requirements Design Code Test ,
Requirements satisfies Design implements Tl verifies o descr pocumentatior
Element Element Element Element Element
instance-of instance-of > instance-of instance-of

~
. Package TestBill {
L - / ‘ Packagecli’:l H{_= Uses. TestOrder;
- > - > UsesOrder; Proc testCounting
. System \ Class Counting { IS
_— X /“‘ Procedure count IS \
O : End; End; A
/ -~ Component } r
/ i - i/// g }
W - 4 Component . _a| _ // ,;J\.Kag/.el lTeStO ra r {
/ //// ! - \H‘ — Se§ | ;
| | 7 S TestOrder)
e / | N Class Orderlng)‘/ T Erecedie Bl
W Node i \ \Er{jcedure count IS testCount IS
. - - i ; End;
I Node } AN }
) } I linstance-of
EZGLFifenrﬁte'ﬁ?il | Non-Functional - 7D79,C,l:‘l,m,e, ntatl ; Goal A] Epl B
Requiremens B

Specification of Traceability in ReDeCT with GrGen and
TGreQL

47 Model-Driven Software Development in Technical Spaces (MOST) [BERSO8]

> Direct inter-model relationships form the basis of queries in the macromodel. Allow for
the definition of

= Traceability relations between model elements of different models
= Hyperedges (tuples) between several model elements of different models

» Any query language can be used for model mappings, if their results are entered into
the model resp. macromodel

// GrGen notation: // Defining a inter-model hyperedge (tuple) in TGreQL [BERSO8]
rule collectinterModelDep(r:Req, d:Des, c:Code, t:Test) { elementsin(
r -reqs-> req:RequirementsElement; from req:V{RequirementsElement}, archElem:V{DesignElement},

desElem:V{DesignElement}, class:V{ClassDefinition}
with req.name="Count Bill"
and req <——{Satisfies} archElem
and archElem <——{Realize} desElem
and desElem <——{Implements} class

req.name="Count Bill";

d -:arch-> archElem:DesignElement;
archElem -:Satisfies->req;

d -:design-> desElem:DesignElement;
desElem -:Realize->archElem;

report req, archElem, desElem, class

¢ —:has-> class:Class;

class -:Implements->desElem;

The End - Appendix
Comprehension Questions

48 Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

» Why do EARS correspond to binary Datalog? why is EARS a similar query language
as.QL?

» Explain program slicing as an application of graph reachability.

> Why isregular graph reachability “regular”? What is the different to context-free
graph reachability?

» How do you create a model mapping with regular graph reachability?

» Explain a typical data-flow analysis with EARS. Why do EARS rules that rewrite the
information “around” the control-flow graph form an abstract interpreter?

» EARS can rewrite models. How would you specify a model refactoring engine with
EARS?

» Why are EARS good for traceability in megamodels?

11N
VERSITA

Q) s

Fakultét Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Prof. ABmann - Model-Driven Software Development in Technical Spaces

2

41. Deep Graph Model Analysis and Macromodels:
Model and Program Analysis with (Recursive)
Graph Reachability

How Context-Sensitive Constraints can be Checked in a Model

Prof. Dr. Uwe ABmann 1) Graph Reachability as Deep Analysis
1) EARS
1) Regular graph reachability and Slicing
2) Graphsslicing
3) Value-flow analysis
1) Context-free graph reachability
4) More on the Graph-Logic Isomorphism
1) Implementation in Tools
5) Model Mappings in Megamodels

Softwaretechnologie
Technische Universitit Dresden
Version 21-1.1, 29.01.22

Literature

2 Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

> GrGen web site http://www.info.uni-karlsruhe.de/software/grgen/

» GrGen User Manual
http://www.info.uni-karlsruhe.de/software/grgen/GrGenNET-Manual.pdf

» [ABmann00] Uwe ABmann. Graph rewrite systems for program optimization. ACM
Transactions on Programming Languages and Systems (TOPLAS), 22(4):583-637, June
2000.

= http://portal.acm.org/citation.cfm?id=363914

» Tom Mens. On the Use of Graph Transformations for Model Refactorings. GTTSE

2005, Springer, LNCS 4143
- http://www.springerlink.com/content/5742246115107431/

> Thomas Reps. Program analysis via graph reachability. Information and Software
Technology, 40(11-12):701-726, November 1998. Special issue on program slicing.

