
Explicit Architectural Policies to Satisfy NFRs

using COTS

Claudia López, Hernán Astudillo

Universidad Técnica Federico Santa Maŕıa, Departamento de Informática
Avenida España 1680, Valparáıso, Chile

clopez @inf.utfsm.cl, hernan @inf.utfsm.cl

Abstract. Software architecture decisions hinge more on non-functional
requirements (NFRs) than on functional ones, since the architecture stip-
ulates which software to build. Model-Driven Architecture (MDA) aims
to automate the derivation/generation of software from high level ar-
chitectural specifications, but most current MDA implementations start
from software design (i.e. how to build a software piece) rather than
software architecture. This article presents an approach to extend MDA
through the concepts of architectural policies and mechanisms. The key
ideas are representation of NFRs through architectural concerns using
architectural policies, systematic reification of policies into mechanisms,
and multi-dimensional description of components as implementators of
mechanisms. A detailed illustrative example is provided. Azimut frame-
work realizes these ideas, supports larger-scale work through catalogs of
policies and components, and allows traceability and reuse of architecture
by enabling enabling these architecture-level descriptions and reasoning.

1 Introduction

Model-driven Software Development and MDA [1] arise from the possibility to
build software systems through systematic transformations of high level models.
Most proposed approaches emphasize modeling and transformations that address
functional requirements, but in practice Non-Functional Requirements (NFRs)
such as reliability, performance and stability are much harder to satisfy, and
therefore the ones that require most attention from software architects.

Some proposals [2–9] extend MDA to deal explicitly with NFRs, especially
from a perspective of components more than from detailed software design. Yet
remains much work to be done: there is no traceability of decisions from NFRs
to architecture to design and to final implementation, nor techniques to generate
hybrid solutions that combine pre-existing components and ad-hoc development.

This article presents the key ideas of a Azimut framework that extends MDA
with explicit modeling of architectural policies and their derivation into imple-
mentation. The key framework ideas are representation of NFRs with architec-
tural policies, mapping and systematic refinement of architectural policies into
mechanisms, multi-dimensional description of components (COTS) and specific



products insofar as they implement architectural mechanisms, and ongoing de-
velopment of a multi-dimensional catalog of components.

The reminder of this paper is structured as follows: Section 2 provides a brief
overview of related work on NFRs in MDA; Section 3 introduces the concepts
of Platform-Independent Architecture Model (PIAM), Architecture Reification
Model (ARM), and Policies-Specific Platform-Independent Model for Concern

v (PIMv); Section 4 illustrates the Azimut framework and its concepts with a
detailed example; and Section 5 discusses conclusions and further work.

2 MDA, NFRs, and Component-based Development

Software architects focus more on NFRs than on functional requirements be-
cause the former are much harder to satisfy in large and distributed systems.
NFRs cannot be satisfied with local design decisions, but require global solu-
tions because they correspond to systemic properties; for example, security and
stability usually cannot be added ex-post-facto to an already running system
without large effort and risk. Software architecture focuses on reasoning about
which software to build or to include, and not necessarily about how to build it.
Therefore, system NFRs are key since they determine the nature of the solution.

However, despite having architecture in their name, most proposed MDA
methods and tools (e.g. [10–13]) take as starting point a description in terms of
functional components at design level, leaving the resolution of NFRs to prior
steps.

Some recent projects [2–9] have addressed explicit mechanisms to satisfy
NFRs through MDA transformations. From a component-based standpoint some
projects [2–4] try to satisfy system NFRs through a model-driven process for
selecting components to achieve systemic NFRs, and later configuring and de-
ploying the selected components. Other projects from a more design-oriented
approach [5–8] aim to generate implementations that satisfy multiples NFRs at
once, starting out from design description at platform-independent (PIM) level;
thus, NFRs must be modeled and solved at prior stages.

Other researches deal with NFRs on MDA, but they have focus on one NFR
[14, 15, 9], on code generation to monitor NFRs [17] or to use MDA to analyze,
at design time, NFRs [16]. We focus on approaches that implement solutions to
multiple NFRs.

3 Architectural Policies to Implement NFRs through

MDA and COTS

Our research goal is developing tools to describe, automate and keep traceability
of architectural decisions from NFRs into implementations that satisfy them,
using COTS whenever possible. The key conceptual feature is descriptions using
architectural policies and mechanisms.



