
Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Software Development in Technical Spaces

41. Deep Graph Model Analysis and Macromodels:
Model and Program Analysis with (Recursive)
Graph Reachability
How Context-Sensitive Constraints can be Checked in a Model

Prof. Dr. Uwe Aßmann

Softwaretechnologie

Technische Universität Dresden

Version 21-1.1, 29.01.22

1) Graph Reachability as Deep Analysis

1) EARS

1) Regular graph reachability and Slicing

2) Graph slicing

3) Value-flow analysis

1) Context-free graph reachability

4) More on the Graph-Logic Isomorphism

1) Implementation in Tools

5) Model Mappings in Megamodels

 ©
 P

ro
f.

U
. A

ß
m

an
n

2 Model-Driven Software Development in Technical Spaces (MOST)

Literature

► GrGen web site http://www.info.uni-karlsruhe.de/software/grgen/

► GrGen User Manual
http://www.info.uni-karlsruhe.de/software/grgen/GrGenNET-Manual.pdf

► [Aßmann00] Uwe Aßmann. Graph rewrite systems for program optimization. ACM
Transactions on Programming Languages and Systems (TOPLAS), 22(4):583-637, June
2000.

■ http://portal.acm.org/citation.cfm?id=363914

► Tom Mens. On the Use of Graph Transformations for Model Refactorings. GTTSE
2005, Springer, LNCS 4143

– http://www.springerlink.com/content/5742246115107431/

► Thomas Reps. Program analysis via graph reachability. Information and Software
Technology, 40(11-12):701-726, November 1998. Special issue on program slicing.

► Mark Weiser. Program slicing. IEEE Transactions on Software Engineering, SE-
10(4):352-357, July 1984.

► Frank Tip. A survey of program slicing techniques. Journal of Programming Languages,
3:121-189, 1995.

http://www.info.uni-karlsruhe.de/software/grgen/
http://www.info.uni-karlsruhe.de/software/grgen/GrGenNET-Manual.pdf
http://portal.acm.org/citation.cfm?id=363914
http://www.info.uni-karlsruhe.de/software/grgen/
http://www.info.uni-karlsruhe.de/software/grgen/GrGenNET-Manual.pdf
http://portal.acm.org/citation.cfm?id=363914

 ©
 P

ro
f.

U
. A

ß
m

an
n

3 Model-Driven Software Development in Technical Spaces (MOST)

Literature on the Graph-Logic-Isomorphism

► B. Courcelle. Graphs as relational structures: An algebraic and logical approach. In H.
Ehrig, H.-J. Kreowski, and G. Rozenberg, editors, 4th International Workshop On Graph
Grammars and Their Application to Computer Science, volume 532 of Lecture Notes in
Computer Science, pages 238-252. Springer, March 1990.

► B. Courcelle. The logical expression of graph properties (abstract). In H. Ehrig, H.-J.
Kreowski, and G. Rozenberg, editors, 4th International Workshop On Graph
Grammars and Their Application to Computer Science, volume 532 of Lecture Notes in
Computer Science, pages 38-40. Springer, March 1990.

► B. Courcelle. Graph rewriting: An algebraic and logic approach. In Jan van Leeuwen,
editor, Handbook of Theoretical Computer Science, pages 193- 242, Amsterdam, 1990.
Elsevier Science Publishers.

 ©
 P

ro
f.

U
. A

ß
m

an
n

4 Model-Driven Software Development in Technical Spaces (MOST)

Other References

► Uwe Aßmann. OPTIMIX, A Tool for Rewriting and Optimizing Programs. In Graph
Grammar Handbook, Vol. II. Chapman-Hall, 1999.

► K. Lano. Catalogue of Model Transformations
– http://www.dcs.kcl.ac.uk/staff/kcl/tcat.pdf

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

41.1. Introduction to Diagrammatic Storyboard
Rule Notation for Graph Rewriting

Originally introduced by Fujaba www.fujaba.de (tool now
unsupported)

http://www.fujaba.de/
http://www.fujaba.de/

 ©
 P

ro
f.

U
. A

ß
m

an
n

6 Model-Driven Software Development in Technical Spaces (MOST)

Fujaba

► Fujaba is a MetaCASE-tool based on GRS with home-grown metalanguage and metamodel

► Basic technology: graph pattern matching and rewriting

http://www.fujaba.de/typo3temp/pics/604c5c6c9e.png

 ©
 P

ro
f.

U
. A

ß
m

an
n

7 Model-Driven Software Development in Technical Spaces (MOST)

Fujaba Storyboard Diagrams for Adding and Removing Graph
Fragments

► Storyboards are activity diagrams in which activities are GRS (graph notation with
colors)

► Green color: adding model fragments; Red color: deleting them

► Pool starts at node this and reaches into the object net

► GRS can be embedded into Petri Nets, DFG and other BSL

Storyboard
Diagram

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Software Development in Technical Spaces

41.1 Using EARS (Binary Edge Addition)for Deep
Analysis of Models and Mappings of Models and
Code
- and as the Bridge to Graph Rewriting

• Graph reachability engines are analysis tools answering questions about the deeper structure of
models and programs

• EARS can be employed for regular graph reachability, context-free graph reachability, slicing,
data-flow analysis

• And traceability for inter-model relationships

 ©
 P

ro
f.

U
. A

ß
m

an
n

9 Model-Driven Software Development in Technical Spaces (MOST)

EARS for Model Mapping

► Edge addition rewrite systems (EARS)
compute direct binary relations for
remotely reachable parts of a graph and
a model

■ They abbreviate long paths in
models

► EARS can be used for reachability of
elements in models and model mapping:

■ Transitive closure
■ Regular path reachability
■ Context-free path reachability

► EARS form the bridge to graph rewriting
and graph-rewriting based model
transformations

► They correspond to binary Datalog

p:Proc

e:Expr

s:Stmt

b:Block

Blocks

Exprs

Stmts
AllExprs

 ©
 P

ro
f.

U
. A

ß
m

an
n

10 Model-Driven Software Development in Technical Spaces (MOST)

Model Analysis with Graph Reachability

► Use the graph-logic-isomorphism: Represent everything in a program or a model as
directed graphs

– Program code (control flow, statements, procedures, classes)
– Model elements (states, transitions, ...)
– Analysis information (abstract domains, flow info ...)
– Directed graphs with node and edge types, node attributes, one-edge condition

(no multi-graphs)

► Use edge decomposition as textual notation

► Use edge addition rewrite systems (EARS), Datalog and other graph reachability
specification languages to

– Query the graphs (on values and patterns)
– Analyze the graphs (on reachability of nodes)
– Map the graphs to each other (model mapping)

► Later: Use graph rewrite systems (GRS) to construct and augment the graphs,
transform the graphs

 ©
 P

ro
f.

U
. A

ß
m

an
n

11 Model-Driven Software Development in Technical Spaces (MOST)

Specification Process with Graph Rewrite Systems and
EARS

1)Specification of the data model (graph schema) with a graph-like DDL (ERD, MOF,
GXL, UML or similar):

● Schema of the program representation: program code as objects and basic
relationships. This data, i.e., the start graph, is provided as result of the parser

● Schema of analysis information (the infered predicates over the program objects)
as objects or relationships

2)Flat model and program analysis (preparing the abstract interpretation)
● Querying graphs, enlarging graphs, static slicing, Reachability
● Equivalence classing
● Materializing implicit knowledge to explicit knowledge

3)Deep model and program analysis
• Inter-model reachability (traceability), materializing model mappings
● Abstract Interpretation (program analysis as interpretation)
● Specifying the transfer functions of an abstract interpretation of the program with

graph rewrite rules on the analysis information

4)Model and Program transformation Transforming the program representation
● Optimization such as peephole optimization or constant folding (context-free)
● Code motion (Context-sensitive)

 ©
 P

ro
f.

U
. A

ß
m

an
n

12 Model-Driven Software Development in Technical Spaces (MOST)

Q14: A Simple Program (Code) Model (Schema) in MOF

Proc

Block

Stmt

Assign

Plus IntConst

Expr

String
Const

Left

Program representation:
ProgramNode (green)

Analysis information: InfoNode (blue)

statements

Right

predecessors
ControlFlowGraph

succcessors

If Join

ExprTree

stmts

blocks

LeafBinary
Op

ExprEqClass

AssReg

Register

UseReg

AsgdReg

InRegister

ExprsOfStmt

UsedReg

INSERT_IN

INSERT_OUT

LATEST_IN

AllExprs

reach-in

reach-out

 ©
 P

ro
f.