» Mark Weiser. Program slicing. IEEE Transactions on Software Engineering, SE-
10(4):352-357, July 1984.

> Frank Tip. A survey of program slicing techniques. Journal of Programming Languages,
3:121-189,1995.

Literature on the Graph-Logic-Isomorphism

3 Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

>

B. Courcelle. Graphs as relational structures: An algebraic and logical approach. InH.
Ehrig, H.-J. Kreowski, and G. Rozenberg, editors, 4™ International Workshop On Graph
Grammars and Their Application to Computer Science, volume 532 of Lecture Notes in
Computer Science, pages 238-252. Springer, March 1990.

B. Courcelle. The logical expression of graph properties (abstract). In H. Ehrig, H.-J.
Kreowski, and G. Rozenberg, editors, 4th International Workshop On Graph
Grammars and Their Application to Computer Science, volume 532 of Lecture Notes in
Computer Science, pages 38-40. Springer, March 1990.

B. Courcelle. Graph rewriting: An algebraic and logic approach. In Jan van Leeuwen,
editor, Handbook of Theoretical Computer Science, pages 193- 242, Amsterdam, 1990.
Elsevier Science Publishers.

Other References

4 Model-Driven Software Development in Technical Spaces (MOST)

» Uwe ABmann. OPTIMIX, A Tool for Rewriting and Optimizing Programs. In Graph
Grammar Handbook, Vol. Il. Chapman-Hall, 1999.

> K. Lano. Catalogue of Model Transformations
- http://www.dcs.kcl.ac.uk/staff/kcl/tcat.pdf

@ © Prof. U. ABmann

TECHNISCHE
@ UNIVERSITAT
DRESDEN

kultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

41.1. Introduction to Diagrammatic Storyboard
Rule Notation for Graph Rewriting

Originally introduced by Fujaba www.fujaba.de (tool now
unsupported)

Exzellenz aus
Wissenschaft
uuuuuuuuu

Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. ABmann

Fujaba

6 Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

> Fujabais a MetaCASE-tool based on GRS with home-grown metalanguage and metamodel

» Basic technology: graph pattern matching and rewriting

‘s Project Explorer 12

e~ =o

© Gongof Four e o __ 6 cip ot Coon G,

52 WestherExample_20bs -

s

i JRE System Libeary (<6 0 13)

[annoxannotations

5] BehavioralPatternsCatalog.mi

%) EchpsePatternsCatalog fpr.gz [Eclipse P.
& Eclipse Patters Catalog

@ Disgrams
@ Model
(& Patterns.
(&5 Behavioral Pattems
(& Structural Pattern Catalogs.
@5 Structural Patterns.
4 ArrayMultiReference
34 AssocSetMethod
14 Association
T Anributenceess
34, Bridge
74 Command
i Composite
. ContainerAccess

sp Observer)

LY
| * | 45 Palette 3
| s
23 Marquee

i Structural Pattern.
5 Object
O Annatation
E Link
I Path
) Constraint
] Opticnal Fragment

T
Project | 17 Observer 13 |

[Fe—— 2
2= Qutline & CEids EI."EI Propeties 12 [Generstor Console | (2. Annotations |) Structursl Inference Console | =0
! = Otject
| name: observerClass
‘modifier: none =
| trigger. yes. -
type: UMLClass -l
classifier: class. =
E—— = weight: 10

http://www.fujaba.de/typo3t

emp/pics/604c5c6¢c9e.png

Fujaba Storyboard Diagrams for Adding and Removing Graph
Fragments

7

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

> Storyboards are activity diagrams in which activities are GRS (graph notation with
colors)

> Green color: adding model fragments; Red color: deleting them

> Pool starts at node this and reaches into the object net

> GRS can be embedded into Petri Nets, DFG and other BSL

Counter:move Q: Void
$ Storyboard

Diagram

2

11N]
DR)

Fakultét Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Prof. ABmann - Model-Driven Software Development in Technical Spaces