3.1 Architectural Policies and Mechanisms

Architects may reason about the overall solution properties using architectural
policies, and later refine them (perhaps from existing policy catalogs) into ar-
tifacts and concepts that serve as inputs to software designers and developers,
such as component models, detailed code design, standards, protocols, or even
code itself. Thus, architects define policies for specific architectural concerns
and identify alternative mechanisms to implement such policies. For example,
an availability concern may be addressed by fault-tolerance policies (such as
master-slave replication or active replication) and a security concern may be
addressed by access control policies (such as identification-, authorization- or
authentication-based) [19].

Each reification yields more concrete artifacts; thus, architectural decisions
drive a process of successive reifications of NFRs that end with implementations
of mechanisms that do satisfy these NFRs.

To characterize such reifications, we use a vocabulary taken from the dis-
tributed systems community [18], duly adapted to the software architecture
context:

Architectural Policies: The first reification from NFRs to architectural con-
cepts. Architectural policies can be characterized through specific concern
dimensions that allow describing NFRs with more details.

Architectural Mechanisms: The constructs that satisfy architectural poli-
cies. Different mechanisms can satisfy the same architectural policy, and the
differences between mechanisms is the way in which they provide certain
dimensions.

As a brief (expanded in Section 4) example, consider inter-communication
among applications. An architect’s concern is the communication type, which
might have the dimensions of sessions, topology, sender, and integrity v/s time-
liness [20]; to this we add synchrony. Then, the requirement send a private re-

port to subscribers by Internet might be mapped in some project (in architec-
tural terms) as requiring communication ”asynchronous, with sessions, with 1:M
topology, with a push initiator mechanism, and priorizing integrity over time-
liness”. Based on these architectural requirements, an architect (or automated
tool!) can search a catalog for any existing mechanisms or combination thereof
that provides this specified policy; in our case, lacking additional restrictions,
a good first fit is SMTP (the standard e-mail protocol), and this any available
COTS that provides it.

3.2 Generation of Policies-Specific PIMs

Figure 1 gives an overview of the Azimut framework. We distinguish two PIM

levels:

1. Platform-Independent Architecture Model (PIAM), independent from de-
tailed design decisions, which relates NFRs to domain components using
architectural policies.



2. Policies-specific Platform-Independent Model for Concern v (PIM v), inde-
pendents from any specific platform, which specify the mechanisms selected
to satisfies the given architectural policies that describes an derived archi-
tectural concern from a NFR. Normal PIM and PIM v are shown in different
columns of Figure 1 as complementary views of the solution description.

Fig. 1. Azimut Framework for NFRs and COTS

The PIAM ’s elements are transformed to PIM ’s and PIM v’s using the
Architectural Reification Model (ARM), which provides guidelines to go from
architectural policies to architectural mechanisms. To support this process, the
PIAM characterizes platform-independent architectural policies and their di-
mensions, and the PIMv characterize platform-independent mechanisms. The
ARM indicates which combinations satisfy each policy, and may have rules about
mechanism combinations (e.g. potential restrictions).

The transformation process determines feasible sets of mechanisms that pro-
vide specific architectural policies are proposed to the architect for validation
or correction; approved mechanisms are organized according to the policies they
satisfy (possibly several), and are grouped into PIM v for each concern v, as
shown in Figure 1. Thus, multiples views of a same mechanism allow maintain-
ing the separation of concerns.



3.3 Treatment of Policies-Specific PIMs

The previous process generates platform-independent models (a PIM for func-
tional domain components and a PIM v for components supporting policies for
each concern v) that must be implemented on specific platforms.

The PIM is transformed into a set of PSMi for each technology i (e.g. data
base engine); this is encoded by the platform mappings PMi. The generated
PSMi can be transformed to code using conventional MDA approaches such as
[10–13].

The platform-independent model PIM v for each concern v may also be im-
plemented with a MDA approach for NFRs [5–8], or may be mapped to selected
COTS. In the former case, each PIM v generates a PSMv as encoded in the
PMv. Since each PSMv gives place to code and deployment descriptors, they
are weaved with each other and with the PIM -derived code using an aspect
weaver (AW ). Deployment descriptors are generated by a descriptor generator
(DG) and guide the deployment process for the generated code.

