
This slide set needs much more care and examples.
NOT, FORALL, etc.

 ©
 P

ro
f.

U
. A

ß
m

an
n

2 Model-Driven Software Development in Technical Spaces (MOST)

Literature

► [ES89] Gregor Engels, Wilhelm Schäfer. Programming Environments, Concepts and
Realization (in German), 1989, Teubner-Verlag Stuttgart

► Anthony Anjorin, Erhan Leblebici, and Andy Schürr. 20 years of triple graph grammars:
A roadmap for future research. ECEASST, 73, 2015.

► F. Klar, A. Königs, A. Schürr: "Model Transformation in the Large", Proceedings of the
the 6th joint meeting of the European software engineering conference and the ACM
SIGSOFT symposium on the foundations of software engineering, New York: ACM
Press, 2007; 285-294. http://www.idt.mdh.se/esec-fse-2007/

► www.fujaba.de www.moflon.org, https://emoflon.org/
■ https://paper.dropbox.com/doc/Meta-Modelling-with-eMoflonCore--

ArVO3r~~geAdwkL9vVBUTzKZAg-zyOqELGZ0X9jL85TAs7pf

► T. Fischer, J. Niere, L. Torunski, and A. Zündorf, 'Story Diagrams: A new Graph Rewrite
Language based on the Unified Modeling Language', in Proc. of the 6th International
Workshop on Theory and Application of Graph Transformation (TAGT), Paderborn,
Germany (G. Engels and G. Rozenberg, eds.), LNCS 1764, pp. 296--309, Springer Verlag,
November 1998.
http://www.upb.de/cs/ag-schaefer/Veroeffentlichungen/Quellen/Papers/1998/
TAGT1998.pdf

 ©
 P

ro
f.

U
. A

ß
m

an
n

3 Model-Driven Software Development in Technical Spaces (MOST)

Literature

► [KS05] Alexander Königs, Andy Schürr. Multi-Domain Integration with MOF and
extended Triple Graph Grammars. Technical Report. University of Technology
Darmstadt. Dagstuhl Seminar Proceedings 04101

■ http://drops.dagstuhl.de/opus/volltexte/2005/22

► Alexander Königs, Andy Schürr. MDI: a rule-based multi-document and tool integration
approach. Softw Syst Model (2006) 5:349–368 DOI 10.1007/s10270-006-0016-x

■ TGG between multiple documents and models

► [HJSWB] Florian Heidenreich, Jendrik Johannes, Mirko Seifert, Christian Wende and
Marcel Böhme: Generating Safe Template Languages. In Proceedings of the "Eighth
International Conference on Generative Programming and Component Engineering",
GPCE'09, 4 - 5 October 2009, Denver, Colorado

 ©
 P

ro
f.

U
. A

ß
m

an
n

4 Model-Driven Software Development in Technical Spaces (MOST)

Q13: A Software Factory's Heart: the Multi-TS Megamodel

Mega- and Macromodels

Method Engineering

Model Management
Mapping, Transf., Composition

Technical
Space
Bridges

Technical Space

Pattern
Languages

Model Analysis
Querying, Interpretation

Metapyramid (Metahierarchy) for Token Modeling

Mega- and Macromodels

Method Engineering

Model Management
Mapping, Transf., Composition

Technical
Space
Bridges

Technical Space

Pattern
Languages

Model Analysis
Querying, Interpretation

Metapyramid (Metahierarchy) for Token Modeling

Software Factory

Multi-TS Megamodel

In this chapter:
1/n-TS Megamodel
With TGG

 ©
 P

ro
f.

U
. A

ß
m

an
n

5 Model-Driven Software Development in Technical Spaces (MOST)

Integration of Tool Suites by Data Connection

Tool Suite 1 Tool Suite 2

Tool Suite 3

Tool Suite 4

Document type set 1
 (D 1)

Document type set 2
 (D 2)

Document type set 3
 (D 3) Document type set 4

 (D 4)

[ES89, 6, S. 11]

Other Technical Space:

► Material of several tool (suites) can be data-connected by transformations or access
adaptations

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Softwrae Development in Technical Spaces

54.1 „Synchronizing“ Models with Triple Graph
Grammars

• Mapping graphs to other graphs, also in data connections of different tools

• Specification of mappings with mapping rules

• Incremental transformation

• Traceability

 ©
 P

ro
f.