41.1 Using EARS (Binary Edge Addition)for Deep

Analysis of Models and Mappings of Models and
Code

- and as the Bridge to Graph Rewriting

Graph reachability engines are analysis tools answering questions about the deeper structure of
models and programs

EARS can be employed for regular graph reachability, context-free graph reachability, slicing,
data-flow analysis

e And traceability for inter-model relationships

EARS for Model Mapping

9 Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

>

>

Edge addition rewrite systems (EARS)
compute direct binary relations for
remotely reachable parts of a graph and
amodel

= They abbreviate long paths in

models

EARS can be used for reachability of
elements in models and model mapping:

= Transitive closure

= Regular path reachability

= Context-free path reachability
EARS form the bridge to graph rewriting
and graph-rewriting based model
transformations

They correspond to binary Datalog

Xprs

Model Analysis with Graph Reachability

10 Model-Driven Software Development in Technical Spaces (MOST)

>

@ © Prof. U. ABmann

Use the graph-logic-isomorphism: Represent everything in a program or a model as
directed graphs

- Program code (control flow, statements, procedures, classes)

- Model elements (states, transitions, ...)

- Analysis information (abstract domains, flow info ...)

- Directed graphs with node and edge types, node attributes, one-edge condition

(no multi-graphs)

Use edge decomposition as textual notation
Use edge addition rewrite systems (EARS), Datalog and other graph reachability
specification languages to

- Query the graphs (on values and patterns)

- Analyze the graphs (on reachability of nodes)

- Map the graphs to each other (model mapping)
Later: Use graph rewrite systems (GRS) to construct and augment the graphs,
transform the graphs

Specification Process with Graph Rewrite Systems and
EARS

11 Model-Driven Software Development in Technical Spaces (MOST)

1)Specification of the data model (graph schema) with a graph-like DDL (ERD, MOF,
GXL, UML or similar):

* Schema of the program representation: program code as objects and basic
relationships. This data, i.e., the start graph, is provided as result of the parser

* Schema of analysis information (the infered predicates over the program objects)
as objects or relationships
2)Flat model and program analysis (preparing the abstract interpretation)
* Querying graphs, enlarging graphs, static slicing, Reachability
* Equivalence classing
* Materializing implicit knowledge to explicit knowledge
3)Deep model and program analysis
Inter-model reachability (traceability), materializing model mappings
* Abstract Interpretation (program analysis as interpretation)
* Specifying the transfer functions of an abstract interpretation of the program with
graph rewrite rules on the analysis information
4)Model and Program transformation Transforming the program representation
* Optimization such as peephole optimization or constant folding (context-free)

* Code motion (Context-sensitive)

@ © Prof. U. ABmann

Q14: A Simple Program (Code) Model (Schema) in MOF

12 Model-Driven Software Development in Technical Spaces (MOST)

Program representation: Analysis information: InfoNode (blue)

ProgramNode (green) ExprEqClass
Proc : InRegister
blocks
Y eft
Block
stmts y Expr
Stmt / ‘>\

Leaf

Register

AsgdReg

String
Const

If Join Plus IntConst

AssReg

UseReg

Deep Analysis and Abstract Interpretation with Graph
Rewriting

13 Model-Driven Software Development in Technical Spaces (MOST)

> A graph-rewriting based abstract interpreter stores, for every program element of the program
graph (Expr, Stmt, Block, Proc, Class < ProgramElement) three “truths” (values) for every node in

the analysis information (InfoNode):

= p:ProgramFElement -:predicate_in-> i:InfoNode
// predicate_in(p,i)

= p:ProgramElement -:predicate_ within-> i:InfoNode
// predicate_within(p,i)

= p:ProgramFElement -:predicate__out-> i:InfoNode
// predicate_out(p,i)

> Values of program elements are encoded as an edge between program elements and InfoNodes

/—> pred_in <\‘

Program
Element | pred_within |« | InfoNode

\’ pred_out 4—/

@ © Prof. U. ABmann

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Model-Driven Software Development in Technical Spaces (MOST)

41.2. Reachability of Model Elements and Models for
Model Analysis and Mapping

> With model mapping languages, such as edge addition rewrite
systems or TGreQL

DRESDEN
concept

Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. ABmann

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Model-Driven Software Development in Technical Spaces (MOST)