Implementing a PIMv with COTS requires an additional selection/transformation
step. If one or more of the selected mechanisms are implemented by an avail-
able COTS (or set thereof), the process identifies them and the parameters
they must take to implement the intended mechanism. This step is codified in a
Mechanism Reification Mappings (MRM), which uses a COTS catalog that de-
scribes available components, the mechanism(s) that each implements, and their
required parameters. In addition, the MRM contains rules about the possible
combinations of COTS and the platforms where they can be implemented. The
process uses several algorithms to determine the best combination of available
components to implement the required mechanisms in PIM v under the MRM

constraints.
The COTSMv (COTS Model) describes the components to be assembled

and deployed to satisfy policies for concern v, and is shown in Figure 1 by
the third column. The COTSMv determine the generation of the deployment
descriptors, similar to PSMv. The deployment descriptors include information
about the COTS parameters.

The last transformation includes a COTStuner that allows to configure
COTS, finally yielding deployable work sets consisting of generated code, de-
ployment descriptors and configured components.

4 Example

Let’s explore an example with a requirement about extraction and propagation
of information on stocks behavior. A requirement might be:

The system must obtain and synthesize information about a client’s stocks,
and propagate this summaries to the client. The system extracts this information

from several sources according to the client’s portfolio, summarizes it into a

report, and sends the report to the client. The service must have availability =
99,9%, and must provide security through access control



This requirement can be decomposed into functional and non-functional re-
quirements. The former can be Extract information, Synthesize information and
Send information. The service Send information has the NFRs of availabil-
ity=99,9% and security by access control.

From these requirements it is possible to identify architectural concerns as the
communication type architectural concern relates to the system must extract
information from different sources and the system must send such reports to the

client ; other architectural concerns are security and availability.

Without loss of generality, we will focus on the requirement Send information

to show our derivation process for all identified architectural concerns in this
example. Extract information can be dealt with a similar process considering
only communication type concern, and Synthesize information can be used to
guide software development in traditional MDA manner.

Figure 2 shows the architectural concerns related to the requirements of
this example, and the valid values for the dimensions of communication type,
security [21, 22] and availability [21, 23] concern.

Thus, we can specify a requirement for Communication Type being asyn-

chronous, with 1:M topology and Push or RISPush initiator kind; also, the sys-
tem must support sessions that privilege integrity over timeliness. Security

requirements are focused on access control, and we assume that these require-
ments are individual authorization and authentication based on something that

user knows [22], as usual. Availability may be reified to several architectural
concerns, but we will focus on replication concern. To meet a high availability
requirement, we specify that it needs replica with persistent state, centralized

consistency and pessimistic control of replicas. Notice that an important aspect
for replication is fault monitoring and recovery, but we don’t deal with these
aspects in this example lack lack of space.

Once requirements for architectural concerns are defined by specifying theirs
dimensions, we need to reify these architectural policies to mechanisms. Table
1, 2 and 3 show several architectural mechanisms that satisfy some of the ar-
chitectural policies for the communication type, security and availability

concerns, respectively. Notice that in this example, architectural mechanisms
are specifications of communication protocols, security mechanisms and tactics
to meet availability goals, and therefore they are platform-independent just like
architectural policies, although at a lower abstraction level. These mechanisms
are available as targets for the ARM -guided reification process that maps archi-
tectural policies for the each concern into specific mechanisms.

With the available ARM information (shown in Table 1, 2 and 3), the
framework can recommend to the architect several possible mechanisms to sat-
isfy the specified architectural policies. For example, the policies related to
Communication Type for Send information can be reified to the protocols NNTP
(used for client-initiated subscription-based articles reading) or SMTP (used
to send e-mail); on the client side, IMAP (used for read news), POP3 and
IMAP (both widely used for e-mail reading) or RSS (used for client-initiated
subscription-based articles reading of RSS files).



