
Diploma Thesis

DAMPF - Dresden Auto-Managed
Persistence Framework

submitted by

Sebastian Götz

born 19.05.1984 in Dresden

Technische Universität Dresden

Fakultät Informatik
Institut für Software- und Multimediatechnik

Lehrstuhl Softwaretechnologie

Supervisor: Dipl.-Inf. Sebastian Richly
Professor: Prof. Dr. rer. nat. habil. Uwe Aßmann

Submitted March 6, 2010

Confirmation

I confirm that I independently prepared the thesis and that I used only the
references and auxiliary means indicated in the thesis.

Dresden, March 6, 2010

Contents

1 Introduction 5

2 Dynamic Collaborations with Roles 13
2.1 A Conceptual View on Roles . 14

2.1.1 Motivating the Concept of Roles 14
2.1.2 The Concept of Roles at a Glance 17
2.1.3 History and State of the Art of Conceptual Roles 21

2.2 Roles on the Level of Implementation 33

3 Object-Relational Mapping 37
3.1 Basic Terminology of the Relational Model 38
3.2 Developing Fragrant Databases . 39
3.3 Classes And Relations - Object Relational Mappers 45

3.3.1 Transformations Between Classes and Relations 46
3.3.2 Existing Technologies . 51

4 The Concept of DAMPF 53
4.1 The Five Steps of DAMPF . 55
4.2 Role-Relational Mapping . 65

4.2.1 Complete Separation of Roles, Contexts and Players . . . 67
4.2.2 Class-Role Relations . 67
4.2.3 Normalized Class-Role Relations 68

4.3 Conceptual Architecture of DAMPF 69

5 Implementation 71
5.1 Startup Utilities . 72
5.2 Schema and Runtime Fact-Base . 77
5.3 Runtime Utilities . 82
5.4 Normalization . 87
5.5 Evaluation . 89

6 Conclusion 93
6.1 Future Work . 97

A Prolog Rules 99

3

CONTENTS

4

Chapter 1

Introduction

The transformation of domain objects between object-oriented systems and re-
lational databases has been investigated for a long time, resulting in industry-
wide accepted standards for object-relational mappers, like the Java Persistence
API[30]. In consequence software engineers got a sophisticated abstraction
layer for persistency. Common object-relational mappers disburden software
engineers from manually creating database schemata, but combine the schema
definitions of the object-oriented and the relational world. Software engineers
can even apply optimizations to the databases, like specifying indexes, without
manually changing the database schema. Central to all systems is the data
they process. Notably, the bulk of data storages used in combination with
systems follows the relational model, whereas systems using the storage are
object-oriented. Therefore, this thesis addresses problems in the field of object-
relational mapping and does not utilize object-oriented database management
systems (OODBMS). Additionally OODBMS lack generally accepted standards
and still do not perform well, in contrast to relational database management
systems.

This thesis presents a novel approach to persistency for object-oriented sys-
tems and systems utilizing roles as first-order constructs: the Dresden Auto-
Managed Persistency Framework. Its acronym, DAMPF, is the German word
for steam.

A lot of persistency mechanisms exist, but none of them is really transpar-
ent. If a developer decides to use a JPA implementation, he needs to provide
vast amounts of information on how and what he wants to persist. Usually
whole books need to be read on order to take full advantage of common object-
relational mappers. This thesis aims on creating an object-relational mapper,
which is transparent at a degree, so developers need to read only a single page
to take full advantage.

Furthermore roles as an extension to the object-oriented paradigm will be
supported. Notably, this thesis does not focus on roles known from role based
access control! In short, roles describe dynamic behavior, are played by objects
in a context and thereby allow expressing dynamic collaborations in a clean
and compact way. Olaf Otto’s extension[54] to the JPA provides persistency for
systems written in a language supporting such roles, but does not fully utilize
the power of roles themselves. Though the extension itself is written in that
language, the real strength of roles, that is their dynamic properties, is not

5

CHAPTER 1. INTRODUCTION

used. This is because only the chosen language has been investigated and that
language is based on one of many understandings about the concept of roles,
which focuses less on the dynamic properties, but more on the detachment of
behavioral concerns.

Separate approaches for schema evolution, distribution in heterogeneous en-
vironments and context-based security in general exist, but no solution for
object-role-relational mapping supports them. Special about all these three
features is that they cannot be realized in such mappers with feasible effort,
except the power of roles is utilized. Hence, the features of DAMPF are:

1. Transparency, by convention over configuration.

2. Support and utilization of roles.

3. Support for schema evolution.

4. Support for distribution in heterogeneous environments.

5. Support for context-based security.

These features make DAMPF unique, because no other approach supports
all of them. Another contribution of this thesis is a Prolog program, realizing
fully automatic database normalization.

The next paragraphs describe the three main features of the approach pre-
sented in this thesis in more detail.

Schema Evolution. The implementation of object-oriented and role-oriented
software is an iterative, incremental process. Each iteration ends with an exe-
cutable application, which is subject to tests. The next iteration modifies, that
is mainly extends, the existing application. If the application utilizes a role
relational mapper for persistency, the data of the application is likely to be lost
after each iteration. Changes to the applications schema boil down to changes in
the database. But object relational mappers do not support structural changes
to the application without losing the data, which has been persisted in the
database. DAMPF is the first tool, that offers this feature. In order to realize
this feature, DAMPF provides facilities to change the schemata in the database
and to migrate the data from old to new schemata. Notably, this feature allows
for the evolution of the applications schema, which is bound to the database
schema. The approach does not focus on database schema evolution, but on
the integration of changes of the applications schema into the corresponding
database schema.

Example 1 One of the most important domain concepts of a university man-
agement system is Student. When such a system is under development, such
a concept is likely to change often. Figure 1.1 depicts an example scenario. In
a first version, class Student comprises the attributes name, studentID and
curSemester, which denotes the current semester of the corresponding student.
The next development iteration leads to the removal of curSemester and the
addition of the attribute birthday. The data, which already existed for the first
iteration, needs to be migrated to the new schema.

6

Student

name
studentID
curSemester

Student

name
studentID
birthday

Student

name studentID curS.
Egon 1 4

Alex 2 2

Paul 3 7

- curSemester

+ birthday

Student

name studentID birthday
Egon 1 null

Alex 2 null

Paul 3 null

curS.
4

2

7

Figure 1.1: Example for Schema Evolution Support in DAMPF.

As Example 1 shows, support for schema evolution requires more than ap-
plying schematic changes to the database. Existing data needs to be migrated.
DAMPF provides a mechanism for both and supports an even more complicated
scenario, which is illustrated in Example 2.

Example 2 Imagine an application for the management of students. Figure 1.2
depicts the example. In a first iteration students have an attribute year, storing
the year they started to study. In the following iteration this field is removed
and another attribute, pointing to the exam regulations the students study, is
added. In a third iteration the year of study is added again, additionally to the
attribute, pointing to students’ exam regulations.

In DAMPF the data from the first iteration will not get lost due to the second
iteration, although the attribute for this data is removed temporarily from the
class schema. The data from the first iteration will be available in the third
iteration again! This is, because DAMPF does not remove attributes from the
relational schema by default. A removed attribute will just not be fetched from
the database. Hence, schema evolution is supported in a novel way, utilizing
the abilities of the transformation between the relational and class schemata.

Distribution in Heterogeneous Environments. Nowadays software runs
everywhere: in cars, PDAs, fridges, mobile phones and of course still on classic
computers. In this context the distribution of software across multiple process-
ing units is of very high importance. Processing units of mobile devices are
by nature less powerful than classic, stationary processing units. In order to
accomplish complex, cost-intensive tasks, mobile processing units use services,
provided by more powerful units. Current technologies for this purpose are
Enterprise Service Buses and Application Servers. In general the applied ar-
chitecture is of client-server nature. Mobile devices are clients, using services,
provided by servers. A direct consequence of this architecture is, that clients
need to communicate with their servers, viz. they need a connection. Often this
connection is unstable, due to the properties of the environment the mobile de-
vices is currently located. This leads to the requirement to store important data

7

CHAPTER 1. INTRODUCTION

Student

year
…

Student

examregs
…

Student

year
examregs

…

Student
year …
2003 …

2003 …
2005 …

Student
examregs …

INF …

MINF …
INF …

Student
year …
2003 …

2003 …
2005 …

examregs
INF

MINF
INF

C
la

ss
 S

ch
em

a
R

el
at

io
n

al
 S

ch
em

a

1st Iteration 2nd Iteration 3rd Iteration

Time

Figure 1.2: Schema Evolution with Reuse of Data.

on mobile devices, until the connection to the server is stable. Though mobile
devices are less powerful than servers, they tend to get more and more powerful.
In the past only imperative programming languages close to hardware were used
to develop software for mobile devices. But the trend is to use object-oriented
technologies for this purpose. Mobile phones are a prominent example. Sun
offers a separate edition of the object-oriented programming language Java for
mobile devices, called J2ME. Google developed an object-oriented framework
and operating system for mobile phones, called Android1. Besides the power of
mobile processors, the available memory on mobile devices grows, too. Nowa-
days mobile phones provide about half a gigabyte of internal memory and are
extensible, to support 8 or even more gigabyte. Hence, there is the possibil-
ity to use database management systems on mobile devices. Notably, storing
information temporarily on mobile devices leads to the well known problem of
offline database synchronization. This thesis does not focus on this problem, but
leaves it to future work. As mobile software is developed using object-oriented
programming languages and databases can be used, the requirement for object-
relational mappers on mobiles devices emerges. Those mappers need to consider
the special properties, which are not present in stationary devices.