41.2.1. Simple Reachability of Model Elements and
Models:
Path Abbreviations in Graph Analysis

> With model mapping languages, such as edge addition rewrite
systems or TGreQL

DRESDEN
concept
gggggggggg

uuuuuuuuu

Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. ABmann

- GrGen notation:

e e . ore Fule collectAllExpr(p:Proc) {
Path Abbreviations for Simple Reachability b -Blocks-> bBlock:

b -:Stmts-> s:Stmt;

s -:Exprs-> e:Expr;

17 Model-Driven Software Development in Technical Spaces (MOST)

modify {
» Path abbreviations shorten paths in the manipulated graph. p ~AllEXprs-> e;

> They may collect nodes into the neighborhood of other nodes.
> Ex.: Collection of Expressions for a procedure: edge addition

-- F-Datalog notation (edge decomposition):
ALlExprs(Proc, Expr) :-

Blocks(Proc,Block),

Stmts(Block, Stmt),

Exprs(Stmt, Expr).

-- if-then rules:

Blocks

b:Block

lif Blocks(Proc,Block), AllExprs
Stmts(Block, Stmt), Stmts
Exprs(Stmt, Expr) v
then
s:Stmt

AllExprs(Proc, Expr);
- regular expression notation (TGreQL):
ALLExprs := Proc Blocks.Stmts.Exprs Expr Exprs

Forward Slicing from a Point in the ProgramGraph (Single-
Source Multiple-Target (SSMT) Problems)

18 Model-Driven Software Development in Technical Spaces (MOST)

» Aforward sslice (SSMT-region) has one source, many targets and all intermediate nodes

> Theslice border is the border of the region

b:Block
XP

ef U. ABmann

Linear Recursion for Remote Reachability

20 Model-Driven Software Development in Technical Spaces (MOST) (S:Stmt ‘;@
reach[gen]*

» Reachability most often can be reduced to transitive closure of one or several relations.
> Query: “Does an Stmt S reach a expression E7*

» TC combines path abbreviation with recursion

reach
= F-Datalog, GrGen: Left or right recursion -
= Kleene *in TGreQL . .
i o G.Stmt gen E:Expr
= Thick arrow in Fujaba
7 TGreQL not killed

reach[gen]*(S:Stmt, E:Expr)

/ GrGen can use inheritance on
/ nodes and edges

rule reachability (s:Node) {

s -:BasicEdge-> p:Node;

p -:RecursiveEdge-> e:Node;
modify {

s -:RecursiveEdge-> e:Node

© Prof. U. ABmann

=

1- gen(S:Stmt,E:Expr), not killed(S:Stmt,E:Expr).

reach(S:Stmt,E:Expr) :- pred(S:Stmt,P), reach(P,E:Expr).

Ex.: Relating Nodes into Equivalence Classes

21 Model-Driven Software Development in Technical Spaces (MOST)

> Ex.: Computing equivalent nodes
» Context-sensitive problem, because mis not in the context of n

—

F-Datalog baserule:
leq(m:Proc,n:Proc) :-

eq
CniProc >

6

m.name == n.name.
-- If-then:
If (m:Proc, n:Proc) and m.name == n.name)

eq(m,n) m.name == n.name m.name == n.name

TgreQL regular expression:

:Proc eq n.Proc if
.name == n.name

/ GrGen
rule buildGraph(m:Node, n:Node) {
m.Name == n.Name;

modify { m:-eq-> n }

D
o]

m.name == n.name

© Prof. U. ABmann

Ex. Relating Nodes into Equivalence Classes (Here: Value
Numbering, Synt. Expression Equivalence)

22 Model-Driven Software Development in Technical Spaces (MOST)

> Ex.: Computing structurally equivalent expressions i1:IntConst i2:IntConst
with bi-recursive reachability -

» Question: “Which expression trees have the same eq
structure?”

é

—-- F-Datalog baserule: @
leq(il:IntConst,i2:IntConst) :-

i1 ~= IntConst(Value),

i2 ~= IntConst(Value). @ €q @

--- recursive_rule:
leq(pl:Plus,p2:Plus) :-
pl ~= Plus(Type), @ €q @
p2 ~= Plus(Type),
Left(pl,el), -

Right(p1,e2),
Left(p2,e3),
Right(p2,e4).
eq(el,e3),
eq(e2,e4).