Fig. 2. Partial content of the Architecture Reification Mappings (ARM)



Table 1. Partial content of the Architecture Reification Model (ARM) for Communi-
cation Type

Mechanism Synchrony Topology Initiator Integrity/Timeliness Sessions

SMTP Asynchronous 1:M Push Integrity Yes

IM Asynchronous P2P Push Integrity Yes

SOAP Synchronous M:1 Pull Integrity Yes

NNTP Asynchronous 1:M RISPush Integrity Yes

RSS Asynchronous M:1 RISPush Integrity Yes

SIP Synchronous P2P RISPull Timeliness No

POP3 Synchronous M:1 RISPull Integrity Yes

IMAP Synchronous M:1 RISPull Integrity Yes

Table 1 doesn’t allow us to choose among these proposed protocols, but in
practice the actual choice among alternative mechanisms is taken using infor-
mation not available in the ARM (such as cost or simplicity). However, the
framework allow to record this rationale and history of decisions to provide
traceability and support the selection process.

Table 2. Partial content of the Architecture Reification Model (ARM) for Access
Control

Mechanism Authorization Authentication

Personal Password Individual Something the user knows

ID Card Individual Something the user has

Fingerprint Individual Something the user is

On the other concerns, requirements for access control policies can be ad-
dressed with a password mechanisms, and availability requirements with pas-
sive replication of servers.

Table 3. Partial content of the Architecture Reification Model (ARM) for Node Repli-
cation

Mechanism State Replica Control Consistency

Active Replication Persistent State Pessimistic Decentralized

Passive Replication Persistent State Pessimistic Centralized

Voting Stateless Pessimistic

Spare Persistent Pessimistic Centralized

Once mechanisms are chosen, they are reified by choosing specific compo-
nents that implement them. Figure 3 shows a (part of the) MRM ’s catalog of
Commercial Off-The-Shelf (COTS) components that describes available options
to implement these particular communication mechanisms.



Fig. 3. Partial content of COTS Catalog in the Mechanism Reification Model (MRM)

If SMTP and IMAP or POP3 were chosen, the MRM -known available COTS
alternatives are SendMail, QMail and Courier Mail Server (for SMTP) and Out-
look and Thunderbird (for POP3 and IMAP).

Also, we need select implementation for selected access control and repli-

cation mechanisms. For instance, SMTP-AUTH protocol can implement access
control for SMTP, and therefore we need to identify COTS that implement
SMTP-AUTH, such as SendMail (8.1 and later), Qmail (with qmail-smtpd-
auth patch) and Courier Mail Server. Also, Outlook and Thunderbird imple-
ments POP-AUTH and IMAP-AUTH to support a access control mechanisms
for sending mail. Regarding replication, there are several possibilities as well:
realizing passive replication maintaining SMTP server replication and related
policies with ad-hoc development; purchasing/adquiring COTS with this capa-
bilities (e.g. LifeKeeper for Linux, SMTP.NET for Windows); or outsourcing this
service to third parties defining SLA (availability=99,9%).

At this point, the architect makes the first decision about platform, in this
case picking one on which both products run; the known choices are Windows
(a gamut of choices itself) and Linux. We leave that last leg of the exercise to
the reader.

5 Further Work

We are working to define model transformations from PIAM to COTSM in
order to support an MDA process to describe architectural decisions in different
phases of development and support COTS selection process, and to incarnate
this process in a MDA tool.

Work in progress includes expanding the policies catalog by adding more
concerns and their dimensions, extending the framework to allow generation and
comparison de alternative combinations of mechanism to satisfy a given problem,
and identifying constraints on mechanism combinations. A hard problem that
is being jointly explored with artificial intelligence researchers is the generation
and selection of mechanism combinations that are optimal according to some



non-technical criteria, such as purchase cost, deployment risk, and development
complexity.

6 Conclusions

This article presents the conceptual model of the Azimut framework to ex-
tend MDA for reasoning about architectural policies related to NFRs, preserv-
ing traceability of architectural decisions, and generating hybrid solutions with
COTS and ad-hoc development. The key framework ideas are representation of
NFRs with architectural policies, multi-dimensional description of components
as implementations of specific architectural mechanisms, systematic refinement
and mapping from architectural policies into (component) mechanisms, and de-
velopment of a component catalog on these lines.

The systematic use of architectural policies and mechanisms allows describ-
ing and reasoning architectural decisions at an architecture level, i.e. determin-
ing which software to build to provide certain required systemic properties
(NFRs). The Azimut framework allows describing, encapsulating, automating
and reusing architectural decisions from architecture to implementation, and
maintains traceability of such decisions.