U
. A

ß
m

an
n

13 Model-Driven Software Development in Technical Spaces (MOST)

Deep Analysis and Abstract Interpretation with Graph
Rewriting

► A graph-rewriting based abstract interpreter stores, for every program element of the program
graph (Expr, Stmt, Block, Proc, Class < ProgramElement) three “truths” (values) for every node in
the analysis information (InfoNode):

■ p:ProgramElement -:predicate_in-> i:InfoNode
. // predicate_in(p,i)

■ p:ProgramElement -:predicate_within-> i:InfoNode
. // predicate_within(p,i)

■ p:ProgramElement -:predicate_out-> i:InfoNode
. // predicate_out(p,i)

► Values of program elements are encoded as an edge between program elements and InfoNodes

Program
Element

InfoNode

pred_out

pred_in

pred_within

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Model-Driven Software Development in Technical Spaces (MOST)

41.2. Reachability of Model Elements and Models for
Model Analysis and Mapping

► With model mapping languages, such as edge addition rewrite
systems or TGreQL

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Model-Driven Software Development in Technical Spaces (MOST)

41.2.1. Simple Reachability of Model Elements and
Models:
Path Abbreviations in Graph Analysis

► With model mapping languages, such as edge addition rewrite
systems or TGreQL

 ©
 P

ro
f.

U
. A

ß
m

an
n

17 Model-Driven Software Development in Technical Spaces (MOST)

Path Abbreviations for Simple Reachability

► Path abbreviations shorten paths in the manipulated graph.

► They may collect nodes into the neighborhood of other nodes.

► Ex.: Collection of Expressions for a procedure: edge addition

-- F-Datalog notation (edge decomposition):

AllExprs(Proc,Expr) :-

 Blocks(Proc,Block),

 Stmts(Block,Stmt),

 Exprs(Stmt,Expr).

-- if-then rules:

if Blocks(Proc,Block),

 Stmts(Block,Stmt),

 Exprs(Stmt,Expr)

then

 AllExprs(Proc,Expr);

– regular expression notation (TGreQL):

AllExprs := Proc Blocks.Stmts.Exprs Expr

p:Proc

e:Expr

s:Stmt

b:Block

Blocks

Exprs

Stmts
AllExprs

-- GrGen notation:

rule collectAllExpr(p:Proc) {

 p -:Blocks-> b:Block;

 b -:Stmts-> s:Stmt;

 s -:Exprs-> e:Expr;

 modify {

 p -:AllExprs-> e;

 }

}

 ©
 P

ro
f.

U
. A

ß
m

an
n

18 Model-Driven Software Development in Technical Spaces (MOST)

Forward Slicing from a Point in the ProgramGraph (Single-
Source Multiple-Target (SSMT) Problems)

► A forward slice (SSMT-region) has one source, many targets and all intermediate nodes

► The slice border is the border of the region

p:Proc

e:Expr

s:Stmt

b:Block

Blocks

Exprs

Stmts
AllExprs

e:Expr

s:Stmt

b:Block

Exprs

Stmts

e:Expr

s:Stmt

b:Block

Exprs

Stmts

e:Expr

s:Stmt

e:Expre:Expr

 ©
 P

ro
f.

U
. A

ß
m

an
n

20 Model-Driven Software Development in Technical Spaces (MOST)

Linear Recursion for Remote Reachability

► Reachability most often can be reduced to transitive closure of one or several relations.

► Query: “Does an Stmt S reach a expression E?”
► TC combines path abbreviation with recursion

■ F-Datalog, GrGen: Left or right recursion

■ Kleene * in TGreQL

■ Thick arrow in Fujaba
S:Stmt E:Exprgen

reach

// F-Datalog
reach(S:Stmt,E:Expr) :- gen(S:Stmt,E:Expr), not killed(S:Stmt,E:Expr).
reach(S:Stmt,E:Expr) :- pred(S:Stmt,P), reach(P,E:Expr).

S:Stmt

P:Stmt

E:Expr

pred
reach

reach

not killed// TGreQL
reach[gen]*(S:Stmt,E:Expr)

// GrGen can use inheritance on
// nodes and edges
rule reachability (s:Node) {
 s -:BasicEdge-> p:Node;
 p -:RecursiveEdge-> e:Node;
 modify {
 s -:RecursiveEdge-> e:Node
 }
}

S:Stmt E:Expr
reach[gen]*

 ©
 P

ro
f.

U
. A

ß
m

an
n

21 Model-Driven Software Development in Technical Spaces (MOST)

Ex.: Relating Nodes into Equivalence Classes

► Ex.: Computing equivalent nodes
► Context-sensitive problem, because m is not in the context of n

m:Proc

n:Proc

eq

F-Datalog baserule:

eq(m:Proc,n:Proc) :-

 m.name == n.name.

-– If-then:

If (m:Proc, n:Proc) and m.name == n.name)

 eq(m,n)

}

– TgreQL regular expression:

m:Proc eq n.Proc if

m.name == n.name

m.name == n.name

m:Proc

n:Proc

m.name == n.name

m:Proc

n:Proc

eq

m.name == n.name

// GrGen

rule buildGraph(m:Node, n:Node) {

 m.Name == n.Name;

 modify { m:-eq-> n }

}

 ©
 P

ro
f.

U
. A

ß
m

an
n

22 Model-Driven Software Development in Technical Spaces (MOST)

Ex. Relating Nodes into Equivalence Classes (Here: Value
Numbering, Synt. Expression Equivalence)

► Ex.: Computing structurally equivalent expressions
with bi-recursive reachability

► Question: “Which expression trees have the same
structure?”

i1:IntConst

e1:Expr

i2:IntConst

i1:IntConst i2:IntConst
eq

p1:Plus p2:Plus

eqe2:Expr

e3:Expr

e4:Expr

eq

e1:Expr

p1:Plus p2:Plus

eqe2:Expr

e3:Expr

e4:Expr

eq

eq

--- F-Datalog baserule:

eq(i1:IntConst,i2:IntConst) :-

 i1 ~= IntConst(Value),

 i2 ~= IntConst(Value).

--- recursive_rule:

eq(p1:Plus,p2:Plus) :-

 p1 ~= Plus(Type),

 p2 ~= Plus(Type),

 Left(p1,e1),

 Right(p1,e2),

 Left(p2,e3),

 Right(p2,e4).

 eq(e1,e3),

 eq(e2,e4).

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Software Development in Technical Spaces

41.3. Deep Model Analysis (Value-Flow Analysis,
Data-Flow Analysis)
as General (Recursive) Graph Reachability over
Values

• with edge addition rewrite systems and F-Datalog

 ©
 P

ro
f.

U
. A

ß
m

an
n

24 Model-Driven Software Development in Technical Spaces (MOST)

Data-flow Analysis for Reachability and Traceability

► Value-flow analysis (data-flow analysis) is a specific form of deep model analysis
asking reachability questions, i.e., computing the flow of data (value flow) through the
model or program, from variable assignments to variable uses

■ Result: the value-flow graph (data-flow graph)
■ If the value flow analysis is done along the control-flow graph, it is called an

abstract interpretation of a program
. EARS can do an abstract interpretation of a program, if they are rewriting

on the control-flow graph. Then, their rules implement transfer functions of
an abstract interpreter

► Examples of reachability problems:
■ AllSuperClasses: find out for a class transitively all superclasses
■ AllEnclosingScopes: find out for a scope all enclosing scopes
■ AllEnclosingWholes: find out, for a part, its wholes into which it is included
■ Reaching Definitions Analysis: Which Assignments (Definitions) of a variable can

reach which statement?
■ Live Variable Analysis: At which statement is a variable live, will further be used?
■ Busy Expression Analysis: Which expression will be used on all outgoing paths?

 ©
 P

ro
f.

U
. A

ß
m

an
n

25 Model-Driven Software Development in Technical Spaces (MOST)

► Query: “Which definitions of expressions reach
which statement?”