U
. A

ß
m

an
n

7 Model-Driven Software Development in Technical Spaces (MOST)

Triple Graph Grammars – Moflon Example

► A Triple Graph Grammar (TGG) is a mapping-oriented transformation system, consisting of rules
with three „areas“ (better called metamodel mapping grammars)

■ Left side: (source) graph pattern 1 in (source) graph 1

■ Right side: (target) graph pattern 2 in (target) graph 2

■ Middle: relational expression (net) relating graph pattern 1 and 2 (trace model)

Left Right
Correspondance

(Trace link)

 ©
 P

ro
f.

U
. A

ß
m

an
n

8 Model-Driven Software Development in Technical Spaces (MOST)

Basic Types of Synchronization Rules

Depending on the modification colors, a TGG rule can be checking or creating the
correspondance.

Rule classes from [KS05] Koenigs/Schuerr 2005:

► Consistency Checking rules – test whether both patterns exist
■ modification color is black (test)

► Traceability relationship creating rule – add a trace relation between elements of both
sides

■ modification color is green in correspondance part (add)

► Create model element in one domain matching its correspondant
■ modification color is green on one side (add)

► Lower layer create model element – create model in a lower grammar layer
■ modification color is green on lower layer (add)

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Softwrae Development in Technical Spaces

54.2.1. Mapping Objects to Tables (Object-
Relational Mapping, ORM)

 ©
 P

ro
f.

U
. A

ß
m

an
n

10 Model-Driven Software Development in Technical Spaces (MOST)

TGG for Object–Relational Mapping (ORM)
Left Metamodel: Class Diagram Metamodel (CD)

► Synchronize Class-Diagram-metamodel (CD) with a relational schema (RS): object-
relational mapping (ORM)

TU Dresden, Prof. U. Aßmann Model Structurings 10

Left Metamodel

 ©
 P

ro
f.

U
. A

ß
m

an
n

11 Model-Driven Software Development in Technical Spaces (MOST)

Right Metamodel:
Relational Metamodel (DB, relational schema)

TU Dresden, Prof. U. Aßmann Model Structurings 11

Right Metamodel

 ©
 P

ro
f.

U
. A

ß
m

an
n

12 Model-Driven Software Development in Technical Spaces (MOST)

TGG for Object–Relational Mapping (ORM)

► The metamodel mapping grammar of a TGG has a top rule (start rule) which describes
the relationship of the graphs on topmost level

Left Metamodel Right Metamodel
Correspondance

(Trace) Metamodel

 ©
 P

ro
f.

U
. A

ß
m

an
n

13 Model-Driven Software Development in Technical Spaces (MOST)

Example of Consistency-Checking Rule

► From the top-rule ClazzToTable, other TGG rules are associated („called“/”invoked”)

► In this case, the TGG only checks (black color – TEST)

► Q: What happens, if both sides are in different Technical Spaces?

 ©
 P

ro
f.

U
. A

ß
m

an
n

14 Model-Driven Software Development in Technical Spaces (MOST)

TGG Specify Transformation Bridges Between Roles and
Technical Spaces

► TGG can also be used to data-exchange and synchronize Material classes and roles
■ between two material objects
■ between two tools with different repositories

. even in different technical spaces

► The only assumption: 1:1 mappings of model elements

TGG are a fine technique to build transformation bridges for data connection
between tools, even in different technical spaces.

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Softwrae Development in Technical Spaces

54.2. Triple Graph Grammars in MOFLON

• MOFLON in MOF Technical Space

• eMOFLON in EMOF TS

 ©
 P

ro
f.

U
. A

ß
m

an
n

17 Model-Driven Software Development in Technical Spaces (MOST)

Triple Graph Grammars – Moflon Example

► Because they are named, TGG rules can be started by Fujaba Storyboards (activity
diagrams)

► The activites can be associated to a transformation class ClazzToTable

 ©
 P

ro
f.

U
. A

ß
m

an
n

18 Model-Driven Software Development in Technical Spaces (MOST)

Example of Lower-Level-Creation Rule

► Lower-level-creation rule creates lower level elements and a pairwise correspondance of
model elements on both sides

■ Here, objects on the lower level are created anew if needed from the tested
upper level

 ©
 P

ro
f.