W

Fakultét Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Prof. ABmann - Model-Driven Software Development in Technical Spaces

41.3. Deep Model Analysis (Value-Flow Analysis,

Data-Flow Analysis)
as General (Recursive) Graph Reachability over

Values

02Z

11N
MAE
)

e with edge addition rewrite systems and F-Datalog

Data-flow Analysis for Reachability and Traceability

24 Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

Value-flow analysis (data-flow analysis) is a specific form of deep model analysis
asking reachability questions, i.e., computing the flow of data (value flow) through the
model or program, from variable assignments to variable uses

= Result: the value-flow graph (data-flow graph)

= [f the value flow analysis is done along the control-flow graph, it is called an
abstract interpretation of a program
EARS can do an abstract interpretation of a program, if they are rewriting
on the control-flow graph. Then, their rules implement transfer functions of
an abstract interpreter
Examples of reachability problems:
= AllSuperClasses: find out for a class transitively all superclasses
= AllEnclosingScopes: find out for a scope all enclosing scopes
= AllEnclosingWholes: find out, for a part, its wholes into which it is included
= Reaching Definitions Analysis: Which Assignments (Definitions) of a variable can
reach which statement?
= Live Variable Analysis: At which statement is a variable live, will further be used?
= Busy Expression Analysis: Which expression will be used on all outgoing paths?

Reaching Definition Analysis By Abstract Interpretation with
EARS (Reachable Statements from Expression Definition)

25

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

>

Query: “Which definitions of expressions reach
which statement?"

Assignments of a variable, temporary, or
register

= Usually computed for all positions before
and after a statement

Graph rewrite rules implement an abstract
interpreter

= Oninstructions or on blocks of instructions

= Flow information is expressed with edges
of relations “reach-*"

Recursive system (via edge reach-in)
= (Breach-outE) := (E reaches end of block B)

GrGen can express this via its generic reachability
rules

reach-out .
reach-out N
not killed -

reach-out

reach-in

reach-out(B,E) :- defines-within(B,E).
reach-out(B,E) :- reach-in(B,E), not killed(B,E).
reach-in(B,E) :- pred(B,P), reach-out(P,E).

Code Motion Analysis

26 Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

» Code motion is an essential transformation to speed up the generated code. However,
it is a complex transformation:
- Discovering loop-invariant expressions by data-flow analysis
- Moving loop-invariant expressions out of loops upward
- Code motion needs complex data-flow analysis
> Busy Code Motion (BCM) moves expressions as upward (early) as possible
» Lazy Code Motion (LCM)
= Moving expressions out of loops to the front of the loop, upward, but carefully:
= Moving expressions to an optimal place so that register lifetimes are shorter and
not too long (optimally early)
= LCM analysis computes this optimal early place of an expression [Knoop/Steffen]
Analyze an optimally early place for the placement of an expression
About 6 equation systems similar to reaching-definitions

= Every equation system is an EARS [ABmann00]

Excerpt from LCM Analysis with Overlaps

27 Model-Driven Software Development in Technical Spaces (MOST)

» Compute an optimally early block for an expression (out of a loop)

Query: “Which expression is not isolated (social) at the beginning of a block?"

social_in
NOT earliest_out
H - BTock NOT earliest o t
social_out social_out

‘/
PR
Re

comp_ SOC n

Query: “Which expression is /noi' isolated (social) at the beginning of a block?"

./ isolated_and_latest_in
§ .m».- NOT social_in
o}
s
@ latest_in latest_in

TECHNISCHE
@ UNIVERSITAT

DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Model-Driven Software Development in Technical Spaces (MOST)

41.3.2 Regular Graph Reachability and Slicing

Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. ABmann

'®

s
DRESDEN
concept
Excellenz aus
Wissenschaft
und Kuttur

y

Regular Graph Reachability

29 Model-Driven Software Development in Technical Spaces (MOST)

> If the query can be expressed as a regular expression, the
query is a regular graph reachability problem

» Kleene star is used as transitive closure operator
» TqgreQL and Fujaba are languages offering Kleene *

-- F-Datalog notation:
ALlExprs(Proc,Expr) :-
Block* (Proc, Block),
Stmt*(Block, Stmt),
Expr*(Stmt, Expr).