■ Assignments of a variable, temporary, or
register

■ Usually computed for all positions before
and after a statement

► Graph rewrite rules implement an abstract
interpreter

■ On instructions or on blocks of instructions

■ Flow information is expressed with edges
of relations “reach-*”

► Recursive system (via edge reach-in)

■ (B reach-out E) := (E reaches end of block B)

► GrGen can express this via its generic reachability
rules

Reaching Definition Analysis By Abstract Interpretation with
EARS (Reachable Statements from Expression Definition)

B:Stmt

P:Stmt

E:Expr

pred
reach-out

reach-in

B:Stmt E:Expr
defines-within

reach-out

B:Stmt E:Exprreach-in

reach-out

not killed

reach-out(B,E) :- defines-within(B,E).
reach-out(B,E) :- reach-in(B,E), not killed(B,E).
reach-in(B,E) :- pred(B,P), reach-out(P,E).

 ©
 P

ro
f.

U
. A

ß
m

an
n

26 Model-Driven Software Development in Technical Spaces (MOST)

► Code motion is an essential transformation to speed up the generated code. However,
it is a complex transformation:

– Discovering loop-invariant expressions by data-flow analysis
– Moving loop-invariant expressions out of loops upward
– Code motion needs complex data-flow analysis

► Busy Code Motion (BCM) moves expressions as upward (early) as possible

► Lazy Code Motion (LCM)
■ Moving expressions out of loops to the front of the loop, upward, but carefully:
■ Moving expressions to an optimal place so that register lifetimes are shorter and

not too long (optimally early)
■ LCM analysis computes this optimal early place of an expression [Knoop/Steffen]

. Analyze an optimally early place for the placement of an expression

. About 6 equation systems similar to reaching-definitions
■ Every equation system is an EARS [Aßmann00]

Code Motion Analysis

 ©
 P

ro
f.

U
. A

ß
m

an
n

27 Model-Driven Software Development in Technical Spaces (MOST)

Excerpt from LCM Analysis with Overlaps

Block Expr

social_out

NOT earliest_out
Block Expr

social_out

NOT earliest_out

Block Expr
comp_in

Block Expr
comp_in

social_in

comp_soc_in

Block Expr

latest_in

NOT social_in
Block Expr

latest_in

NOT social_in

isolated_and_latest_in

► Compute an optimally early block for an expression (out of a loop)

Query: “Which expression is not isolated (social) at the beginning of a block?”

Query: “Which expression is not isolated (social) at the beginning of a block?”

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Model-Driven Software Development in Technical Spaces (MOST)

41.3.2 Regular Graph Reachability and Slicing

 ©
 P

ro
f.

U
. A

ß
m

an
n

29 Model-Driven Software Development in Technical Spaces (MOST)

Regular Graph Reachability

► If the query can be expressed as a regular expression, the
query is a regular graph reachability problem

► Kleene star is used as transitive closure operator

► TqreQL and Fujaba are languages offering Kleene *

Proc

Expr

Stmt

Block

Block*

Expr*

Stmt*

-- F-Datalog notation:

AllExprs(Proc,Expr) :-

 Block*(Proc,Block),

 Stmt*(Block,Stmt),

 Expr*(Stmt,Expr).

-- GrGen if-then rules:

if Proc -:Block*-> Block,

 Block -:Stmt*-> Stmt,

 Stmt -:Expr*-> Expr

modify {

 Proc -:AllExprs-> Expr

}

– regular expression notation (TGreQL):

AllExprs := Proc Block*.Stmt*.Expr* Expr

AllExprs

 ©
 P

ro
f.

U
. A

ß
m

an
n

30 Model-Driven Software Development in Technical Spaces (MOST)

Static Slicing: Single-Source-Multiple-Target Regular
Reachability (Regular Reachable Dependencies)

► [Weiser] [Tip]

► A static slice is the region of a program or model dependent from one source node
(reachable by a regular reachability query in a dependency graph)

■ A static slice is a single-source path regular reachability problem (SSPP) on the
dependency graph

■ A static slice introduces path abbreviations from one entity to a region

► A forward slice is a dependent region in forward direction of the program
■ The uses of a variable
■ The callees of a call
■ The uses of a type

► A backward slice is a dependent region in backward direction of the program
■ The assignments which can influence the value of a variable
■ The callers of a method
■ The type of a variable

► Slicing can map arbitrary entities in programs and models to other entities, based on a
regular graph expression

 ©
 P

ro
f.

U
. A

ß
m

an
n

31 Model-Driven Software Development in Technical Spaces (MOST)

Reachability within Models and
Traceability between Models

► Data-flow analysis (graph reachability, slicing) can be done
■ Intraprocedurally (within one procedure)
■ Interprocedurally (program-wide)

► Traceability is inter-model slicing and graph reachability
■ inter-model: then it creates trace relations between requirements models,

design models, and code models
■ Intra-megamodel: trace relations can trace dependencies between all models in a

megamodel, e.g., in an MDA

► A model mapping is an inter-model trace(-ability) graph
■ Model mappings are very important for the dependency analysis and traceability

in megamodels and the construction of macromodels

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Model-Driven Software Development in Technical Spaces (MOST)

41.3.3 Context-Free Graph Reachability

► If arbitrary recursion patterns are allowed in F-Datalog and EARS
queries, we arrive at context-free graph reachability.

 ©
 P

ro
f.

U
. A

ß
m

an
n

33 Model-Driven Software Development in Technical Spaces (MOST)

Free Recursion

► Transitive closure and regular graph reachability rely on regular recursion (linear
recursion) expressible with the Kleene-* on relations

► Beyond that, F-Datalog and EARS can describe other recursions
■ Context-free recursions
■ Cross-recursions

► Then, we speak of context-free graph reachability
■ A context-free language describes graph reachability

► Applications:
■ Complex intraprocedural value flow analyses
■ Interprocedural, whole-program analysis
■ Interprocedural IDFS framework (Reps)
■ Model mappings in a megamodel

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Model-Driven Software Development in Technical Spaces (MOST)

41.4 More on the Logic-Graph Isomorphism

► [Courcelle] discovered that many problems can be expressed in
logic (on facts) and in graph rewriting (on graphs)

 ©
 P

ro
f.

U
. A

ß
m

an
n

35 Model-Driven Software Development in Technical Spaces (MOST)

Program and Model Analyses Covered by Graph
Reachability

► Graph Reachability Analysis can do abstract interpretation
■ If it adds analysis information to the program elements and their control-flow

graph
■ Slicing is a Single-Source-Multiple-Target reachability analysis

► Every abstract interpretation where a mapping of the abstract domains to graphs can
be found.

■ Monotone and distributive data-flow analysis

Control flow analysis (and callee analysis)
■ Static-single-assignment (SSA) construction
■ Interprocedural IDFS analysis framework (Reps)

 ©
 P

ro
f.

U
. A

ß
m

an
n

36 Model-Driven Software Development in Technical Spaces (MOST)

The Common Core of Logic, Graph Rewriting and Program
Analysis

Datalog
F-Datalog
SQL

GRS

Reachability Analysis
(data-flow analysis
abstract interpretation)

EARS

Program Analysis
(abstract interpretation)

► Graph rewriting, DATALOG and data-flow analysis have a common core: EARS

► Datalog query languages such as .QL or TgreQL can be extended by GRS

Slicing

 ©
 P

ro
f.

U
. A

ß
m

an
n

37 Model-Driven Software Development in Technical Spaces (MOST)

Relation DFA/F-DATALOG/GRS

► Abstract interpretation (Data-flow analysis), F-DATALOG and graph rewrite systems
have a common kernel: EARS

■ As F-DATALOG, graph rewrite systems can be used to query the graph.

► Contrary to F-DATALOG and query languages, edge graph rewrite systems
materialize their results instantly.

■ Therefore, they are amenable for model analysis and mappings
■ Graph rewriting is restricted to binary predicates and always yields all solutions

► General graph rewriting can do transformation, i.e. is much more powerful than F-
DATALOG.