U
. A

ß
m

an
n

19 Model-Driven Software Development in Technical Spaces (MOST)

Triple Graph Grammars – Moflon Example

Model Structurings 19

► Notation in Moflon/Fujaba Storyboards

► Checking a pattern with adding an attribute to obj2

 ©
 P

ro
f.

U
. A

ß
m

an
n

20 Model-Driven Software Development in Technical Spaces (MOST)

Q12: The ReDoDeCT Problem and its Macromodel

► The ReDoDeCT problem is the problem how requirements, documentation, design,
code, and tests are related (V model)→

► Mappings between the Requirements model, Documentation files, Design model, Code,
Test cases

► A ReDoDeCT macromodel has maintained mappings between all 5 models

Requirements Design Code Test

Package Bill {
 Uses Order;
 Class Counting {
 Procedure count IS
 End;
}
}

Package Order {
 Uses Bill;
 Class Ordering {
 Procedure count IS
 End;
}
}

Package TestBill {
 Uses TestOrder;
 Proc testCounting
IS
….
 End;
}
}
Package TestOrder {
 Uses Bill;
 Class TestOrdering {
 Procedure
testCount IS
 End;
}
}

Node

Node

Component

Component

System

DocumentationNon-Functional
Requirement A Non-Functional

Requiremens B
Goal BGoal A

 ©
 P

ro
f.

U
. A

ß
m

an
n

21 Model-Driven Software Development in Technical Spaces (MOST)

Ex. 2: TGG Coupling of Requirements Specification and
Design

Model Structurings 21

 ©
 P

ro
f.

U
. A

ß
m

an
n

22 Model-Driven Software Development in Technical Spaces (MOST)

TGG Coupling Requirements Specification and Design

► This TGG grammar builds up a module-requirements graph

► Starting from a relation “ModuleRealizedByModel” and “RequirementRealizedBySubsystem”

lower-layer
creational

initial, creational

lower-layer
creational

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Softwrae Development in Technical Spaces

54.3. Using Triple Graph Grammars in MOFLON

 ©
 P

ro
f.

U
. A

ß
m

an
n

25 Model-Driven Software Development in Technical Spaces (MOST)

(e.g. MagicDraw) (e.g. MySQL)

Example: Object-Relational Mapping “TiE-CD-DB”:
(ClassDiagrams / DatabaseSchema)

TGGs relate
Class Diagrams Metamodel Database Schemata Metamodel

integration rule code

MOFLON generates

Run-Time Verification
of Constraints

shows how our architecture is realized with the MOFLON metamodeling and translation
specification approach

 ©
 P

ro
f.

U
. A

ß
m

an
n

26 Model-Driven Software Development in Technical Spaces (MOST)

TiE-CD-DB – Constraints in Class Diagrams (1)
Generate Code from MOF model (CD metamodel)

 ©
 P

ro
f.

U
. A

ß
m

an
n

27 Model-Driven Software Development in Technical Spaces (MOST)

TiE-CD-DB – Constraints in Class Diagrams (2)
Loading Metamodels and Models

load CD modelload CD metamodel

visualization of
classdiagrams model
(here: source domain)

model violates constraints:
• class „Customer“ has two attributes with same name: „name“
• attribute in class „Address“ has no name
• multiplicity violation: class „Order“ has no attribute
but according to CD metamodel every class must have one

 ©
 P

ro
f.

U
. A

ß
m

an
n

28 Model-Driven Software Development in Technical Spaces (MOST)

TiE-CD-DB – Constraints in Class Diagrams (3)
Model Browser

model is fixed
in generic model editor

 ©
 P

ro
f.

U
. A

ß
m

an
n

29 Model-Driven Software Development in Technical Spaces (MOST)

TiE-CD-DB – Constraints in Class Diagrams (4)
Integration Framework

translation process
may start now…

 ©
 P

ro
f.

U
. A

ß
m

an
n

30 Model-Driven Software Development in Technical Spaces (MOST)

TiE-CD-DB – Constraints in Class Diagrams (5)
Forward Translation to DB representation

 ©
 P

ro
f.