The same holds for classically distributed systems. Usually services are not
provided by a single server, but multiple servers provide them and work together
in order to achieve complex tasks. Each server needs to persist its data, as
network connections cannot be considered stable by default. Loss of data leads
to exhaustive costs in industrial settings. Imagine a system, responsible for
financial transactions of a bank or a system, responsible for order processing of
a trading company.

Vast amounts of servers of different companies providing lots and lots of

1http://www.android.com/

8

Person

Student Taxpayer

Driver

income

license

studID

Person

Student Taxpayer

incomestudID

studID income license
1 600 B
2 550 B

3 830 BC

studID income license
1 760 B
2 710 B

3 990 BC

studID income license

1 B
2 B
3 BC

760
710
990

Server A Server B

add some money

Figure 1.3: Example of Domain Object Distribution Between Heterogeneous
Servers.

services currently exist. In order to utilize the offered functionality systems
of different companies, developed using different technologies need to work to-
gether. The Open Service Process Platform[31] provides an environment, which
enables developers to utilize and compose services. Each server needs its own
persistency mechanism in order to store and thereby to avoid the loss of its
data. Additionally servers need to exchange data, if they are working together
on the same objective.

The transport of data between servers, which were developed independently
from each other, poses the requirement of a translator between the servers. Each
server (or cluster) has its own domain model, representing its understanding of
the world. The translator needs to transform domain objects from the domain
model of one server to domain objects, which conform to the domain model of
the other server. Though DAMPF does not provide such a translation mecha-
nism, it gives servers the ability to work with domain objects they do not fully
understand. DAMPF is able to send and receive domain objects. Whenever
a domain object is received, which is not compatible with the current servers
understanding, only those parts of the domain object, which can be understood
by the current server, will be used to create a domain object for it. Data, which
is not understood, will not be deleted, but just not used by the current server.
Thus, when the server sends back an incompatible, but anyway used, domain
object to the sender, all data will be available again.

9

CHAPTER 1. INTRODUCTION

Example 3 Figure 1.3 depicts an example for such a scenario. The domain
model of server A, depicted at the left top, describes persons with three roles:
Student, Taxpayer and Driver. Below the model, there are 3 exemplary per-
sons, having student id, income and driving license. Server B does not know
about the Driver role, but about Student and Taxpayer. Its task is to add some
money to the persons he receives and to send the data back, to where it came
from. Is depicted in the figure, the driving license data is not lost due to the
processing of Server B. Server B just uses the data it understands, but leaves the
remaining untouched. Indeed Server B will not know that the received domain
object does not fit to its domain model, because DAMPF hides these adaptations
from the servers.

The ability to process domain objects in a distributed environment, without
the need, to explicitly adapt all objects, eases the development of such systems
considerably.

Context-Based Security. An important aspect of domain objects for their
transformation to their relational representatives is that they contain data. In
combination with the ability to distribute domain objects, security requirements
emerge. For example governmental systems stockpile vast amounts of highly
confidential data. This data cannot simply be send from one device to another.
Depending on the context, different subsets of the whole data should be acces-
sible. Or in other words, parts of the data need to be hidden in some systems.

Example 4 A central governmental system contains data about all citizens of
the country. Data from health insurance companies, tax offices and many more
systems is collected. The central systems should also offer data to these other
systems. It is important, that a tax office, requesting the data of some citizen,
does not see any health-related information of that citizen. People do not want
to expose their meticulous illnesses to somebody else, than their doctor. Some
data is relevant to more than one company. The tax office and health insurance
companies need to know the age, name and sex of a citizen.

Hence, data is context-sensitive. Depending on the authority accessing the
data, a different subset of it should be exposed. Different approaches exist,
to realize this context-based data selection, but none is available as part of an
object(-role)-relational mapper. Using the distribution feature of DAMPF along
with role-based programming, it is possible to realize context-based security.

Domain objects, which are subject to many contexts, have a core comprising
those attributes, shared by all contexts. All other attributes are modeled in
roles. A central system contains the definition of all roles. The particular
systems only contain the definitions of those roles, they are interested in. The
distribution of a domain object from one system to another, as described in the
preceding paragraph, leads to a transformation of the domain object, which can
be understood by that system, but does not lead to loss of data. Because the
receiving system does not know about roles, which are not relevant to it, the
transformed domain object only exposes the data, which is of interest to that
system, but hides all information, which must not be accessible.

Example 5 The central governmental system from Example 4 contains the
class Person, with the attributes name, age and sex. It furthermore contains

10

Person

name
age
sex

Tax-Payer
income

Patient
illnesses

citizen
id

Person

name
age
sex

Patient
illnesses

Person

name
age
sex

Patient
illnesses

citizen
id

Governmental System

Health
Insurance
Company

Tax Office

Person
name age sex income illnesses id

John 45 m 60,000 acne 12

Person
name age sex income illnesses id

John 45 m 60,000 acne 12

Figure 1.4: Context-Based Security as a Direct Consequence of Transformative
Domain-Object Distribution.

three roles, playable by persons: Citizen, Patient and Tax-Payer. A health
insurance system contains only the class Person and the role Tax-Payer. Tax
office systems contain class Person and the roles Citizen, as well as Tax-Payer.
The tax office requests the domain object of John Smith, a 45 years old male
citizen with an income of $120,000 a year, who had acne as a child. A clerk
thoroughly processes the tax assessment of John Smith, and thereby cannot see
the illnesses of John, but the data of John as a tax payer and citizen. After
the clerk finished his work, the domain object is send back to the central system.
Now, the insurance company is requesting the domain object of John Smith, too.
A clerk of that company does not see any information about John as a tax payer
or citizen, but as a patient. Figure 1.4 depicts this scenario.

In summary, the distribution feature of DAMPF allows to realize context-
based security without any extra effort. Systems using DAMPF will always
only see that information, which is in accord with their domain model. These
systems will even not know that they only see part of the whole object, because
DAMPF hides this information from them. In consequence, the distribution
feature of DAMPF realizes context-sensitive data selection.

The thesis is structured as follows. Chapters 2 and 3 comprise background
knowledge. Experienced readers can skip them. Chapter 2 provides an overview
of the current state of the art of roles as an extension to the object-oriented
paradigm. Chapter 3 explains fundamental concepts about the relational model
and the transformation of domain objects into their relational representatives.
The concepts of DAMPF are elaborated in Chapter 4. The actual implementa-
tion is subject of Chapter 5, which includes a description of the normalization
approach, too. Finally, the thesis concludes with Chapter 6.

11

CHAPTER 1. INTRODUCTION

12

Chapter 2

Dynamic Collaborations
with Roles

13

CHAPTER 2. DYNAMIC COLLABORATIONS WITH ROLES

2.1 A Conceptual View on Roles

Object-Oriented systems consist of objects, which collaborate with each other.
That is objects send messages to each other and react on received messages. Two
different shapes of Object-Orientation exist: class-based and prototype-based
approaches. Nowadays class-based approaches form the mainstream.

In class-based approaches objects are derived from classes. A class thus
describes a set of objects, which are similar in their properties. Properties are
both attributes and methods. The derivation of an object from a class is called
instantiation. If attributes are designed mandatory, a value has to be assigned
to them during instantiation. This is done in a special method, called the
constructor, which is executed at instantiation time of the object. This way no
object can exist, which has mandatory attributes without a value. The values
of the attributes of an object form the state of the object.

Methods encapsulate behavior, viz. how an object reacts on a received
message. The set of methods, defined in a class, can be seen as the set of valid
messages for objects derived from that class.

In order to foster reuse and modular design, classes can be structured in
inheritance-hierarchies. A class is able to refine another class, called its su-
perclass, in that it overrides or extends methods of the superclass. The most
powerful feature of class-based object-orientation is polymorphism, which en-
ables the developer to assign objects of any subclass of some class X, to a
variable typed with X. This enables an important principle called ’divide-and-
conquer’: Big problems are divided into small pieces, which are easier to solve,
and the partial solutions are composed to an overall solution. For each cate-
gory of subproblems a separate subclass can be written, containing a specialized
algorithm, which fits best for the corresponding category.