-- GrGen if-then rules:

if Proc -:Block*-> Block,
Block -:Stmt*-> Stmt,
Stmt -:Expr*-> Expr
modify {

Proc -:AllExprs-> Expr
}
- regular expression notation (TGreQL):
ALlExprs := Proc Block*.Stmt*.Expr* Expr

ﬂ! © Prof. U. ABmann

Xprs

Static Slicing: Single-Source-Multiple-Target Regular
Reachability (Regular Reachable Dependencies)

30 Model-Driven Software Development in Technical Spaces (MOST)

> [Weiser] [Tip]
» Astaticslice is the region of a program or model dependent from one source node
(reachable by a regular reachability query in a dependency graph)
= Astaticslice is a single-source path regular reachability problem (SSPP) on the
dependency graph
= Astaticslice introduces path abbreviations from one entity to a region
» Aforward s slice is a dependent region in forward direction of the program
= Theuses of avariable
= The callees of acall
= Theusesof atype
> Abackward slice is a dependent region in backward direction of the program
= The assignments which can influence the value of a variable
= Thecallers of a method
= Thetype of avariable

regular graph expression

@ © Prof. U. ABmann

» Slicing can map arbitrary entities in programs and models to other entities, based on a

Reachability within Models and
Traceability between Models

31 Model-Driven Software Development in Technical Spaces (MOST)

» Data-flow analysis (graph reachability, slicing) can be done
= Intraprocedurally (within one procedure)
= Interprocedurally (program-wide)
> Traceability is inter-model slicing and graph reachability
= inter-model: then it creates trace relations between requirements models,
design models, and code models
= Intra-megamodel: trace relations can trace dependencies between all models in a
megamodel, e.g.,in an MDA
» A model mapping is an inter-model trace(-ability) graph
= Model mappings are very important for the dependency analysis and traceability
in megamodels and the construction of macromodels

@ © Prof. U. ABmann

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Model-Driven Software Development in Technical Spaces (MOST)

41.3.3 Context-Free Graph Reachability

> If arbitrary recursion patterns are allowed in F-Datalog and EARS
queries, we arrive at context-free graph reachability.

Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. ABmann

DRESDEN
concept
Excellenz aus

Free Recursion

33 Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

Transitive closure and regular graph reachability rely on regular recursion (linear
recursion) expressible with the Kleene-* on relations

Beyond that, F-Datalog and EARS can describe other recursions
= Context-free recursions
= Cross-recursions
Then, we speak of context-free graph reachability
= A context-free language describes graph reachability
Applications:
= Complex intraprocedural value flow analyses
= Interprocedural, whole-program analysis
= Interprocedural IDFS framework (Reps)
= Model mappings in a megamodel

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Model-Driven Software Development in Technical Spaces (MOST)

41.4 More on the Logic-Graph Isomorphism

> [Courcelle] discovered that many problems can be expressed in
logic (on facts) and in graph rewriting (on graphs)

DRESDEN
concept
Excellenz aus

Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. ABmann

Program and Model Analyses Covered by Graph
Reachability

35 Model-Driven Software Development in Technical Spaces (MOST)

» Graph Reachability Analysis can do abstract interpretation
= Ifit adds analysis information to the program elements and their control-flow
graph
= Slicing is a Single-Source-Multiple-Target reachability analysis
» Every abstract interpretation where a mapping of the abstract domains to graphs can
be found.
= Monotone and distributive data-flow analysis
Control flow analysis (and callee analysis)
= Static-single-assignment (SSA) construction
= Interprocedural IDFS analysis framework (Reps)

@ © Prof. U. ABmann

The Common Core of Logic, Graph Rewriting and Program
Analysis

36 Model-Driven Software Development in Technical Spaces (MOST)

> Graph rewriting, DATALOG and data-flow analysis have a common core: EARS
> Datalog query languages such as .QL or TgreQL can be extended by GRS