U
. A

ß
m

an
n

31 Model-Driven Software Development in Technical Spaces (MOST)

Other Software Engineering Applications of Model
Synchronization

► Mapping a PIM to a PSM in Model-Driven Architecture

► Graph Structurings (see course ST-II)

► Refactorings (see Course DPF)

► Semantic refinements

► Round-Trip Engineering (RTE)

TU Dresden, Prof. U. Aßmann Model Structurings 31

32

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Softwrae Development in Technical Spaces

54.4 The Tornado Method: Specification of TGG
Rules using Textual Concrete Syntax

• Slides about Tornado courtesy to Mirko Seifert and Christian Werner

• Presented at Fujaba Days 2009, Eindhoven, The Netherlands, 16.11.2009

• Christian Werner. Konzeption und Implementierung eines Debuggers für textuelle Triple Graph
Grammar Regeln. Belegarbeit, Lehrstuhl Softwaretechnologie, 2010, TU Dresden

• available on request

 ©
 P

ro
f.

U
. A

ß
m

an
n

33 Model-Driven Software Development in Technical Spaces (MOST)

► TGGs are fine for model synchronization, but writing TGG rules is not always easy

Why?

► Rule specification typically on the level of abstract syntax
■ Complex abstract syntax (AS) graphs vs. simple concrete syntax (CS)

fragments
■ Rule designers not always familiar with AS

► Rule specification is based on graphical syntax
■ But: There is lots of textual (modelling) languages
■ Gap: Graphical rules vs. textual models
■ Large graphical rules are hard to read

Can we do better?

Motivation for Textual Syntax of TGG

 ©
 P

ro
f.

U
. A

ß
m

an
n

34 Model-Driven Software Development in Technical Spaces (MOST)

► employ EMFText; use concrete textual syntax of involved languages

► derive rules from pairs of models

► do it in a generic way (automatic application to any language)

34

Idea for Rule Specification in EMFText

Instead of arrows use textual annotations:

 ©
 P

ro
f.

U
. A

ß
m

an
n

35 Model-Driven Software Development in Technical Spaces (MOST)

MM of L2MM of L1

MM of L1 with
Annotation Concepts

MM of L2 with
Annotation Concepts

Annotation MM

Annotated
Model

TGG Rules

Rule
Derivator

Annotated
Model

«instance-of» «instance-of»

Tornado Generation Process of TGG Rules

M2

M1

 ©
 P

ro
f.

U
. A

ß
m

an
n

36 Model-Driven Software Development in Technical Spaces (MOST)

1. Make meta models extensible

2. Extend meta models
(with annotation concepts)

3. Extend concrete syntax

4. Derive rules from
model pairs

36

MM of L2MM of L1

MM of L1 with
Annotation Concepts

MM of L2 with
Annotation Concepts

Annotation MM

Annotated
Model

TGG Rules

Rule
Derivator

Annotated
Model

instance-of instance-of

Generation Steps of Tornado Method

 ©
 P

ro
f.

U
. A

ß
m

an
n

37 Model-Driven Software Development in Technical Spaces (MOST)

Extensibility provided by Ecore (EMOF):

► Add new metaclasses (i.e., new complex types)

► Reference existing metaclasses (Reuse)

► Subclass existing metaclasses

What is missing in EMOF:

► Distinction between subtyping and inheritance

► Extensibility for primitive types

► Example:
■ Can’t add things that do not have a property year
■ Can’t add subtypes for EString

37

Step 1 – Getting (more) Extensible Metamodels

 ©
 P

ro
f.

U
. A

ß
m

an
n

38 Model-Driven Software Development in Technical Spaces (MOST)

Separate subtyping and inheritance (algorithm from [HJSWB]):

For each feature’s type that has at least one superclass or defines at least one feature:

► Introduce a new abstract metaclass Feature<ClassName><FeatureName>

► Change the type of the feature to the new metaclass

► Make the former type of the feature a subclass of the new metaclass

Example:

Step 1a – Getting Extensible Metamodels

 ©
 P

ro
f.

U
. A

ß
m

an
n

39 Model-Driven Software Development in Technical Spaces (MOST)

Wrap primitive types (also from [HJSWB]):

For each attribute that has a primitive type:

► Create a new subclass of the primitive type wrapper class

► Replace attribute with reference to new subclass

Example:

Wrapped attribute Wrapped attribute after step 1a)

Step 1b – Getting Extensible Metamodels

 ©
 P

ro
f.