Inheritance in class-based object-oriented system is static. That is, inher-
itance is defined between classes, not objects. If some class A inherits from
another class B, this dependency holds for all instances of A. Polymorphism is
only partially dynamic, as it is about substitutability of objects at runtime, but
the possible substitutions are limited by the static hierarchy of types.

2.1.1 Motivating the Concept of Roles

Imagine a University Management System. Two important concepts in such a
system are Student and teaching assistant, in short TA. Both refine the more
abstract concept Person. In class-based object-oriented languages a common
design for these concepts consists of one class per concept, where Student and
TA inherit from Person as depicted in Figure 2.1.

Now imagine a person, who starts studying at a university and, after a year,
starts to work as a teaching assistant in parallel. The proposed design is not
able to express this situation, because an instance must not be of more than
one type. A design supporting this scenario needs multiple inheritance, i.e.
a class StudentTA needs to be introducing inheriting from both Student and
TA.

This might look like a suitable solution on the first sight. The problem of this
solution is, that it does not scale. Imagine further concepts like StudentWorker,
StudentRepresentative and so on. A person could be a student, teaching
assistant, student worker and student representative at the same time. Or

14

2.1. A CONCEPTUAL VIEW ON ROLES

Student TA

Person

Figure 2.1: Using Inheritance to Model Students and Teaching Assistants (TA).

he could be a student and a student worker at the same time. In the worst
case every possible combination the subclasses of class Person is needed as a
separate subclass. This swiftly leads to lots of additional classes. Thus multiple
inheritance is not a feasible solution.

So the solution using multiple inheritance is only suitable for a small number
of classes? No! A further problem of using the inheritance solutions reveals by
slightly changing the scenario. Imagine a student being a teaching assistant for
two different courses, viz. being a teaching assistant twice. There is no clean
solution to model this scenario using inheritance.

Furthermore using inheritance does not allow a student to be a teaching as-
sistant only for some time. That is because the instance expressing the student,
being a teaching assistant at the same time, is an instance of class StudentTA.
If the student finished his job as teaching assistant, he cannot change its type at
runtime to Student. A solution would be, to delete the instance of StudentTA
and create a new instance of Student, but this is only a workaround on the level
of implementation. On a conceptual level the instance representing the student
must not be deleted, unless the student finished his studies or died.

As the previous examples showed, it is not possible to model the scenario
using inheritance. Besides inheritance the object-oriented paradigm offers dele-
gation. Delegation works on the level of objects and denotes, that an object o1
referencing an object o2 is able to call a method provided by o2. A solution for
the above described scenario using delegation is depicted in Figure 2.2.

This design is able to express the scenarios described above. For example

Student TAPerson
*1

Figure 2.2: Using Delegation to Model Students and Teaching Assistants.

15

CHAPTER 2. DYNAMIC COLLABORATIONS WITH ROLES

ComponentCore

operation()
addRole(Spec)
hasRole(Spec)
removeRole(Spec)
getRole(Spec)

state

Component

operation()
addRole(Spec)
hasRole(Spec)
removeRole(Spec)
getRole(Spec)

ComponentRole

operation()
addRole(Spec)
hasRole(Spec)
removeRole(Spec)
getRole(Spec)

roles
*

core

ConcreteRoleA ConcreteRoleB

Figure 2.3: Role Object Pattern, redrawn after [6].

to model a student working as a teaching assistant twice, at the same time,
an instance of class Person references and instance of class Student and two
instances of class TA. It is also possible to express a student, being a teaching
assistant only for some time. Therefore code in class Person is needed, which
manages the references of persons. If a student stops being a teaching assistant,
the reference to the corresponding instance of TA and the instance itself is simply
deleted.

But how does this solution scale? Every further class, like StudentWorker,
is introduced as a separate class and connected to class Person. For each new
class management methods need to be introduced in class Person, offering the
functionality to add and remove instances of the new class.

In 1997, Bäumer et al. introduced the Role Object Pattern[6], which is a
delegation-based solution for exactly the problems described above. The pat-
tern, as depicted in Figure 2.3, structures and refines the solution showed in
Figure 2.2. First the management code is extracted to a separate subclass,
which is named ComponentCore. Next a further subclass, called ComponentRole,
of Person is introduced. This class serves as superclass of all subclasses like
Student and TA. Due to the inheritance relations the management methods are
present in all classes. Their actual implementation is defined in ComponentCore,
the implementations in ComponentRole simply forward the calls to the corre-
sponding core instance.

The pattern allows dynamically adding and removing classes like TA at run-
time. Those classes can evolve independent from each other and the combina-
torial explosion of classes through multiple inheritance is avoided. Nevertheless
this solution does not scale. Bäumer et al. mention a set of drawbacks of their
pattern. Clients using instances of classes like Person get complex very soon,

16

2.1. A CONCEPTUAL VIEW ON ROLES

because they need to be aware of all the subclasses and manage their instances
(using the management methods). If there are constraints like: ”a person, which
is a student, must not be a professor at the same time.”, these need to be ex-
pressed in client code, which thereby gets even more complex. The type system
cannot be used to enforce these constraints. A final drawback of the pattern and
of solutions using delegation is that the conceptual unity gets lost. Imagine the
very simple scenario of a student. The student is express by two instances, one
core object and one role object. Thus two instances are used to express a single
conceptual entity, i.e. the student. This problem is called object schizophre-
nia[33] and can be seen as the reason, why a new concept needs to be added to
the class-based object-oriented paradigm: the role.

2.1.2 The Concept of Roles at a Glance

As described in the former Subsection, the Object-orientated paradigm is miss-
ing an important concept. Object-orientation requires each instance to have
a single type for its whole lifetime. A concept enabling instances to dynam-
ically change their type at runtime is missing. That is a concept describing
collaborations of objects. This drawback has already been formulated in 1987
by James Rumbaugh: ”class-based object-oriented implementations of object
collaborations hide the semantic information of collaborations but expose their
implementation details”[58]. The concept of roles provides this feature.

Roles describe how the behavior and structure of an object differs in a par-
ticular collaboration.

Remind the scenarios of the last Subsection, viz. a person starting to study
at a university and thus becoming a student. After some time that person starts
to work as teaching assistant, but just for half a year. After 2 years of being
a student, the person gets elected by other students and becomes a student
representative. Finally, the person finishes to study and starts to work for a
company as an employee. Note, that the scenario describes, what the person
does, i.e. being a student, a teaching assistant and so on.

All these activities are roles. In real life they are described as roles, too. A
person plays the role of an employee, a student representative and so on. It is
inherent to the concept of roles that they are played just for some time. For
example the teaching assistant role is being played just as long as exercises are
offered in a semester. Thus roles can be active or inactive. It is furthermore
possible, that a role is inactive for some time, for example the car driver role.
This role is active, as long as the person drives a car, will be inactive when the
person does not drive a car and will be active again, if the person starts to drive
a car again.

Talking about playing the same role again, leads to the notion of role classes
and roles instances. Like classes, defining a set of objects, which have the
same properties, role classes define a set of roles instances, having the same
properties. The role class Student defines student role instances, all having the
same properties, like the attribute matriculation number. But how are role
instances created? To answer this question first two more properties of the role
concept need to be examined: rigidity and the property of being founded.

Rigidity is a property of types, denoting that a type is able to exist on
its own. Instances of type Book for example are able to exist on their own.
Instances of type Reader cannot, because if there is a reader, there always is

17

CHAPTER 2. DYNAMIC COLLABORATIONS WITH ROLES

a person, who is that reader. Types like Reader are called non-rigid types.
Role types are non-rigid, too. Looking at the concept of roles, this non-rigidity
excels in the requirement of a player. There must not be a role without a
player. Remind the scenario from above. If there is a student, there is a person,
being that student, too. This person is the player for role type Student.

The second important property of role types is foundation. Types in gen-
eral are founded, if it does not make sense, to talk about them, without talking
about other types. In essence types are founded, if their instances always take
part in a collaboration. Remind the example from the last paragraph. The
type Reader is founded, because it does not make sense to talk about readers,
without talking about what they read, i.e. books. Readers always take part in a
collaboration, viz. a reader collaborates with books. Thus founded types cannot
exist alone, but depend on other types. This dependency is a constraint over
the instances, saying that there must not be an instance of this type, which is
not connected to another instance. Multiple qualities of foundation exist, that
is various types of these constraints can be identified. A founded type may
require its instances to collaborate with exactly one, at least one, at most N,
between N and M or exactly M other instances. A further restriction could be
that the instances have to be of different types. Up to now these qualities have
not been investigated in detail. With regard to role types, which in general are
founded, i.e. cannot exist on their own, the property foundation excels as the
requirement of roles to be part of a context. For example in the scenario of
the last Subsection the role type Student is founded, because it does not make
sense to talk about students, without talking about what they do. Students
interplay with other students, teaching assistants, professors and so on. The
context of this collaboration is the university.