The Azimut framework extends MDA with several models: Platform-Independent

Architecture Models (PIAM) to relate NFRs to domain components using ar-
chitectural policies; Architecture Reification Models (ARM) to describe which
combinations of architecture mechanisms satisfies each PIAM -described policy;
and Mechanism Reification Models (MRM) to indicate which COTS (and with
which parameters) implement each architecture mechanism.

References

1. Object Management Group: MDA Guide Version 1.0.1 (June 2003). http://www.
omg.org/cgi-bin/doc?omg/03-06-01

2. Gokhale, A., Balasubramanian, K., and Lu, T. CoSMIC: Addressing Crosscutting

Deployment and Configuration Concerns of Distributed Real-Time and Embedded

Systems. OOPSLA 2004, ACM Press, p. 218-219.
3. Solberg A., Huusa K. E., Aagedal J. ., Abrahamsen E: QoS-aware MDA. Workshop

SIVEOS-MDA 2003, published in the ENTCS Journal.
4. Cao, F., Bryant, B., Raje, R., Auguston, M., Olson, A., Burt. C: A Component As-

sembly Approach Based on Aspect-Oriented Generative Domain Modeling. ENTCS
2005, pp.119-136.

5. Burt, C., Bryant, B., Raje, R., Olson, A., Auguston, M.: Quality of Service Issues

Related to Transforming Platform Independent Models to Platform Specific Models.

Proc. EDOC 2002, pp.212-223.
6. Silaghi, R., Fondement, F., Strohmeier, A.: Towards an MDA-Oriented UML Profile

for Distribution. Proc. EDOC 2004, pp.227-239.
7. Simmonds, D., Solberg, A., Reddy, R., France, R., Ghosh, S.: An Aspect Oriented

Model Driven Framework. Proc. EDOC 2005, to appear.
8. Weis, T., Ulbrich, A., Geihs, K., Becker, C.: Quality of Service in Middleware and

Applications: A Model-Driven Approach. Proc. EDOC 2004, pp.160-171.



9. Almeida, J.P.A., van Sinderen, M.J., Ferreira Pires, L. and Wegdam, M.: Handling

QoS in MDA: a discussion on availability and dynamic Reconfiguration. Workshop
MDAFA 2003, TR-CTIT-03-27, pp. 91-96.

10. AndroMDA website. http://www.andromda.org/
11. OptimalJ website. http://www.compuware.com/products/optimalj/
12. ArcStyler website. http://www.interactive-objects.com/
13. SosyInc Modeler and Transformation Engine website. http://www.sosyinc.com/
14. Basin, D., Doser, J., and Lodderstedt, T.: Model driven security for process-oriented

systems. Proc. SACMAT 2003, pp.100-109.
15. Lang, U., and Schreiner, R.: OpenPMF: A Model-Driven Security Framework for

Distributed Systems. Presented at ISSE 2004 http://www.objectsecurity.com/

ISSE04.pdf

16. Skene, J., and Emmerich, W.: A Model Driven Architecture Approach to Analysis of

Non-Functional Properties of Software Architectures. Proc. ACE 2003, pp.236-239.
17. Pignaton, R., Villagra, V., Asensio, J., Berrocal, J.: Developing QoS-aware

Component-Based Applications Using MDA Principles. Proc. EDOC 2004, pp.172-
183.

18. Policy and Mechanism Definitions. http://wiki.cs.uiuc.edu/MFA/Policy+and+
Mechanism

19. Firesmith, D.: Specifying Reusable Security Requirements. Journal of Object Tech-
nology, Vol. 3, No 1, (Jan-Feb 2004), pp.61-75. http://www.jot.fm/issues/issue_
2004_01/column6

20. Britton, C.: IT Architectures and Middleware: Strategies for Building Large, Inte-

grated Systems. Addison-Wesley Professional (Dec 2000).
21. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, Second

Edition Addison-Wesley Professional (Apr 2003).
22. http://sarwiki.informatik.hu-berlin.de/Authentication_Mechanisms

23. OMG Specification : UMLTM Profile for Modeling Quality of Service and Fault

Tolerance Characteristics and Mechanisms, (Jun 2004) http://www.omg.org/docs/
ptc/04-06-01.pdf