U
. A

ß
m

an
n

40 Model-Driven Software Development in Technical Spaces (MOST)

Goal:

► Every model element can be annotated

HowTo:

► For each meta class X create new metaclass AnnotableX with
■ Reference to class Annotation

(to store the annotation)
■ Reference to the original class X

(to store the data of X)
■ Make AnnotableX a subclass of each feature class that X inherits from

(to make AnnotableX usable wherever X can be used)

40

Step 2 – Extending Metamodels with Annotation Concepts

 ©
 P

ro
f.

U
. A

ß
m

an
n

41 Model-Driven Software Development in Technical Spaces (MOST)

► Steps 1 and 2 added annotations concepts on the level of abstract syntax, but concrete
one is need to write them down

► Textual syntax tools (e.g., EMFText, xText and TCS) use one rule per metaclass
■ Retain the existing syntax rules
■ Add syntax rules for new annotation classes in meta model

@1 ! FORM "A simple example form"

Step 3 – Extending the Concrete Syntax Specification

Form ::= "FORM" name['"','"'] groups*;
AnnotableForm ::= (identifier[IDENT])+ (type[TYPE])? form;

IDENT is some identifer starting
 with an @
TYPE is !, ++ or --

 ©
 P

ro
f.

U
. A

ß
m

an
n

42 Model-Driven Software Development in Technical Spaces (MOST)

Rail tracks to Petrinet example

42

Step 3 – Extended Concrete Syntax

(bold black and green elements are new – TGG rule annotations)

 ©
 P

ro
f.

U
. A

ß
m

an
n

43 Model-Driven Software Development in Technical Spaces (MOST)

► For each annotated model element, create a rule node

► For each set of model elements that are annotated with the same identifier,

■ create a correspondence node and create links connecting the new correspondence
node with the respective rule nodes

► Mark all rule nodes as “create” where the corresponding model element is annotated as create
element

► For each pair of model elements that is connected by exactly one reference

■ create a link between the respective rule nodes

► For each pair of model elements that is connected by multiple references

■ use the references specified in the annotation

■ and create links between the respective rule nodes

43

Step 4 – Deriving Rules from Model Pairs

 ©
 P

ro
f.

U
. A

ß
m

an
n

44 Model-Driven Software Development in Technical Spaces (MOST)

Rail tracks to Petrinet example

44

:Pr2PN:Project :PetriNet

:IP2Pl

:Cp2PN

:OP2Tr

:Track

:In

:Out

:Place

:Arc

:Transition

domain: toy train domain: petri netcorrespondence

++++

++

++

++ ++
++

++

++

++++

++

++ ++

++

++

Step 4 – Deriving Rules from Model Pairs

 ©
 P

ro
f.

U
. A

ß
m

an
n

45 Model-Driven Software Development in Technical Spaces (MOST)

Constraints

► Can be derived (e.g., equality if attribute values match), but:
■ What about boolean attributes?
■ What about more complex constraints (a.name == b.id)?

Negative Application Conditions

► May need additional annotations

Concrete Syntax (CS) restricts rules that can be specified

► If AS is less restrictive than CS (e.g., metaclasses with empty CS)

45

Restrictions of Tornado

 ©
 P

ro
f.

U
. A

ß
m

an
n

46 Model-Driven Software Development in Technical Spaces (MOST)

Textual (modelling) languages can be automatically extended with:
■ annotation support (This whole stuff is for free!)
■ other features (More stuff is for free as well! See e.g. [1])

► Rule specification using concrete syntax seems intuitive

► Combines benefits of specification by example (CS) and classic rule specification
(precision)

► Debugging based on CS is enabled

► More annotations may be needed, but can easily be added

► Metamodelling languages should support extensibility to its full extent

Conclusion of (Experimental) Tornado Method

Looking for a student to combine
Tornado with GrGen!

 ©
 P

ro
f.

U
. A

ß
m

an
n

47 Model-Driven Software Development in Technical Spaces (MOST)

The End: What Have We Learned

► Graph rewrite systems are tools to transform graph-based models and graph-based
program representations

► MOFLON supports OCL queries and constraints

► TGG enable to bidirectionally map models and synchronize them

► Why can a TGG also be called a metamodel mapping grammar?
► Correspondances in models can be expressed by annotations