In general a context describes a collaboration, i.e. the interplay of a set of
instances, and a boundary for it. The university from the former example defines
a boundary for collaborating students, professors and so on. The role type
Employee has another context, the company employing the person. Imagine
a person called Mary, studying at the University of Technology Dresden and,
to earn money, working for two local companies. This scenario is depicted
in Figure 2.4. The example clarifies the need for context types and context
instances. In analogy to classes and objects or role types and role instances,
context types define a set of context instances, having the same properties in
common. The context type University describes context instances like tud1

and htwk2. These context instances have properties, like the attribute name or
the method enroll(), in common.

Thus roles are bound to exactly one player and one context instance at a
time. That is a role instance cannot be played by another player and is not
able to be part of another context instance at the same time. This leads to
the different states of role instances and the answer to the question, how role
instances are created.

The possible states of role instances are depicted in Figure 2.5, which can
be read like a state chart. All states are relative to a given context. The state
null means, that the role does not exist at all in the given context. If it exists,
the first possible state is called unbound, meaning, that the role instance is not

1tud = University of Technology Dresden
2htwk = College for Techniques, Economics and Culture Dresden

18

2.1. A CONCEPTUAL VIEW ON ROLES

cmp2 : Companycmp1 : Companytud : University

mary : Person

name
age

stud1 : Student

matriculation number

study()

emp1 : Employee

ID
salary

work()

emp1 : Employee

ID
salary

work()

ta1 : TA b1 : Boss boss : Boss

<<playedBy>>

<<playedBy>>

<<playedBy>>

...... ...

Figure 2.4: Example of Mary, Playing Several Roles.

null

unbound bound

prototype ready active

without data

with data

Figure 2.5: Possible States of Roles, Relative to a Given Context.

bound to a player and has no data. If the role gets bound to a player it reaches
state bound. If it gets filled with data, it reaches state prototype. The name
typifies the use of this state. Roles in prototype state are used such, meaning
that they are likely to be cloned and these clones are bound to various players.
If a prototype role is bound to a player or a bound role is filled with data, the
ready state is reached. This state typifies a role, which is ready to be actively
played. If such a role is activated, it gets into state active.

With regard to Figure 2.5 a role instance is created by binding it to a given
context. It does not have to be filled with data or to be bound to a player.
From a conceptual point of view the first three states, i.e. null, unbound and
prototype, disqualify the instance to be a role. As long as the instance is not
bound to a player it is conceptually not a role instance. But why do we need the
three contradicting states? The prototype state fosters reuse on instance level.
That is, role instances are easier to create based on the state of already existing
roles. Additionally the prototype state is a conceptual necessity. Imagine a
garden plot union and their executive. One of the residents is elected to be
the executive. What happens to the executive role, if the person, being that
executive, migrates or dies? It is unbound, as it does not have a player anymore,
but it is filled with data, thus it is in prototype state. The residents will elect

19

CHAPTER 2. DYNAMIC COLLABORATIONS WITH ROLES

a new executive and in the meantime will talk about that role, making the
assumption, that there will be a player for it. Thus a role is allowed to be
unbound, as long as there will be a player for it in the future. This qualifies the
existence of the unbound state, too.

As already mentioned, roles require a player and have, like their player, an
own state. That is, a role class is described in a similar way like classes, meaning
that they describe a set of attributes and a set of methods, too. But role classes
contain a further construct, that of delta methods. It is the nature of roles, to
describe how some player acts or reacts in the context the role is bound to. This
includes, that a role describes how the behavior of the player changes, if he acts
or reacts in that context. Imagine a married soldier. If his wife asks him for a
coffee, he will answer ”Sure, honey.” and after a minute go and get the coffee
for her. If his direct superior asks him for a coffee, he should behave in another
way, if he likes his job. The person behind the soldier or husband may be even
lazy and would naturally not react on such a question at all. The roles soldier
and husband define how the behavior of the person changes in the context of
the army or family.

But roles do not just change the behavior of their players in a given context.
They change the way players look like, that is there public structure, too. In a
collaboration objects communicate with each other. How they do so, is described
by their roles. Thus, what they see of each other is described by their roles,
too. And what they see could be something completely different, from what the
object originally looked like. Remind the married soldier. In the army he looks
like bad medicine, always running at the very front line. For his wife he looks
like the nice guy, she fell in love with, or the guy, who always forgets about
washing the dishes. Thus, in different contexts a different set of properties is
visible and the properties of the player can be hidden in some contexts.

This leads to the question of accessibility, viz. who is able to see which roles.
As mentioned, roles are bound to a context instance and a player. In principle a
role can only be used by other roles, which are bound to the same context. This
is because the context defines the collaboration. If the role needs to be used by
another role, which is bound to another context instance, the collaboration is
incomplete. The essence of a collaboration is to describe all interactions of the
role instances it contains. But there are scenarios in which role instances need
to communicate across the boundaries of their contexts. Remind the married
soldier. As a soldier he earns money and as a citizen he has to pay taxes. Thus
the taxman is highly interested in details about the soldiers pay and, due to the
rules passed by the government, the fact, that he is married. Thus there is a
collaboration between the soldier role, bound to the army context, the husband
role, bound to the family context and the tax collector, bound to the taxman
context. It is important to note, that this collaboration is of temporal nature.
Unlike the family context, which sustains at least until the husband dies, this
collaboration exists just for a short, delimited time. Of course the taxman wants
to collect the taxes every year, but this leads to a new temporal collaboration
each time. The role instances participating in the collaboration may change
each time. Just imagine that the soldier gets father and hence, stops his carrier
as a soldier, to earn his money in a safer way. Due to the possibility of varying
participants, such temporal collaborations have no fixed boundary.

In order to describe such temporal collaborations a new concept is needed:
transclusion. Transclusion is a property of compositions. Usually all parts

20

2.1. A CONCEPTUAL VIEW ON ROLES

of a composition are consistent in themselves. If they are composed in a safe
way, the result is consistent, too. If a part is decomposed into smaller parts,
the resulting fragments are not necessarily consistent. Even a safe composition
mechanism cannot ensure that a composition of such fragments will be consis-
tent. Transclusion denotes that a composition of inconsistent fragments leads
to a consistent result. In terms of temporal collaborations this means that in-
consistent fragments of contexts can be joined to a new collaboration, which in
turn is consistent. In the taxman example the soldier role is ripped out of the
army context, leading to an inconsistent state of itself. The role may require
a direct superior, which in the new temporal collaboration does not exist. A
transclusive composition of partial contexts changes the external dependencies
of roles in order to construct a consistent temporal collaboration. In essence,
such a composition consists of 3 steps: select, project, join. First parts of
contexts are selected. The individual roles needed for the temporal collabora-
tion are projected. Finally the projections are joined and now form a consistent
composition.

In summary, roles are instances of non-rigid, founded types. The property
of being founded excels in their need for a context. Their property of being
non-rigid excels in the requirement of a player or, in other words, the fact,
that roles do not have an own identity. Roles are merged with their players
and form a conceptual unit, which is, what delegation-based approaches cannot
achieve. Roles enable their players to change their type at runtime, which is
what inheritance-based solutions cannot achieve.

2.1.3 History and State of the Art of Conceptual Roles

Roles are a very new concept, since a long time. Many researchers developed
their own understanding of the role concept. Some, like Friedrich Steimann,
tried to unify these insights[63]. Others combined preliminary definitions into
an own classification, like Graversen[29]. But, up to now, no common sense is
achieved. In the following, the most important viewpoints on the role concept
are presented.

T.A. Halpin - Object Role Modeling

In 1989 Terence Aidan Halpin introduced, what is known today as Object-Role
Modeling[32]. The goal of the approach is, to overcome limitations of object-
oriented (OO) and entity-relationship (ER) modeling. In Europe Object-Role
Modeling (ORM) is often called Natural language Information Analysis Method
(NIAM). The approach focuses on data modeling, because it stems from the
domain of information system design.

The key difference to OO (data) modeling is that not just objects are mod-
eled, but the roles they play, too. Halpin sees objects as entities or values,
where entities are those parts of a system, representing and structuring data.
In ER modeling an entity has a set of attributes. In contrast, attributes are
not explicitly used in ORM. Instead relationships are preferred, which relate
entities to each other. Imagine yourself, reading this master thesis. To model
such a scenario to entities are needed. The first is you, the second the thesis. In
OO and ER modeling an attribute would be used, to model that you read this
thesis. In ORM/NIAM a relationship reads is used, i.e. Person reads Thesis.

21

CHAPTER 2. DYNAMIC COLLABORATIONS WITH ROLES

A A R

Entity type Value type Predicate

Figure 2.6: Basic Graphical Elements of ORM/NIAM.

The key benefit of using relationships instead of attributes is that both sides
of the relationship are able to evolve independently. Imagine an entity Person,
working for a company. In a first design only the name of the company is taken
into consideration, thus it is modeled as an attribute of Person. Later it is de-
cided, that the company’s turnaround and the total number of employees have
to be modeled, too. Thus the attribute needs to evolve to an entity, containing
name, turnaround and total number of employees, and a relationship between
Person and Company is introduced. In ORM/NIAM the entity Company and the
relationship works for already exist. To apply the new requirements only the
entity Company needs to be adjusted - independently from Person.