■ Graph rewriting enables a uniform view of the entire optimization process
■ There is no methodology on how to specify general abstract interpretations

with graph rewrite systems
■ In interprocedural analysis, instead of chaotic iteration special evaluation

strategies must be used [Reps95] [Knoop92]
■ Currently strategies have to be modeled in the rewrite specifications explicitly

► Uniform Specification of Analysis and Transformation [Aßmann00]
■ If the program analysis (including abstract interpretation) is specified with GRS,

it can be unified with program transformation

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Model-Driven Software Development in Technical Spaces (MOST)

41.4.1 Implementation of Data-Flow Analysis in Tools

 ©
 P

ro
f.

U
. A

ß
m

an
n

39 Model-Driven Software Development in Technical Spaces (MOST)

Graph Rewrite Tools for Graph Reachability

► GrGen graph rewriting system (U Karlsruhe)
■ Www.grgen.net

► Fujaba graph rewrite system www.fujaba.de

► (e)MOFLON graph rewrite system www.moflon.de
■ TGG for Model Mapping, similar to QVT-R
■ See chapter MOFLON

► AGG graph rewrite system (From Berlin and Marburg)
■ http://user.cs.tu-berlin.de/~gragra/agg/

► VIATRA2 graph rewrite system on EMF
■ http://eclipse.org/gmt/VIATRA2/

► GROOVE for the construction of iInterpreters
■ http://groove.cs.utwente.nl/

http://Www.grgen.net/
http://www.fujaba.de/
http://www.moflon.de/
http://eclipse.org/gmt/VIATRA2/
http://Www.grgen.net/
http://www.fujaba.de/
http://www.moflon.de/
http://eclipse.org/gmt/VIATRA2/

 ©
 P

ro
f.

U
. A

ß
m

an
n

40 Model-Driven Software Development in Technical Spaces (MOST)

Optimix: using Efficient Evaluation Algorithms from Logic
Programming

► Tool OPTIMIX uses the „Order algorithm“ scheme [Aßmann00]
■ Generates target code of a programming language

. Code generation uses variants of nested loop join algorithm
■ Works effectively on very sparse directed graphs
■ Bottom-up evaluation, as in F-Datalog; top-down evaluation as in Prolog possible,

with resolution

► Optimizations from Datalog and F-Datalog
■ Bottom-up evaluation is normal, as in Datalog
■ Top-down evaluation as in Prolog possible, with resolution
■ Sometimes fixpoint evaluations can be avoided
■ Use of index structures possible
■ Linear bitvector union operations can be used
■ semi-naive evaluation
■ index structures
■ magic set transformation
■ transitive closure optimizations

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Software Development in Technical Spaces

41.5 Model Mappings in In-Memory Megamodels
(Modellverknüpfung) and Their Use for Traceability

• Model mapping languages are model query languages who enter their
results again into the models as analysis information.

• They create model mappings which are important for macromodels.

 ©
 P

ro
f.

U
. A

ß
m

an
n

42 Model-Driven Software Development in Technical Spaces (MOST)

Obligatory Literature

► [BERS08] Daniel Bildhauer, Jürgen Ebert, Volker Riediger, and Hannes Schwarz. Using
the TGraph Approach for Model Fact Repositories. . In: Proceedings of the
International Workshop on Model Reuse Strategies (MoRSe 2008). S. 9--18.

► Hannes Schwarz, Jürgen Ebert, and Andreas Winter. Graph-based traceability: a
comprehensive approach. Software and System Modeling, 9 (4):473-492, 2010.

 ©
 P

ro
f.

U
. A

ß
m

an
n

43 Model-Driven Software Development in Technical Spaces (MOST)

Inter-Model Analysis with Reachability

► Deep model analysis: Graph reachability analyzers create direct mappings (graphs)
from indirect mappings (abbreviate intensional or recursive mappings)

■ for reachability of model elements
■ to create model slicings (projections to some subgraphs)
■ to prepare refactorings, transformers, and optimizers

. For models: For model refactoring, adaptation and specialization, weaving
and composition

. For code: Portability to new processor types and memory hierarchies
■ For optimization (time, memory, energy consumption)

► For traceability of model elements in other models. Traceability is reachability of model
elements over several models

 ©
 P

ro
f.

U
. A

ß
m

an
n

44 Model-Driven Software Development in Technical Spaces (MOST)

Inter-Model Relationships in The ReDoDeCT Macromodel

► An inter-model relationship is a relationship between model elements of different
models

■ Here: expresses mapping between the Requirements model,
Documentation, Design model, Code, Test cases

► The ReDoDeCT macromodel relies on inter-model relationships between all 4 models

 ©
 P

ro
f.

U
. A

ß
m

an
n

45 Model-Driven Software Development in Technical Spaces (MOST)

Q12: The ReDoDeCT Problem and its Macromodel

► The ReDoDeCT problem is the problem how requirements, documentation, design,
code, and tests are related (V model)→

► Mappings between the Requirements model, Documentation files, Design model, Code,
Test cases

► A ReDoDeCT macromodel has maintained mappings between all 5 models

Requirements Design Code Test

Package Bill {
 Uses Order;
 Class Counting {
 Procedure count IS
 End;
}
}

Package Order {
 Uses Bill;
 Class Ordering {
 Procedure count IS
 End;
}
}

Package TestBill {
 Uses TestOrder;
 Proc testCounting
IS
….
 End;
}
}
Package TestOrder {
 Uses Bill;
 Class TestOrdering {
 Procedure
testCount IS
 End;
}
}

Node

Node

Component

Component

System

DocumentationNon-Functional
Requirement A Non-Functional

Requiremens B
Goal BGoal A

 ©
 P

ro
f.

U
. A

ß
m

an
n

46 Model-Driven Software Development in Technical Spaces (MOST)

► An (direct) inter-model relationship is defined between top-level metaclasses in the models of the macromodel

► The ReDoDeCT macromodel defines on direct inter-model relationships on RequirementsElement, DesignElement,
CodeElement, TestElement, DocumentationElement

Requirements Design Code Test

Package Bill {
 Uses Order;
 Class Counting {
 Procedure count IS
 End;
}
}

Package Order {
 Uses Bill;
 Class Ordering {
 Procedure count IS
 End;
}
}

Package TestOrder {
 Uses Bill;
 Class TestOrdering {
 Procedure
testCount IS
 End;
}
}

Node

Node

Component

Component

System

DocumentationNon-Functional
Requirement A Non-Functional

Requiremens B
Goal BGoal A

M1

Requirements
Element

Design
Element

Code
Element

Test
Element

satisfies implements verifies

instance-of instance-of instance-of instance-of

M2

Documentation
Element

instance-of

descr

Package TestBill {
 Uses TestOrder;
 Proc testCounting
IS
….
 End;
}
}

 ©
 P

ro
f.

U
. A

ß
m

an
n

47 Model-Driven Software Development in Technical Spaces (MOST)

Specification of Traceability in ReDeCT with GrGen and
TGreQL

► Direct inter-model relationships form the basis of queries in the macromodel. Allow for
the definition of

■ Traceability relations between model elements of different models
■ Hyperedges (tuples) between several model elements of different models

► Any query language can be used for model mappings, if their results are entered into
the model resp. macromodel

// Defining a inter-model hyperedge (tuple) in TGreQL [BERS08]

elementsIn(

 from req:V{RequirementsElement}, archElem:V{DesignElement},

 desElem:V{DesignElement}, class:V{ClassDefinition}

 with req.name=”Count Bill”

 and req < {Satisfies} archElem −−

 and archElem < {Realize} desElem−−

 and desElem < {Implements} class −−

 report req, archElem, desElem, class

end

)

[BERS08]

// GrGen notation:

rule collectInterModelDep(r:Req, d:Des, c:Code, t:Test) {

 r -:reqs-> req:RequirementsElement;

 req.name=”Count Bill”;

 d -:arch-> archElem:DesignElement;

 archElem -:Satisfies->req;

 d -:design-> desElem:DesignElement;

 desElem -:Realize->archElem;

 c -:has-> class:Class;

 class -:Implements->desElem;

}

 ©
 P

ro
f.

U
. A

ß
m

an
n

48 Model-Driven Software Development in Technical Spaces (MOST)

The End - Appendix
Comprehension Questions

► Why do EARS correspond to binary Datalog? why is EARS a similar query language
as .QL?

► Explain program slicing as an application of graph reachability.

► Why is regular graph reachability “regular”? What is the different to context-free
graph reachability?

► How do you create a model mapping with regular graph reachability?