Datalog
F-Datalog
SQL

@ © Prof. U. ABmann

Relation DFA/F-DATALOG/GRS

37 Model-Driven Software Development in Technical Spaces (MOST)

» Abstract interpretation (Data-flow analysis), F-DATALOG and graph rewrite systems
have acommon kernel: EARS
= AsF-DATALOG, graph rewrite systems can be used to query the graph.
» Contrary to F-DATALOG and query languages, edge graph rewrite systems
materialize their results instantly.
= Therefore, they are amenable for model analysis and mappings
= Graphrewriting is restricted to binary predicates and always yields all solutions
> General graph rewriting can do transformation, i.e. is much more powerful than F-
DATALOG.
= Graphrewriting enables a uniform view of the entire optimization process
= There is no methodology on how to specify general abstract interpretations
with graph rewrite systems
= Ininterprocedural analysis, instead of chaotic iteration special evaluation
strategies must be used [Reps95] [Knoop92]
= Currently strategies have to be modeled in the rewrite specifications explicitly
» Uniform Specification of Analysis and Transformation [ABmann00]

= If the program analysis (including abstract interpretation) is specified with GRS,
it can be unified with program transformation

@ © Prof. U. ABmann

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Model-Driven Software Development in Technical Spaces (MOST)

41.4.1 Implementation of Data-Flow Analysis in Tools

DRESDEN
concept
Excellenz aus

Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. ABmann

Graph Rewrite Tools for Graph Reachability

39 Model-Driven Software Development in Technical Spaces (MOST)

> GrGen graph rewriting system (U Karlsruhe)
= Www.grgen.net

> Fujaba graph rewrite system www.fujaba.de

> (e)MOFLON graph rewrite system www.moflon.de
= TGG for Model Mapping, similar to QVT-R
= See chapter MOFLON

» AGG graph rewrite system (From Berlin and Marburg)
= http://user.cs.tu-berlin.de/~gragra/agg/

> VIATRA2 graph rewrite system on EMF
= http://eclipse.org/gmt/VIATRA2/

» GROOVE for the construction of iInterpreters
= http://groove.cs.utwente.nl/

@ © Prof. U. ABmann

Optimix: using Efficient Evaluation Algorithms from Logic
Programming

40 Model-Driven Software Development in Technical Spaces (MOST)

» Tool OPTIMIX uses the ,Order algorithm“ scheme [ABmann00]
= Generates target code of a programming language
Code generation uses variants of nested loop join algorithm
= Works effectively on very sparse directed graphs

= Bottom-up evaluation, as in F-Datalog; top-down evaluation as in Prolog possible,
with resolution

» Optimizations from Datalog and F-Datalog
= Bottom-up evaluation is normal, as in Datalog
= Top-down evaluation as in Prolog possible, with resolution
= Sometimes fixpoint evaluations can be avoided
= Use of index structures possible
= Linear bitvector union operations can be used
= semi-naive evaluation
= index structures
= magic set transformation
= transitive closure optimizations

@ © Prof. U. ABmann

2

11N
DR)

Fakultét Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Prof. ABmann - Model-Driven Software Development in Technical Spaces

41.5 Model Mappings in In-Memory Megamodels
(Modellverknupfung) and Their Use for Traceability

e Model mapping languages are model query languages who enter their
results again into the models as analysis information.

e They create model mappings which are important for macromodels.

41

Obligatory Literature

42 Model-Driven Software Development in Technical Spaces (MOST)

» [BERS08] Daniel Bildhauer, Jirgen Ebert, Volker Riediger, and Hannes Schwarz. Using
the TGraph Approach for Model Fact Repositories. . In: Proceedings of the
International Workshop on Model Reuse Strategies (MoRSe 2008). S. 9--18.

» Hannes Schwarz, Jirgen Ebert, and Andreas Winter. Graph-based traceability: a
comprehensive approach. Software and System Modeling, 9 (4):473-492, 2010.