The second important concept in ORM/NIAM is, besides objects, the role.
Halpin sees roles as parts of relationships. Remind the two example relations
from the last paragraph: Person reads Thesis and Person works for Company.
Both relations are binary, viz. they have two ends. They define, that two tuples
(or instances in terms of OO) relate to each other. The reads relationship
defines, that persons read theses. Halpin sees the ends of relationships as slots
for players in the relationship. You, for example, play the role of the reader
and this copy of the thesis plays the role of being read. Relationships are not
limited to be binary. They can be n-ary in general. A relationship it the
sense of Halpin defines a context, almost like introduced in 2.1.2. That is, it
defines a collaboration and a boundary. The difference is that the boundary
is not defined as a separate entity. Imagine the university context. A possible
relationship defining such a context could be Person studies and participates in
Course held by Professor. This relationship is complex, viz. it is composed
out of simpler relationships. The simple relationship studies is unary, denoting
that some person is a Student. The other two relationships denote that students
take part in courses, which are held by professors. But the boundary, that is
the university itself, is missing. To overcome this limitation each relationship
needs to be extended by a further slot, binding the collaboration to an explicit
boundary. It is interesting to note, that this leads to the aspect, that the
boundary of the context is a role and itself participates in the collaboration it
delimits.

ORM/NIAM is a modeling method for system analysis. At this stage of
development (and in general) communication between all participants of the
project is very important. Graphical abstractions help to communicate com-
plex issues. Therefore ORM/NIAM provides a graphical notation. The basic
elements are entity types, which are drawn as named ellipses, value types, drawn
as named, dotted ellipses and predicates, drawn as a set of boxes. Figure 2.6
depicts these basic elements.

The term predicate in the graphical notion is just an interpretation of rela-
tionships. Predicates, like those from predicate logic, relate facts to each other.
Halpins relationships do the same, hence they are called predicates. Remind

22

2.1. A CONCEPTUAL VIEW ON ROLES

the relationship works for. In predicate logic the same would be expressed as
the predicate worksFor/2. A predicate consists of several roles, where each role
is depicted by a separate box. Each role has to be bound to a player, which
is of an entity or value type, using a solid line. Figure 2.7 shows the graph-
ical representation of the two former examples, viz. the works for and reads
relationships. The example shows one of the biggest benefits of ORM/NIAM,
its closeness to natural language. That is, what the N in NIAM is for. The
figure reads as follows: a person has a name, a person works for a company, a
company employs a person and a person reads a thesis. As can be seen, this is
very near to plain text, but enriched with metadata for each word.

A lot more elements exist. For example a noticeable set of constraints. To
better understand them, a closer look at predicates is necessary. As already
mentioned, the terms relationship and predicate are used interchangeably. It
is a well known principle from database design to realize 1:N relationships like
entities as separate relations, viz. tables. In terms of OO such relationships are
realized as classes. Instances of such relationship classes describe collaborations.
Halpins constraints on and between relationships require the understanding of
them as relations.

Furthermore two important concepts of the relational model are needed:
primary and foreign key. A relation consists of multiple attributes, whereof a
subset is called the primary key. Attributes, belonging to the primary key, are
unique for all tuples, i.e. instances in terms of OO. That is, if there is a tuple,
having some value v1 to vk for the attributes of the primary key, there cannot
be another tuple having any of the values v1 to vk for the same attributes. This
uniqueness allows using the primary key to reference the respective tuple. The
origins of such references are again attributes. The relation containing such an
attribute defines a foreign key, which describes origin and target of a reference.

An internal uniqueness constraint defines for a relationship, which attributes
or roles, in the sense of Halpin, are unique for the whole relationship. It is de-
picted by an arrow tipped bar. Imagine a relationship Person lives in Country.
If an internal uniqueness constraint is put on the first slot of this relationship,
the requirement that a person lives in at most one country is modeled. This
is because there can be only one tuple or instance of this relationship for the
same person. It is possible to apply multiple internal uniqueness constraints to a
single relationship. At most one of these can be marked primary, meaning that
the slots comprised by this constraint form the primary key of the relationship.

Uniqueness constraints can also be applied between two relationships. Those
constraints are termed external and base on the join of the relationships. They

Person Namehas

works for employs CompanyThesis reads

Figure 2.7: Example Application of Basic ORM/NIAM Elements.

23

CHAPTER 2. DYNAMIC COLLABORATIONS WITH ROLES

State State‐
codehas

U
has

is in

CountryPerson

is in

lives inlives in

Figure 2.8: Example for Uniqueness Constraints of ORM/NIAM.

are depicted by a circled ”U”, connected with dotted lines to the correspond-
ing slots. Again relationships need to be understood as relations, which can
be joined, based on their primary and foreign keys. An external uniqueness
constraint between slots s1 to sk of relationship A and slots sm to sn of rela-
tionship B defines, that in the join of A & B all these slots are unique. Imagine
two relationships: State has Statecode and State is in Country and an exter-
nal uniqueness constraint between Statecode and Country. The consequence
is that each combination of statecode and country relates to at most one state.
Or in other words, each state has at most one statecode per country. Again
it is possible to apply more than one such constraint and to allow for further
composition (joins) of relationships, one of them can be marked primary. Thus,
in the example above, a state could be references by its statecode and country,
if the external uniqueness constraint is marked primary. Figure 2.8 depicts the
example of this and the last paragraph.

The uniqueness constraints allowed defining, how relationships are built up
and composed. Halpin even goes a step further and allows reifying, viz. objec-
tifying, relationships to entities. Using the feature of reification, relationships,
viz. collaborations, are able to play roles, too. Furthermore roles can be defined
mandatory. This constraint is depicted as a black dot on the line between an
entity and a slot of a relationship at the end of the entity. The meaning of
mandatory is that no entity is allowed to exist, without playing this role. For
entities of value type this enables to model mandatory attributes. Entities of ob-
ject type are forced by this constraint to participate in collaborations. Students
for example have to study at a university, in order to be students. For com-
plex scenarios disjunctive mandatory roles can be defined. They are depicted
as circled black dots on a line, connecting two or more roles. There meaning is
that players of these roles have to play at least one of them. Imagine students,
which are allowed to choose between an oral exam and a written exam. This
can be modeled with two relationships: Student does oral exam in Subject and
Student does written exam in Subject, where the Subject-slots are connected
by a disjunctive mandatory role constraint. Figure 2.9 depicts the examples of
this paragraph.

Another important constraint of ORM/NIAM is the subtype constraint,
which is lent from object-orientation. For example, the object type Woman is
a (proper) subtype of Person. Subtyping is depicted by a solid arrow. In
ORM/NIAM subtyping is applied to entities only. There is no subtyping for
relationships or roles.

24

2.1. A CONCEPTUAL VIEW ON ROLES

Furthermore ORM/NIAM provides set comparison constraints, which are
applied between relationships, which have the same host object types. Imagine
persons, which work for companies, but also buy goods from that company.
Two distinct relationships model this scenario: Person works for Company as
Employee and Person buys Product from Company. Set comparison constraints
are allowed to be defined between the roles of Person and Company, but no
for Product or Employee. For the example above a subset constraint can be
applied between the Person roles, from the ...works at..as.. to the ...buys..at..
relationship. This models the set of persons working for companies as a subset
of persons buying products at companies. The subset constraint is depicted by
a dotted arrow, where the source is defined as the subset. If the arrow has heads
on both ends, it depicts an equality constraint. That is, both sets are equal.
Imagine a further relationship Person uses Product. Each person, who bought
a product, does also use it. Finally Halpin defined an exclusion constraint. It is
depicted as a crossed circle on a dotted line between two roles. It defines, that
in any case either the first role or the second role is allowed to be played, but
never both together. A further relationship in the example above is a unary one:
Person is tenured. An exclusion constraint can be applied between the is tenured
and works as..for.. relationship, meaning, that a person is either tenured or
works for a company. Figure 2.10 depicts the examples of this paragraph. Note
the similarities to Riehles constraints. Halpins equivalence constraint indeed is
Riehles role-equivalence. Halpins exclusion constraint is Riehles role-prohibition.
Finally Halpins subset constraint is Riehles role-implication.

Halpin defined a lot more constraints: a set of frequency constraints, and
a set of ring constraints. The former are applied to sequences of roles, like set
comparison constraints, and define how often each role has to be played. Ring
constraints are applied to pairs of roles played by the same host type and qualify
the playing relation as reflexive, transitive and so on.

ORM/NIAM has been used for a very long time. Since its initial publication
many extensions have been developed. Microsoft supports the approach, leading
to high-quality ORM/NIAM tools. In consequence, unfortunately, these tools
are commercial. Nevertheless ORM/NIAM provides a powerful construction kit
for complex role models.