► Explain a typical data-flow analysis with EARS. Why do EARS rules that rewrite the
information “around” the control-flow graph form an abstract interpreter?

► EARS can rewrite models. How would you specify a model refactoring engine with
EARS?

► Why are EARS good for traceability in megamodels?

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Software Development in Technical Spaces

41. Deep Graph Model Analysis and Macromodels:
Model and Program Analysis with (Recursive)
Graph Reachability
How Context-Sensitive Constraints can be Checked in a Model

Prof. Dr. Uwe Aßmann

Softwaretechnologie

Technische Universität Dresden

Version 21-1.1, 29.01.22

1) Graph Reachability as Deep Analysis

1) EARS

1) Regular graph reachability and Slicing

2) Graph slicing

3) Value-flow analysis

1) Context-free graph reachability

4) More on the Graph-Logic Isomorphism

1) Implementation in Tools

5) Model Mappings in Megamodels

OO

 ©
 P

ro
f.

U
. A

ß
m

an
n

2 Model-Driven Software Development in Technical Spaces (MOST)

Literature

► GrGen web site http://www.info.uni-karlsruhe.de/software/grgen/

► GrGen User Manual
http://www.info.uni-karlsruhe.de/software/grgen/GrGenNET-Manual.pdf

► [Aßmann00] Uwe Aßmann. Graph rewrite systems for program optimization. ACM
Transactions on Programming Languages and Systems (TOPLAS), 22(4):583-637, June
2000.

■ http://portal.acm.org/citation.cfm?id=363914

► Tom Mens. On the Use of Graph Transformations for Model Refactorings. GTTSE
2005, Springer, LNCS 4143

– http://www.springerlink.com/content/5742246115107431/

► Thomas Reps. Program analysis via graph reachability. Information and Software
Technology, 40(11-12):701-726, November 1998. Special issue on program slicing.

► Mark Weiser. Program slicing. IEEE Transactions on Software Engineering, SE-
10(4):352-357, July 1984.

► Frank Tip. A survey of program slicing techniques. Journal of Programming Languages,
3:121-189, 1995.

 ©
 P

ro
f.

U
. A

ß
m

an
n

3 Model-Driven Software Development in Technical Spaces (MOST)

Literature on the Graph-Logic-Isomorphism

► B. Courcelle. Graphs as relational structures: An algebraic and logical approach. In H.
Ehrig, H.-J. Kreowski, and G. Rozenberg, editors, 4th International Workshop On Graph
Grammars and Their Application to Computer Science, volume 532 of Lecture Notes in
Computer Science, pages 238-252. Springer, March 1990.

► B. Courcelle. The logical expression of graph properties (abstract). In H. Ehrig, H.-J.
Kreowski, and G. Rozenberg, editors, 4th International Workshop On Graph
Grammars and Their Application to Computer Science, volume 532 of Lecture Notes in
Computer Science, pages 38-40. Springer, March 1990.

► B. Courcelle. Graph rewriting: An algebraic and logic approach. In Jan van Leeuwen,
editor, Handbook of Theoretical Computer Science, pages 193- 242, Amsterdam, 1990.
Elsevier Science Publishers.

 ©
 P

ro
f.

U
. A

ß
m

an
n

4 Model-Driven Software Development in Technical Spaces (MOST)

Other References

► Uwe Aßmann. OPTIMIX, A Tool for Rewriting and Optimizing Programs. In Graph
Grammar Handbook, Vol. II. Chapman-Hall, 1999.

► K. Lano. Catalogue of Model Transformations
– http://www.dcs.kcl.ac.uk/staff/kcl/tcat.pdf

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

41.1. Introduction to Diagrammatic Storyboard
Rule Notation for Graph Rewriting

Originally introduced by Fujaba www.fujaba.de (tool now
unsupported)

 ©
 P

ro
f.

U
. A

ß
m

an
n

6 Model-Driven Software Development in Technical Spaces (MOST)

Fujaba

► Fujaba is a MetaCASE-tool based on GRS with home-grown metalanguage and metamodel

► Basic technology: graph pattern matching and rewriting

http://www.fujaba.de/typo3temp/pics/604c5c6c9e.png

 ©
 P

ro
f.

U
. A

ß
m

an
n

7 Model-Driven Software Development in Technical Spaces (MOST)

Fujaba Storyboard Diagrams for Adding and Removing Graph
Fragments

► Storyboards are activity diagrams in which activities are GRS (graph notation with
colors)

► Green color: adding model fragments; Red color: deleting them

► Pool starts at node this and reaches into the object net

► GRS can be embedded into Petri Nets, DFG and other BSL

Storyboard
Diagram

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Software Development in Technical Spaces

41.1 Using EARS (Binary Edge Addition)for Deep
Analysis of Models and Mappings of Models and
Code
- and as the Bridge to Graph Rewriting

• Graph reachability engines are analysis tools answering questions about the deeper structure of
models and programs

• EARS can be employed for regular graph reachability, context-free graph reachability, slicing,
data-flow analysis

• And traceability for inter-model relationships

 ©
 P

ro
f.

U
. A

ß
m

an
n

9 Model-Driven Software Development in Technical Spaces (MOST)

EARS for Model Mapping

► Edge addition rewrite systems (EARS)
compute direct binary relations for
remotely reachable parts of a graph and
a model

■ They abbreviate long paths in
models

► EARS can be used for reachability of
elements in models and model mapping:

■ Transitive closure
■ Regular path reachability
■ Context-free path reachability

► EARS form the bridge to graph rewriting
and graph-rewriting based model
transformations

► They correspond to binary Datalog

p:Proc

e:Expr

s:Stmt

b:Block

Blocks

Exprs

Stmts
AllExprs

 ©
 P

ro
f.

U
. A

ß
m

an
n

10 Model-Driven Software Development in Technical Spaces (MOST)

Model Analysis with Graph Reachability

► Use the graph-logic-isomorphism: Represent everything in a program or a model as
directed graphs

– Program code (control flow, statements, procedures, classes)
– Model elements (states, transitions, ...)
– Analysis information (abstract domains, flow info ...)
– Directed graphs with node and edge types, node attributes, one-edge condition

(no multi-graphs)

► Use edge decomposition as textual notation

► Use edge addition rewrite systems (EARS), Datalog and other graph reachability
specification languages to

– Query the graphs (on values and patterns)
– Analyze the graphs (on reachability of nodes)
– Map the graphs to each other (model mapping)

► Later: Use graph rewrite systems (GRS) to construct and augment the graphs,
transform the graphs

 ©
 P

ro
f.

U
. A

ß
m

an
n

11 Model-Driven Software Development in Technical Spaces (MOST)

Specification Process with Graph Rewrite Systems and
EARS

1)Specification of the data model (graph schema) with a graph-like DDL (ERD, MOF,
GXL, UML or similar):

● Schema of the program representation: program code as objects and basic
relationships. This data, i.e., the start graph, is provided as result of the parser

● Schema of analysis information (the infered predicates over the program objects)
as objects or relationships

2)Flat model and program analysis (preparing the abstract interpretation)
● Querying graphs, enlarging graphs, static slicing, Reachability
● Equivalence classing
● Materializing implicit knowledge to explicit knowledge

3)Deep model and program analysis
• Inter-model reachability (traceability), materializing model mappings
● Abstract Interpretation (program analysis as interpretation)
● Specifying the transfer functions of an abstract interpretation of the program with

graph rewrite rules on the analysis information

4)Model and Program transformation Transforming the program representation
● Optimization such as peephole optimization or constant folding (context-free)
● Code motion (Context-sensitive)

 ©
 P

ro
f.

U
. A

ß
m

an
n

12 Model-Driven Software Development in Technical Spaces (MOST)

Q14: A Simple Program (Code) Model (Schema) in MOF

Proc

Block

Stmt

Assign

Plus IntConst

Expr

String
Const

Left

Program representation:
ProgramNode (green)

Analysis information: InfoNode (blue)

statements

Right

predecessors
ControlFlowGraph

succcessors

If Join

ExprTree

stmts

blocks

LeafBinary
Op

ExprEqClass

AssReg

Register

UseReg

AsgdReg

InRegister

ExprsOfStmt

UsedReg

INSERT_IN

INSERT_OUT

LATEST_IN

AllExprs

reach-in

reach-out

 ©
 P

ro
f.