@ © Prof. U. ABmann

Inter-Model Analysis with Reachability

43 Model-Driven Software Development in Technical Spaces (MOST)

» Deep model analysis: Graph reachability analyzers create direct mappings (graphs)
from indirect mappings (abbreviate intensional or recursive mappings)
= for reachability of model elements
= to create model slicings (projections to some subgraphs)
= to prepare refactorings, transformers, and optimizers
For models: For model refactoring, adaptation and specialization, weaving
and composition
For code: Portability to new processor types and memory hierarchies
= For optimization (time, memory, energy consumption)
> For traceability of model elements in other models. Traceability is reachability of model
elements over several models

@ © Prof. U. ABmann

Inter-Model Relationships in The ReDoDeCT Macromodel

44 Model-Driven Software Development in Technical Spaces (MOST)

> Aninter-model relationship is a relationship between model elements of different

models
= Here: expresses mapping between the Requirements model,
Documentation, Design model, Code, Test cases

» The ReDoDeCT macromodel relies on inter-model relationships between all 4 models

@ © Prof. U. ABmann

Q12: The ReDoDeCT Problem and its Macromodel

45

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

> The ReDoDeCT problem is the problem how requirements, documentation, design,
code, and tests are related (— V model)

> Mappings between the Requirements model, Documentation files, Design model, Code,
Test cases

> A ReDoDeCT macromodel has maintained mappings between all 5 models

Code Test
Package Bill { Hﬁkage TestBill {
Uses Order; ses TestOrder;

Class Counting { Proc testCounting
Procedure count IS 1S

Requirements

End;
}

e Test
Uses Bill;

>0

Uses Birr; TestOrd ring{
Class Ordering, rocedure
Procedure count IS testCount IS
B End;

}
}

-\- Documentation

>

>

An (direct) inter-model relationship is defined between top-level metaclasses in the models of the macromodel

The ReDoDeCT macromodel defines on direct inter-model relationships on RequirementsElement, DesignElement,
CodeElement, TestElement, DocumentationElement

46

M2

Requirements

Requirements
Element

instance-of

ent

satisfies

-

Test

——

| verifies |

| Element

Element

Test Igescr Documentation

Design Code
Design implements Code
Element Element |

instance-of instance-of

<
=

-

N

>0

Y

instance-of

Package TestBill {

dses.TestOrder;

Package Bill {

Uses Order; <

Class Counting {
Procedure count IS
End;

}

rder {

> Pack

Uses Bir;
Class Ordering
Procedure count IS

Proc testCounting
1S

Procedure
testCount IS
End;

instance-of
L |

@ © Prof. U. ABmann

Specification of Traceability in ReDeCT with GrGen and
TGreQL

47 Model-Driven Software Development in Technical Spaces (MOST)

[BERS08]
> Direct inter-model relationships form the basis of queries in the macromodel. Allow for
the definition of
= Traceability relations between model elements of different models
= Hyperedges (tuples) between several model elements of different models
>

Any query language can be used for model mappings, if their results are entered into
the model resp. macromodel
/ GrGen notation:

/ Defining a inter-model hyperedge (tuple) in TGreQL [BERS08]

rule collectinterModelDep(r:Req, d:Des, c:Code, t:Test) { lelementsin(
r -reqs-> req:RequirementsElement; from req:V{RequirementsElement}, archElem:V{DesignElement},
req.name="Count Bill"; desElem:V{DesignElement}, class:V{ClassDefinition}
d -:arch-> archElem:DesignElement; with req.name="Count Bill"
archElem -Satisfies-req; and req <——{Satisfies} archElem

and archElem <——{Realize} desElem

and desElem <——{Implements} class
report req, archElem, desElem, class
lend

d -:design-> desElem:DesignElement;
desElem -:Realize->archElem;

¢ —-has-> class:Class;
class =Implements->desElem;

The End - Appendix
Comprehension Questions

48 Model-Driven Software Development in Technical Spaces (MOST)

> Why do EARS correspond to binary Datalog? why is EARS a similar query language
as.QL?

> Explain program slicing as an application of graph reachability.

» Why is regular graph reachability “regular”? What is the different to context-free
graph reachability?

> How do you create a model mapping with regular graph reachability?

> Explain a typical data-flow analysis with EARS. Why do EARS rules that rewrite the
information “around” the control-flow graph form an abstract interpreter?

> EARS can rewrite models. How would you specify a model refactoring engine with
EARS?

> Why are EARS good for traceability in megamodels?

@ © Prof. U. ABmann