First-order Relationships

Besides work on roles as first-class citizens of programming languages, there is a
community focusing on relationships, viz. collaborations as first-class citizens.

Student Uni‐
versitystudies at ystudies at

does oral exam in

Subject
does written exam indoes written exam in

Figure 2.9: Example of Mandatory Role Constraints.

25

CHAPTER 2. DYNAMIC COLLABORATIONS WITH ROLES

is tenured

Employee

is tenured

Company
works as..at

p y

Person
buys..at

Subject

P d tProduct
uses

Figure 2.10: Example for Set Constraints of ORM/NIAM.

Bierman, Wren and Balzer. RelJ Extended by Member Interposition
and Relationship Invariants. Bierman and Wren[9] and Stephanie Balzer
et al.[5] examined, among further researchers, relationships in object-oriented
programming. Like Halpin, they understand relationships as collaborations of
objects and argue that object-oriented languages are unable to express them
directly. Hence, they call for relationships as a first-class programming lan-
guage construct, like classes, for collaborations. The argument is that first-
order relationships allow to describe collaborations declaratively. Without such
a construct, collaborations are described imperatively and are thus scattered.
Furthermore first-order relationships explicitly define a scope, viz. a context in
our terminology, for collaborations. Plain object-oriented programs need to be
thoroughly analyzed, in order to find the scope of the imperatively described
collaborations. Finally, first-order relationships allow defining constraints on
collaborations, which are distributed over the participants in object-oriented
programs and thus are likely to get inconsistent, if one of the participants
evolves. For these reasons, Bierman and Wren[9] introduced a new language,
called RelJ, providing first-order relationships. Stephanie Balzer et al.[5] pro-
vided two further, important concepts: member interposition and relationship
invariants.

Member interposition deals with the problem that some properties of ob-
jects only apply, if they participate in a collaboration. In our terminology, roles
provide properties, which thereby are only available inside the context instance
they are bound to. Member interposition denotes that properties, defined in the
relationship, are woven into the participants at runtime. The need for member
interposition arises, because no explicit notion of roles exists. Balzer distin-
guishes between interposed and non-interposed members of relationships. A
non-interposed member of a relationship is a member, which is bound to the
relationship itself. In our terminology, contexts have properties, too. Imagine
a relationship Person works for Company. The relationship has two members:
salary and employeeDiscount. The salary is an interposed member, as it is

26

2.1. A CONCEPTUAL VIEW ON ROLES

tied to each person participating in this relationship. The discount for em-
ployees is a non-interposed member, because it is tied to the relationship itself.
Interposed members are also referred to as participant-level members, whereas
non-interposed members are referred to as relationship-level members. In com-
parison, ORM does not provide means to define participant-level members.

Relationship invariants can be seen as consistency constraints. Stephanie
Balzer defines four types of invariants: intra-relationship, inter-relationship,
value-based and structural invariants. The first two kinds define the scope
in that they are valid. Intra-relationship invariants are valid for a single re-
lationship. This conforms to Halpins internal constraints. Inter-relationship
invariants have a scope of multiple relationships, conforming to Halpins exter-
nal constraints. The last two kinds differ in whether invariants use values for
their definition or are purely based on structure. The first and last two kinds
form two orthogonal dimensions. Structural intra-relationship invariants are
able to express multiplicity constraints. Remind the example of Figure 2.9. A
student has to study at a university in order to be a student. This mandatory
role constraint of ORM/NIAM is a structural intra-relationship constraint of
Balzer. Like ORM/NIAM allows defining multiplicities for such constraints,
Balzer does, too. The second part of the example in Figure 2.9, that is stu-
dents may choose between oral or written exams, is represented by Balzers
structural inter-relationship invariants, because it defines a constraint over two
relationships. Again Balzers definition is as powerful as Halpins, though Balz-
ers notation is more complex. So is ORM/NIAM in regard to constraints as
powerful as Balzers extensions to RelJ? No, it is not, because of the value-based
invariants. They use values of the participant’s members to define constraints.
Imagine the participant-level member semester of a relationship assists be-
tween Student and Course. The relationship may require the student to be
in its third semester, in order to assist a course. This cannot be expressed in
ORM/NIAM, but with a value-based intra-relationship invariant. Finally value-
based inter-relationship invariants even allow composing relationships, based on
the values of themselves or their participants. Thus Balzers extensions to RelJ
provide the most powerful mechanisms to define constraints on collaborations.

The Difference between Tuples and Relationships. Stephen Nelson et
al.[47] provide a further viewpoint on first-order relationships. They decompose
systems into three levels[48]. The lowest level comprises plain objects, as known
from the object-oriented paradigm. The second level defines tuples, viz. linked
objects. Noticeably these tuples have state. The third and topmost level defines
relationships as sets of tuples, which are allowed to be instantiated multiple
times. In comparison to Balzers extensions to RelJ, the state of tuples represents
interposed members. Non-interposed members are not part of Nelsons model.
Nelson claims, that RelJ does not allow to instantiate relations multiple times.
[49].

Roles in Modeling

The large modeling community also investigated the role concept. In the fol-
lowing three important approaches will be presented: Smolanders GOPPR
metametamodel, Odells powertypes in the UML and the Object-Oriented role
analysis and modeling approach by Reenskaugs and Anderson.

27

CHAPTER 2. DYNAMIC COLLABORATIONS WITH ROLES

A Metametamodel Supporting Roles - GOPRR. In 1991 Smolander
published the OPRR metametamodel [61]. The OPRR metametamodel has
four concepts: Objects, Properties, Relationships and Roles. As OPRR is tar-
geting Information Systems (IS) Design, that is data modeling, it does not
contain any means for behavior. Following Smolander an information system
comprises objects, having properties, relationships and roles, both having prop-
erties, too.

The terms object and property are used like in object-orientation. That
is a property is of a type and has a value. Relationships connect objects
with each other. Moreover relationships describe more than which objects are
connected to which other objects - they describe how they are connected. Take
a person driving a car as an example. The person and the car are objects,
having attributes like name, manufacturer and so on. They are connected in
many ways. One connection is the car ownership. This ownership is modeled
as a relationship between person and car. But the relationship describes more,
than just the fact, the person and car are connected. It contains information,
like the date of purchase and number of accidents. This is why relationships in
OPRR have properties, too. They are handled as first class citizens, because
they are a standalone concept of the metametamodel. Hence, relationships in
OPRR are what the community of first-class relationships aims for.

Besides objects, properties and relationships, OPRR also contains roles as
first-class citizens. They are described as the ends of relationships. Remind the
example of the last paragraph. The car-ownership relationship has two roles:
that of the car-owner, which is bound to the person object and that of the
bought-car, which is bound to the car. OPRR has only binary relationships, viz.
those having two ends. Thus each relationship contains, besides properties, two
roles. These roles are played by the objects, which are connected to each other
via the relationship. Interestingly roles have properties, too. This empowers the
designer to put the information exactly where it belongs. Remind the properties
date of purchase and number of accidents. The first property correctly belongs
to the relationship. But the second one belongs to the car playing the role of a
bought-car. Imagine a further property owns car since. This property belongs
to persons playing the role of a car-owner.

These four concepts form a powerful metametamodel, enabling method en-
gineers to build very expressive metamodels for their methods. But, never-
theless, OPRR was not feasible for complex methods. This changed in 1993,
when Smolander introduced GOPRR. [62]. GOPRR is an extension to OPRR,
adding a fifth concept: the graph. Graphs can be seen as collections of objects,
relationships and roles. Hence it was possible to build modular metamodels for
complex methods. Furthermore GOPRR allows for n-ary relationships, that is
role models.

In 1995 Steven Kelly[38] pointed out, that the relationship concept in GO-
PRR needs to be split into two. This is because a relationship comprises two
distinct aspects. The first aspect describes the connection of objects, viz. which
object is connected with which other object. Kelly calls these connections bind-
ings. The second aspect of a relationship is that it contains properties. Kelly
claims that binding and property aspects need to be separated. The property
aspect remains in the relationship concept, but the binding aspect is lifted to the
graph concept. That is graphs define which objects are bound to which other ob-
jects via which relationship. Relationships themselves just describe their data,

28

2.1. A CONCEPTUAL VIEW ON ROLES

viz. their properties. The benefit of lifting the binding aspect to the graph is
that it is now possible to globally define how the comprised objects collaborate.
Graphs hence represent objects, roles, relationships and how each of them is
connected. Kelly differentiates between type-level and instance-level bindings.
A type-level binding defines, which role types can be played by which object
types (that is classes). Instance-level bindings are concrete collaborations, viz.
objects playing role-instances in a concrete relationship instance.