U
. A

ß
m

an
n

13 Model-Driven Software Development in Technical Spaces (MOST)

Deep Analysis and Abstract Interpretation with Graph
Rewriting

► A graph-rewriting based abstract interpreter stores, for every program element of the program
graph (Expr, Stmt, Block, Proc, Class < ProgramElement) three “truths” (values) for every node in
the analysis information (InfoNode):

■ p:ProgramElement -:predicate_in-> i:InfoNode
. // predicate_in(p,i)

■ p:ProgramElement -:predicate_within-> i:InfoNode
. // predicate_within(p,i)

■ p:ProgramElement -:predicate_out-> i:InfoNode
. // predicate_out(p,i)

► Values of program elements are encoded as an edge between program elements and InfoNodes

Program
Element

InfoNode

pred_out

pred_in

pred_within

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Model-Driven Software Development in Technical Spaces (MOST)

41.2. Reachability of Model Elements and Models for
Model Analysis and Mapping

► With model mapping languages, such as edge addition rewrite
systems or TGreQL

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Model-Driven Software Development in Technical Spaces (MOST)

41.2.1. Simple Reachability of Model Elements and
Models:
Path Abbreviations in Graph Analysis

► With model mapping languages, such as edge addition rewrite
systems or TGreQL

 ©
 P

ro
f.

U
. A

ß
m

an
n

17 Model-Driven Software Development in Technical Spaces (MOST)

Path Abbreviations for Simple Reachability

► Path abbreviations shorten paths in the manipulated graph.

► They may collect nodes into the neighborhood of other nodes.

► Ex.: Collection of Expressions for a procedure: edge addition

-- F-Datalog notation (edge decomposition):

AllExprs(Proc,Expr) :-

 Blocks(Proc,Block),

 Stmts(Block,Stmt),

 Exprs(Stmt,Expr).

-- if-then rules:

if Blocks(Proc,Block),

 Stmts(Block,Stmt),

 Exprs(Stmt,Expr)

then

 AllExprs(Proc,Expr);

– regular expression notation (TGreQL):

AllExprs := Proc Blocks.Stmts.Exprs Expr

p:Proc

e:Expr

s:Stmt

b:Block

Blocks

Exprs

Stmts
AllExprs

-- GrGen notation:

rule collectAllExpr(p:Proc) {

 p -:Blocks-> b:Block;

 b -:Stmts-> s:Stmt;

 s -:Exprs-> e:Expr;

 modify {

 p -:AllExprs-> e;

 }

}

 ©
 P

ro
f.

U
. A

ß
m

an
n

18 Model-Driven Software Development in Technical Spaces (MOST)

Forward Slicing from a Point in the ProgramGraph (Single-
Source Multiple-Target (SSMT) Problems)

► A forward slice (SSMT-region) has one source, many targets and all intermediate nodes

► The slice border is the border of the region

p:Proc

e:Expr

s:Stmt

b:Block

Blocks

Exprs

Stmts
AllExprs

e:Expr

s:Stmt

b:Block

Exprs

Stmts

e:Expr

s:Stmt

b:Block

Exprs

Stmts

e:Expr

s:Stmt

e:Expre:Expr

 ©
 P

ro
f.

U
. A

ß
m

an
n

20 Model-Driven Software Development in Technical Spaces (MOST)

Linear Recursion for Remote Reachability

► Reachability most often can be reduced to transitive closure of one or several relations.

► Query: “Does an Stmt S reach a expression E?”
► TC combines path abbreviation with recursion

■ F-Datalog, GrGen: Left or right recursion

■ Kleene * in TGreQL

■ Thick arrow in Fujaba
S:Stmt E:Exprgen

reach

// F-Datalog
reach(S:Stmt,E:Expr) :- gen(S:Stmt,E:Expr), not killed(S:Stmt,E:Expr).
reach(S:Stmt,E:Expr) :- pred(S:Stmt,P), reach(P,E:Expr).

S:Stmt

P:Stmt

E:Expr

pred
reach

reach

not killed// TGreQL
reach[gen]*(S:Stmt,E:Expr)

// GrGen can use inheritance on
// nodes and edges
rule reachability (s:Node) {
 s -:BasicEdge-> p:Node;
 p -:RecursiveEdge-> e:Node;
 modify {
 s -:RecursiveEdge-> e:Node
 }
}

S:Stmt E:Expr
reach[gen]*

 ©
 P

ro
f.

U
. A

ß
m

an
n

21 Model-Driven Software Development in Technical Spaces (MOST)

Ex.: Relating Nodes into Equivalence Classes

► Ex.: Computing equivalent nodes
► Context-sensitive problem, because m is not in the context of n

m:Proc

n:Proc

eq

F-Datalog baserule:

eq(m:Proc,n:Proc) :-

 m.name == n.name.

-– If-then:

If (m:Proc, n:Proc) and m.name == n.name)

 eq(m,n)

}

– TgreQL regular expression:

m:Proc eq n.Proc if

m.name == n.name

m.name == n.name

m:Proc

n:Proc

m.name == n.name

m:Proc

n:Proc

eq

m.name == n.name

// GrGen

rule buildGraph(m:Node, n:Node) {

 m.Name == n.Name;

 modify { m:-eq-> n }

}

 ©
 P

ro
f.

U
. A

ß
m

an
n

22 Model-Driven Software Development in Technical Spaces (MOST)

Ex. Relating Nodes into Equivalence Classes (Here: Value
Numbering, Synt. Expression Equivalence)

► Ex.: Computing structurally equivalent expressions
with bi-recursive reachability

► Question: “Which expression trees have the same
structure?”

i1:IntConst

e1:Expr

i2:IntConst

i1:IntConst i2:IntConst
eq

p1:Plus p2:Plus

eqe2:Expr

e3:Expr

e4:Expr

eq

e1:Expr

p1:Plus p2:Plus

eqe2:Expr

e3:Expr

e4:Expr

eq

eq

--- F-Datalog baserule:

eq(i1:IntConst,i2:IntConst) :-

 i1 ~= IntConst(Value),

 i2 ~= IntConst(Value).

--- recursive_rule:

eq(p1:Plus,p2:Plus) :-

 p1 ~= Plus(Type),

 p2 ~= Plus(Type),

 Left(p1,e1),

 Right(p1,e2),

 Left(p2,e3),

 Right(p2,e4).

 eq(e1,e3),

 eq(e2,e4).

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Software Development in Technical Spaces

41.3. Deep Model Analysis (Value-Flow Analysis,
Data-Flow Analysis)
as General (Recursive) Graph Reachability over
Values

• with edge addition rewrite systems and F-Datalog

 ©
 P

ro
f.

U
. A

ß
m

an
n

24 Model-Driven Software Development in Technical Spaces (MOST)

Data-flow Analysis for Reachability and Traceability

► Value-flow analysis (data-flow analysis) is a specific form of deep model analysis
asking reachability questions, i.e., computing the flow of data (value flow) through the
model or program, from variable assignments to variable uses

■ Result: the value-flow graph (data-flow graph)
■ If the value flow analysis is done along the control-flow graph, it is called an

abstract interpretation of a program
. EARS can do an abstract interpretation of a program, if they are rewriting

on the control-flow graph. Then, their rules implement transfer functions of
an abstract interpreter

► Examples of reachability problems:
■ AllSuperClasses: find out for a class transitively all superclasses
■ AllEnclosingScopes: find out for a scope all enclosing scopes
■ AllEnclosingWholes: find out, for a part, its wholes into which it is included
■ Reaching Definitions Analysis: Which Assignments (Definitions) of a variable can

reach which statement?
■ Live Variable Analysis: At which statement is a variable live, will further be used?
■ Busy Expression Analysis: Which expression will be used on all outgoing paths?

 ©
 P

ro
f.

U
. A

ß
m

an
n

25 Model-Driven Software Development in Technical Spaces (MOST)

► Query: “Which definitions of expressions reach
which statement?”

■ Assignments of a variable, temporary, or
register

■ Usually computed for all positions before
and after a statement

► Graph rewrite rules implement an abstract
interpreter

■ On instructions or on blocks of instructions

■ Flow information is expressed with edges
of relations “reach-*”

► Recursive system (via edge reach-in)

■ (B reach-out E) := (E reaches end of block B)

► GrGen can express this via its generic reachability
rules

Reaching Definition Analysis By Abstract Interpretation with
EARS (Reachable Statements from Expression Definition)

B:Stmt

P:Stmt

E:Expr

pred
reach-out

reach-in

B:Stmt E:Expr
defines-within

reach-out

B:Stmt E:Exprreach-in

reach-out

not killed

reach-out(B,E) :- defines-within(B,E).
reach-out(B,E) :- reach-in(B,E), not killed(B,E).
reach-in(B,E) :- pred(B,P), reach-out(P,E).

 ©
 P

ro
f.

U
. A

ß
m

an
n

26 Model-Driven Software Development in Technical Spaces (MOST)

► Code motion is an essential transformation to speed up the generated code. However,
it is a complex transformation:

– Discovering loop-invariant expressions by data-flow analysis
– Moving loop-invariant expressions out of loops upward
– Code motion needs complex data-flow analysis

► Busy Code Motion (BCM) moves expressions as upward (early) as possible

► Lazy Code Motion (LCM)
■ Moving expressions out of loops to the front of the loop, upward, but carefully:
■ Moving expressions to an optimal place so that register lifetimes are shorter and

not too long (optimally early)
■ LCM analysis computes this optimal early place of an expression [Knoop/Steffen]

. Analyze an optimally early place for the placement of an expression

. About 6 equation systems similar to reaching-definitions
■ Every equation system is an EARS [Aßmann00]

Code Motion Analysis

 ©
 P

ro
f.

U
. A

ß
m

an
n

27 Model-Driven Software Development in Technical Spaces (MOST)

Excerpt from LCM Analysis with Overlaps

Block Expr

social_out

NOT earliest_out
Block Expr

social_out

NOT earliest_out

Block Expr
comp_in

Block Expr
comp_in

social_in

comp_soc_in

Block Expr

latest_in

NOT social_in
Block Expr

latest_in

NOT social_in

isolated_and_latest_in

► Compute an optimally early block for an expression (out of a loop)

Query: “Which expression is not isolated (social) at the beginning of a block?”

Query: “Which expression is not isolated (social) at the beginning of a block?”

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Model-Driven Software Development in Technical Spaces (MOST)

41.3.2 Regular Graph Reachability and Slicing

 ©
 P

ro
f.

U
. A

ß
m

an
n

29 Model-Driven Software Development in Technical Spaces (MOST)

Regular Graph Reachability

► If the query can be expressed as a regular expression, the
query is a regular graph reachability problem

► Kleene star is used as transitive closure operator

► TqreQL and Fujaba are languages offering Kleene *

Proc

Expr

Stmt

Block

Block*

Expr*

Stmt*

-- F-Datalog notation:

AllExprs(Proc,Expr) :-

 Block*(Proc,Block),

 Stmt*(Block,Stmt),

 Expr*(Stmt,Expr).

-- GrGen if-then rules:

if Proc -:Block*-> Block,

 Block -:Stmt*-> Stmt,

 Stmt -:Expr*-> Expr

modify {

 Proc -:AllExprs-> Expr

}

– regular expression notation (TGreQL):

AllExprs := Proc Block*.Stmt*.Expr* Expr

AllExprs

// GrGen notation:

rule collectAllExpr(p:Proc) {

 p -:Blocks*-> b:Block;

 b -:Stmts*-> s:Stmt;

 s -:Exprs*-> e:Expr;

 modify {

 p -:AllExprs-> e;

 }

}

 ©
 P

ro
f.

U
. A

ß
m

an
n

30 Model-Driven Software Development in Technical Spaces (MOST)

Static Slicing: Single-Source-Multiple-Target Regular
Reachability (Regular Reachable Dependencies)

► [Weiser] [Tip]

► A static slice is the region of a program or model dependent from one source node
(reachable by a regular reachability query in a dependency graph)

■ A static slice is a single-source path regular reachability problem (SSPP) on the
dependency graph

■ A static slice introduces path abbreviations from one entity to a region

► A forward slice is a dependent region in forward direction of the program
■ The uses of a variable
■ The callees of a call
■ The uses of a type

► A backward slice is a dependent region in backward direction of the program
■ The assignments which can influence the value of a variable
■ The callers of a method
■ The type of a variable

► Slicing can map arbitrary entities in programs and models to other entities, based on a
regular graph expression

 ©
 P

ro
f.

U
. A

ß
m

an
n

31 Model-Driven Software Development in Technical Spaces (MOST)

Reachability within Models and
Traceability between Models

► Data-flow analysis (graph reachability, slicing) can be done
■ Intraprocedurally (within one procedure)
■ Interprocedurally (program-wide)

► Traceability is inter-model slicing and graph reachability
■ inter-model: then it creates trace relations between requirements models,

design models, and code models
■ Intra-megamodel: trace relations can trace dependencies between all models in a

megamodel, e.g., in an MDA

► A model mapping is an inter-model trace(-ability) graph
■ Model mappings are very important for the dependency analysis and traceability

in megamodels and the construction of macromodels

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Model-Driven Software Development in Technical Spaces (MOST)

41.3.3 Context-Free Graph Reachability

► If arbitrary recursion patterns are allowed in F-Datalog and EARS
queries, we arrive at context-free graph reachability.

 ©
 P

ro
f.

U
. A

ß
m

an
n

33 Model-Driven Software Development in Technical Spaces (MOST)

Free Recursion

► Transitive closure and regular graph reachability rely on regular recursion (linear
recursion) expressible with the Kleene-* on relations

► Beyond that, F-Datalog and EARS can describe other recursions
■ Context-free recursions
■ Cross-recursions

► Then, we speak of context-free graph reachability
■ A context-free language describes graph reachability

► Applications:
■ Complex intraprocedural value flow analyses
■ Interprocedural, whole-program analysis
■ Interprocedural IDFS framework (Reps)
■ Model mappings in a megamodel

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Model-Driven Software Development in Technical Spaces (MOST)

41.4 More on the Logic-Graph Isomorphism

► [Courcelle] discovered that many problems can be expressed in
logic (on facts) and in graph rewriting (on graphs)

 ©
 P

ro
f.

U
. A

ß
m

an
n

35 Model-Driven Software Development in Technical Spaces (MOST)

Program and Model Analyses Covered by Graph
Reachability

► Graph Reachability Analysis can do abstract interpretation
■ If it adds analysis information to the program elements and their control-flow

graph
■ Slicing is a Single-Source-Multiple-Target reachability analysis

► Every abstract interpretation where a mapping of the abstract domains to graphs can
be found.

■ Monotone and distributive data-flow analysis

Control flow analysis (and callee analysis)
■ Static-single-assignment (SSA) construction
■ Interprocedural IDFS analysis framework (Reps)

 ©
 P

ro
f.

U
. A

ß
m

an
n

36 Model-Driven Software Development in Technical Spaces (MOST)

The Common Core of Logic, Graph Rewriting and Program
Analysis

Datalog
F-Datalog
SQL

GRS

Reachability Analysis
(data-flow analysis
abstract interpretation)

EARS

Program Analysis
(abstract interpretation)

► Graph rewriting, DATALOG and data-flow analysis have a common core: EARS

► Datalog query languages such as .QL or TgreQL can be extended by GRS

Slicing

 ©
 P

ro
f.

U
. A

ß
m

an
n

37 Model-Driven Software Development in Technical Spaces (MOST)

Relation DFA/F-DATALOG/GRS

► Abstract interpretation (Data-flow analysis), F-DATALOG and graph rewrite systems
have a common kernel: EARS

■ As F-DATALOG, graph rewrite systems can be used to query the graph.

► Contrary to F-DATALOG and query languages, edge graph rewrite systems
materialize their results instantly.

■ Therefore, they are amenable for model analysis and mappings
■ Graph rewriting is restricted to binary predicates and always yields all solutions

► General graph rewriting can do transformation, i.e. is much more powerful than F-
DATALOG.