The clue of defining each kind of binding in graphs is that it is possible to
define global constraints on the collaborations. GOPRR supports two kinds
of constraints: multiplicities for roles and connectivity constraints for objects.
The first type of constraint allows limiting the number of role instances in a
relationship. Remind the car-ownership relation. It is usual, that only one
person plays the role of a car-owner for the same car at the same time. This
can be modeled by a multiplicity of 1 for the car-owner role. The second type
of constraint allows defining inter-relationship constraints. They are limited to
numeric constraints (i.e. multiplicities) and are bound to objects, instead of
roles. Imagine a person being president of a country. There must not be more
than one person at a time, playing this role. Using connectivity constraints this
is easy to model.

The GOPRR metametamodel is near to the first-class relationships commu-
nity, as it has relationships as first-class relationships. Nevertheless its abilities
in expressing constraints on roles are less powerful than those of Stephanie Balz-
ers extension to RelJ. ORM/NIAM is shown to be an instance of GOPRR[38].
Notably GOPRR aims at data modeling and does not contain any concept to
model behavior.

Modeling Roles in The Unified Modeling Language Using Power-
types. The Unified Modeling Language (UML)[51] is a collection of many
types of models. It provides a powerful metametamodel and lots of metamodels
for all its models. A well known type of model is the class diagram. In a class
diagram a set of classes can be modeled, each having attributes and methods.
These classes can be related to each other in different ways. In the context of
this thesis, only associations between classes are of interest. The ends of these
associations are, like in GOPPR, called roles, too. Associations can be seen
like relationships in GOPPR. The key difference is that relations do not have
properties, or attributes in terms of the UML. Though, it is possible to define
so called association classes, these are - as their name implies - classes and not
relationships. Roles as ends of associations do not have attributes, too. In con-
trast to associations and association classes, there is no concept to enrich roles
with attributes. Though the UML separates the binding aspect (association)
from the property aspect (association classes), it is much less powerful than
GOPPR. The reason is that the binding aspect stays in the middle and is not
lifted up to the model itself. It is hence more complicated to define global con-
straints. The Object Constraint Language (OCL)[50] provides means to define
such constraints. Nevertheless, they are based on objects and not on the roles,
these objects play. Indeed roles are used for navigational means only. Roles in
the UML cannot be used for much more than that, because they do not have
attributes or methods - they just have a name.

Notably the UML offers another concept, which is nearer to our understand-

29

CHAPTER 2. DYNAMIC COLLABORATIONS WITH ROLES

ing of roles, than the concept of roles as defined by the UML. Powertypes[52]
provide a further classification technique, besides inheritance. Imagine the class
Person. Typical subclasses are Man and Woman. These two subclasses form a
partition, because they specialize Person in regard to the gender. Though, it is
possible to define further subclasses, like for example Child, Adult and Senior,
the problem is that subclasses of a different facet of the superclass are mixed
with each other. The problem can be solved elegantly with powertypes. Imagine
a class PersonKind, which is a powertype of Person. Instances of this class are
for example man, woman, child, senior and so on. That is instances of this class
are objects, which can be seen as classes for instances of Person. Due to their
object and class nature, instances of powertypes are also called clabjects.

But how are powertypes related to roles? The key similarity is dynamic
typing. Roles can be played for some time, viz. they are bound to a player for
some time and hence change the type of the player for some time. Powertypes
can be created are runtime and form an additional class for instances. Imagine
the role Student, bound to class Person. It is possible to define a powertype
PersonKind and create a student-instance of it. Instances of class Person can
be bound to the student instance of the powertype, which is nothing less, than
that they start to play the student-role. The key difference between powertypes
and roles is that instances of powertypes do not have attributes. Powertypes
have attributes, of course. But these attributes belong to the clabject. It is not
possible to define clabjects, which modify their instances.

Object-Oriented Role Analysis and Modeling - The OOram Software
Engineering Method. In 1995 Trygve Reenskaug publishes his book about
the OOram Software Engineering Method[56]. The book describes a method-
ology for the whole life cycle of software. Reenskaug’s understanding of roles
emerged in joint work with Egil P. Anderson, one of his PhD-students. Ander-
sons PhD-thesis[1] contains a detailed description of the understanding of roles
as used in OOram.

Their main motivation to introduce roles stems from problems to model
activities. An activity describes a set of objects, which interact with each other
to achieve a given objective. Activities, when modeled using classes, crosscut
each other in the classes. That is multiple activities utilizing objects of the same
classes are tangled in these classes and scattered across them.

Example Imagine a company selling products. The company employs sales-
men, who sell products to customers. A salesman has to report to his superior.
Figure 2.11 depicts a model, showing the classes and activities of this scenario.

Anderson states, that this crosscutting of activities raises the complexity
of modeling to a degree, unacceptable for large-scale models. The proposed
solution is to use composable role models. A role model describes an activity
using roles, which are defined as named elements comprising a set of role paths.
The connection between roles is established using these role paths, which point
to another role and define a set of methods, which can be sent to this role. That
is, roles define an interface. Notably Andersen’s roles do not have state. He
claims that information modeling should be strictly separated from interaction
modeling. Figure 2.12 depicts the example described above using role models.
Circles or ellipses denote roles, lines denote role paths and a black dot at an
end of a line depicts that methods are send to the role, the dot is attached to,

30

2.1. A CONCEPTUAL VIEW ON ROLES

Customer

buyProducts

Salesman

sellProducts
report

Superior

Activity 1 - Sales
Activity 2 - Reporting

TanglingScattering

Figure 2.11: Example of Scattering and Tangling Activities in Classes.

Activity 1 - Sales Activity 2 - Reporting

Customer

Salesman Salesman

Superior

Figure 2.12: Example of Activities Modeled using Role Models.

using the corresponding the role path.
The main objective of Anderson’s PhD-thesis is to find methods to handle

the complexity of large-scale models. But role models swiftly get very complex.
As solution Anderson provides operators to compose role models from smaller
role models. He defines composition using the role paths. Figure 2.13 depicts
the composition of the role models shown in Figure 2.12.

Anderson’s understanding of roles is that they are played by objects. He is
able to express, that an object plays multiple roles, even of the same type.

Example Remind the last example of customers, salesmen and superiors.
John is a salesman, selling products to Mary and Peter. Mary is a salesman, too,

Composed Activity – Sales and Reporting

Customer

Salesman

Superior

Figure 2.13: Composition of Role Models Shown in Figure 2.12.

31

CHAPTER 2. DYNAMIC COLLABORATIONS WITH ROLES

Customer Salesman Superior

Peter

Paul Mary John

Figure 2.14: Runtime Model of Objects Playing Multiple Roles Simultaneously.

selling products to John and Paul. Hence Mary and John are both, salesman and
customers. Both report to Peter, who is their superior. As peter buys products
from John, he is a customer, too. Figure 2.14 depicts this scenario. On the top
there is the composed role model. Below objects are shown in rectangles, which
are connected to the corresponding roles they play.

In order to support the dynamic characteristics of roles, Anderson investi-
gated Labeled Transition Systems (LTS) and developed statespaces to overcome
their limitations. He shows in his dissertation, that both can be transformed
into each other without loss of information.

Statespaces consist of states and transitions, like most types of state charts.
Special for statespaces is the classification of states into basic, abstract and
composite states. Basic states simply have a name and nothing more. Abstract
states are comparable to super states in UML state charts, viz. they have a name
and consist of a set of states, whereof one is marked as initial state. Notably
there are no transitions between the states in an abstract state. Transitions
are defined globally, that is for the whole statespace. Nevertheless, states in an
abstract state are connectible by transitions anyway, as all states are defined
globally. Composite states do not have a name, but also comprise a set of states.
Abstract states are allowed to contain further abstract states, but composite
states must not comprise further composite states. The name of a composite
state is implicitly available by merging the names of the states it composes.

Notably the description of the dynamic behavior of roles using statespaces
leads to partitioning of roles. Depending on the current state of a role, it offers
another interface. But providing runtime-context dependent interfaces is what
roles offer naturally. Roles are hence decomposed into smaller parts. Andersons
work on dynamic behavior descriptions does not focus on expressing who plays
which role at which time, but on behavior modeling in general.

32

2.2. ROLES ON THE LEVEL OF IMPLEMENTATION

2.2 Roles on the Level of Implementation

A lot of work has been done on investigated roles conceptually. But there
are approaches, trying to provide the role concept in programming languages,
too. In the following four of them will be presented: powerJava, Rava, DOOR,
EpsilonJ and ObjectTeams.

PowerJava - Boella et al. Guido Boella et al.[4] have a quite similar un-
derstanding of roles, compared to our view described in Subsection 2.1.2. Roles
are bound to their players, have state and behavior and need to be bound to
an institution, which we call context. An important difference lies in Boella
et. al.s original field of research: multi-agent systems. The language intro-
duced by Boella et al. is called powerJava[3] and is an extension to the Java
programming language.

One of the biggest differences of powerJava’s roles to the understanding
presented in this thesis is, that classes in powerJava are required to offer some
methods in order to play a role. Additionally, roles provide methods to objects,
like in our approach.

Though powerJava is under development for more than five years, it seems
not to have an active community, because it is still far from stable and no version
of it is provided over the World Wide Web.