■ Graph rewriting enables a uniform view of the entire optimization process
■ There is no methodology on how to specify general abstract interpretations

with graph rewrite systems
■ In interprocedural analysis, instead of chaotic iteration special evaluation

strategies must be used [Reps95] [Knoop92]
■ Currently strategies have to be modeled in the rewrite specifications explicitly

► Uniform Specification of Analysis and Transformation [Aßmann00]
■ If the program analysis (including abstract interpretation) is specified with GRS,

it can be unified with program transformation

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Model-Driven Software Development in Technical Spaces (MOST)

41.4.1 Implementation of Data-Flow Analysis in Tools

 ©
 P

ro
f.

U
. A

ß
m

an
n

39 Model-Driven Software Development in Technical Spaces (MOST)

Graph Rewrite Tools for Graph Reachability

► GrGen graph rewriting system (U Karlsruhe)
■ Www.grgen.net

► Fujaba graph rewrite system www.fujaba.de

► (e)MOFLON graph rewrite system www.moflon.de
■ TGG for Model Mapping, similar to QVT-R
■ See chapter MOFLON

► AGG graph rewrite system (From Berlin and Marburg)
■ http://user.cs.tu-berlin.de/~gragra/agg/

► VIATRA2 graph rewrite system on EMF
■ http://eclipse.org/gmt/VIATRA2/

► GROOVE for the construction of iInterpreters
■ http://groove.cs.utwente.nl/

 ©
 P

ro
f.

U
. A

ß
m

an
n

40 Model-Driven Software Development in Technical Spaces (MOST)

Optimix: using Efficient Evaluation Algorithms from Logic
Programming

► Tool OPTIMIX uses the „Order algorithm“ scheme [Aßmann00]
■ Generates target code of a programming language

. Code generation uses variants of nested loop join algorithm
■ Works effectively on very sparse directed graphs
■ Bottom-up evaluation, as in F-Datalog; top-down evaluation as in Prolog possible,

with resolution

► Optimizations from Datalog and F-Datalog
■ Bottom-up evaluation is normal, as in Datalog
■ Top-down evaluation as in Prolog possible, with resolution
■ Sometimes fixpoint evaluations can be avoided
■ Use of index structures possible
■ Linear bitvector union operations can be used
■ semi-naive evaluation
■ index structures
■ magic set transformation
■ transitive closure optimizations

 41

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Software Development in Technical Spaces

41.5 Model Mappings in In-Memory Megamodels
(Modellverknüpfung) and Their Use for Traceability

• Model mapping languages are model query languages who enter their
results again into the models as analysis information.

• They create model mappings which are important for macromodels.

 ©
 P

ro
f.

U
. A

ß
m

an
n

42 Model-Driven Software Development in Technical Spaces (MOST)

Obligatory Literature

► [BERS08] Daniel Bildhauer, Jürgen Ebert, Volker Riediger, and Hannes Schwarz. Using
the TGraph Approach for Model Fact Repositories. . In: Proceedings of the
International Workshop on Model Reuse Strategies (MoRSe 2008). S. 9--18.

► Hannes Schwarz, Jürgen Ebert, and Andreas Winter. Graph-based traceability: a
comprehensive approach. Software and System Modeling, 9 (4):473-492, 2010.

 ©
 P

ro
f.

U
. A

ß
m

an
n

43 Model-Driven Software Development in Technical Spaces (MOST)

Inter-Model Analysis with Reachability

► Deep model analysis: Graph reachability analyzers create direct mappings (graphs)
from indirect mappings (abbreviate intensional or recursive mappings)

■ for reachability of model elements
■ to create model slicings (projections to some subgraphs)
■ to prepare refactorings, transformers, and optimizers

. For models: For model refactoring, adaptation and specialization, weaving
and composition

. For code: Portability to new processor types and memory hierarchies
■ For optimization (time, memory, energy consumption)

► For traceability of model elements in other models. Traceability is reachability of model
elements over several models

 ©
 P

ro
f.

U
. A

ß
m

an
n

44 Model-Driven Software Development in Technical Spaces (MOST)

Inter-Model Relationships in The ReDoDeCT Macromodel

► An inter-model relationship is a relationship between model elements of different
models

■ Here: expresses mapping between the Requirements model,
Documentation, Design model, Code, Test cases

► The ReDoDeCT macromodel relies on inter-model relationships between all 4 models

 ©
 P

ro
f.

U
. A

ß
m

an
n

45 Model-Driven Software Development in Technical Spaces (MOST)

Q12: The ReDoDeCT Problem and its Macromodel

► The ReDoDeCT problem is the problem how requirements, documentation, design,
code, and tests are related (V model)→

► Mappings between the Requirements model, Documentation files, Design model, Code,
Test cases

► A ReDoDeCT macromodel has maintained mappings between all 5 models

Requirements Design Code Test

Package Bill {
 Uses Order;
 Class Counting {
 Procedure count IS
 End;
}
}

Package Order {
 Uses Bill;
 Class Ordering {
 Procedure count IS
 End;
}
}

Package TestBill {
 Uses TestOrder;
 Proc testCounting
IS
….
 End;
}
}
Package TestOrder {
 Uses Bill;
 Class TestOrdering {
 Procedure
testCount IS
 End;
}
}

Node

Node

Component

Component

System

DocumentationNon-Functional
Requirement A Non-Functional

Requiremens B
Goal BGoal A

 ©
 P

ro
f.

U
. A

ß
m

an
n

46 Model-Driven Software Development in Technical Spaces (MOST)

► An (direct) inter-model relationship is defined between top-level metaclasses in the models of the macromodel

► The ReDoDeCT macromodel defines on direct inter-model relationships on RequirementsElement, DesignElement,
CodeElement, TestElement, DocumentationElement

Requirements Design Code Test

Package Bill {
 Uses Order;
 Class Counting {
 Procedure count IS
 End;
}
}

Package Order {
 Uses Bill;
 Class Ordering {
 Procedure count IS
 End;
}
}

Package TestOrder {
 Uses Bill;
 Class TestOrdering {
 Procedure
testCount IS
 End;
}
}

Node

Node

Component

Component

System

DocumentationNon-Functional
Requirement A Non-Functional

Requiremens B
Goal BGoal A

M1

Requirements
Element

Design
Element

Code
Element

Test
Element

satisfies implements verifies

instance-of instance-of instance-of instance-of

M2

Documentation
Element

instance-of

descr

Package TestBill {
 Uses TestOrder;
 Proc testCounting
IS
….
 End;
}
}

 ©
 P

ro
f.

U
. A

ß
m

an
n

47 Model-Driven Software Development in Technical Spaces (MOST)

Specification of Traceability in ReDeCT with GrGen and
TGreQL

► Direct inter-model relationships form the basis of queries in the macromodel. Allow for
the definition of

■ Traceability relations between model elements of different models
■ Hyperedges (tuples) between several model elements of different models

► Any query language can be used for model mappings, if their results are entered into
the model resp. macromodel

// Defining a inter-model hyperedge (tuple) in TGreQL [BERS08]

elementsIn(

 from req:V{RequirementsElement}, archElem:V{DesignElement},

 desElem:V{DesignElement}, class:V{ClassDefinition}

 with req.name=”Count Bill”

 and req < {Satisfies} archElem −−

 and archElem < {Realize} desElem−−

 and desElem < {Implements} class −−

 report req, archElem, desElem, class

end

)

[BERS08]

// GrGen notation:

rule collectInterModelDep(r:Req, d:Des, c:Code, t:Test) {

 r -:reqs-> req:RequirementsElement;

 req.name=”Count Bill”;

 d -:arch-> archElem:DesignElement;

 archElem -:Satisfies->req;

 d -:design-> desElem:DesignElement;

 desElem -:Realize->archElem;

 c -:has-> class:Class;

 class -:Implements->desElem;

}

 ©
 P

ro
f.

U
. A

ß
m

an
n

48 Model-Driven Software Development in Technical Spaces (MOST)

The End - Appendix
Comprehension Questions

► Why do EARS correspond to binary Datalog? why is EARS a similar query language
as .QL?

► Explain program slicing as an application of graph reachability.

► Why is regular graph reachability “regular”? What is the different to context-free
graph reachability?

► How do you create a model mapping with regular graph reachability?

► Explain a typical data-flow analysis with EARS. Why do EARS rules that rewrite the
information “around” the control-flow graph form an abstract interpreter?

► EARS can rewrite models. How would you specify a model refactoring engine with
EARS?

► Why are EARS good for traceability in megamodels?