Rava - He et al. Rava[35] is an extension to the Java language supporting
roles on the level of implementation. It is based on the Role-Object Pattern[6],
but extends it using the Mediator Pattern[26]. Following Chengwan He at al.
the main limitation of the Role-Object Pattern is its opacity for the program-
mers, which need to have in-depth knowledge about the pattern. Rava provides
a set of new keywords, which abstract from the pattern itself.

A role is defined using the keyword ROLE, followed by the name of the role
and another keyword roleOf, which precedes the set of class names, the role
can be bound to. In methods of roles the keyword @core can be used, to refer
to methods and attributes of the player instance. To invoke a role method the
keyword @INVOKEROLE is provided, taking the name of the role, as well as the
name of the method and the arguments.

These 4 keywords are translated into usual Java code, compilable by every
Java compiler and running on all Java Virtual Machines.

Like it is the case for powerJava, no version is available for download over
the World Wide Web. It is hence likely, that no stable implementation exists.

DOOR - Wong et al. DOOR is a dynamic object-oriented data base man-
agement system supporting roles[67, 66]. DOOR can also be seen as an object-
oriented programming language, which has a focus on databases. The data
model of DOOR defines class and role types, as well as objects and roles as in-
stances of class types and respectively role types. Class and role types may form
an inheritance hierarchy, where class and role type hierarchies are orthogonal
to each other, i.e. a role type may not specialize a class type and vice versa.
To link both hierarchies to each other Wong et al. defined a playedBy relation,
which is defined in role types, as a partial function playedBy(RT) = RT → CT,
where RT is a role type and CT is a set of class types. Thus DOOR supports

33

CHAPTER 2. DYNAMIC COLLABORATIONS WITH ROLES

multiple qualifying player types. DOOR has been developed, with persistency
in mind. Nevertheless, the relational schema is not used therefore, but serializa-
tion. Objects, roles instance, and definitions and so on all are saved as binary
data streams.

Unfortunately, since 1999, DOOR seems not to be further developed. No
version is available over the World Wide Web.

EpsilonJ - Tamai et al. EpsilonJ[46], is a language extension to the Java
programming language. EpsilonJ is based on a language independent model,
called Epsilon[64]. The model describes a view on roles, which is close to the
understanding of roles presented in this thesis. That is, context, role and play-
ers exist. In Epsilon, contexts comprise roles, which can be bound to objects
outside of the context, which are called players. Notably, roles define a required
interface, which has to be provided by objects, in order to qualify as player. The
binding of roles and players needs to be expressed explicitly, using the methods
bind or newBind. The life cycle of roles needs to be managed by the developer.

EpsilonJ does not have a very active community, so it only slowly develops
and still is in a early phase of research. No version is available over the World
Wide Web, but is send by mail on request.

EpsilonJ provides additional keywords to Java, like context, player and
requires. The EpsilonJ compiler transforms EpsilonJ source code to Java
source code. The version I requested for testing purposes was hard to use,
because most transformations did not work.

ObjectTeams - Herrmann et al. ObjectTeams is a language extension
to the Java programming language, which does not require using a modified
virtual machine and does not rely on source-code transformations. Instead the
source code, which uses ObjectTeams-specific keywords, is compiled directly to
bytecode, runnable in any Java virtual machine. The only requirement is, to
provide the ObjectTeams runtime to the virtual machine, which is a compact
Java archive.

The most important concepts of ObjectTeams are teams, roles, the played-by
relation, callins, callouts and base classes.

Roles are defined in contexts. E.g. the role Student is defined for the context
University. In other contexts this role would lack semantics. Contexts may have
fields and methods. E.g. the context University could own a field for its name
and methods to matriculate and exmatriculate students. In OT/J contexts are
described using teams, which are usual Java classes, marked with the keyword
team.

Inner classes of teams are by definition roles, as long as they are not marked
as teams. Hence nesting of teams is supported. A special keyword role does
not exist, due to their implicit declaration. As roles are rigid, they need to be
bound to a player. This is done using the playedBy relation. Inner classes
of teams, which are roles, define their player in a way similar to inheritance.
Instead of extends the new keyword playedBy is used. The player is called base
in ObjectTeams. Notably a player class is used, to express the binding. Thus,
players of the role are limited to be instances of that class. Moreover, only one
class can be provided, comparable to Java’s single inheritance. Role instances
are bound to their player instance. That is, roles cannot migrate from one player

34

2.2. ROLES ON THE LEVEL OF IMPLEMENTATION

to another.
The semantics of roles is to change structure and behavior of their player.

In ObjectTeams roles can be either active or not. Only active roles affect their
players. Roles can be activated over their team. Either directly by invoking
the method activate() or indirectly by specifying constraints under which the
team shall be active, so-called guards, which will be introduced later on. Roles
may have fields and methods, too. E.g. role Student may have a field for its
matriculation number and a method learn(). In case a role gets active these
fields and methods are ”added” to the player, thus changing the structure of the
player. In order to change the behavior of the player 2 mechanisms are provided
by OT/J: callins and callouts.

A callin is defined in a role and specifies which methods of the player are
to be intercepted and redirected to methods of the role. Hence callins take over
control flow from the player to the role. Callouts are defined exactly the other
way around that is they specify which methods of the role shall forward the
control flow to which method of the player. Both mechanisms strongly rely on
method names. The adjustment of behavior currently only works for method
executions. An improvement of the language, to react on thrown exceptions or
on events, is not planned.

When an object starts to play a role and when it stops doing so, cannot
directly be expressed in ObjectTeams. But the mechanisms of team activa-
tion and guard predicates enable to realize this behavior. Teams can be either
active or inactive. The activation of a team leads to the activation of all its
roles. Only active roles affect their players. In order to activate only a subset
of the roles of a team guard predicates can be defined. These predicates can
be defined on different levels - on the level of teams, roles or bindings. Team
level guard predicates constrain, when a team can be activated at all. The
predicates can rely on instance attributes of the team. Imagine the team Car,
which has an attribute numberOfGears. A car should only be activated, when
it has all 4 gears. A team-level guard predicate for this condition is denoted by
when(numberOfGears >= 4) after the team declaration. Role level guard pred-
icates allow to restrict the activation of roles. Whenever a team is activated
only those roles of it are activated, whose guard predicates evaluate to true.
Role-level guard predicates are allowed to rely on the roles attributes. Imagine
the team University with the role type Student. Students can go on holiday
for a semester, expressed by a boolean attribute onHoliday. Activation of the
university, for example when the semester starts, should only active those stu-
dents, which are not on holiday. To express this condition when(!onHoliday)
needs to be added to the role declaration. Notably role-level guard predicates
are not allowed to rely on attributes of the players. In order to access player
attributes the additional keyword base needs to be added. Imagine the univer-
sity with students. Student is a role played by persons, which have an age. If
one wants to express, that students must not be older than 40 years, he can do
so by using the following base guard predicate: base when(base.age <= 40).
Finally, there are binding level guard predicates. These enable to restrict the
activation of single callins. That is the role itself gets activated, but not all of
its callins are effective. In order to model dynamic role playing, role-level base
guard predicates suffice.

ObjectTeams offers a set of reflective methods, enabling the developer to
fetch, for example, all active roles. To model dynamic role playing, only one

35

CHAPTER 2. DYNAMIC COLLABORATIONS WITH ROLES

of these methods is needed: the method to check if a player plays some role
of a given role type, called hasRole(player, roletype). Combining all these
language constructs leads to the Object-Registration pattern3. Roles are con-
strained by a base guard predicate, whose condition is, that the player of this
potential role, does not already play a role of this type, that is base when(
Team.this.hasRole(base , Role.class). This way these roles will never
be played without being explicitly forced. This can be done by providing meth-
ods in the team, which force role instantiation.

ObjectTeams is under active development since more than 7 years. Thus,
many problems have already been addressed. OT/J is the most mature language
currently available for the purpose of using roles on the level of implementation.
For this reason it has been chosen as the first role language to be supported by
DAMPF.

Summary. A lot of approaches exist, which tried to support roles on the level
of implementation, without extending the base language. Michael Pradel et al.
showed[55], how to support roles in Scala, Gottlob et al. showed how to integrate
roles into Smalltalk[27], Dirk Riehle introduced the Role Object Pattern[6],
which offers a method to use roles in all class-based object-oriented languages,
to name just a few. Bettini et al. propose a further language extension to Java,
called Dec-Java[8], using the Decorator pattern[26].

More approaches exist, but those already mentioned suffice, to give a good
understanding about the current state of the art of the role community.

3http://trac.objectteams.org/ot/wiki/OtPatterns/ObjectRegistration

36

Chapter 3

Object-Relational Mapping

37

CHAPTER 3. OBJECT-RELATIONAL MAPPING

3.1 Basic Terminology of the Relational Model

This section will introduce the basic terminology of the relational model, intro-
duced in 1969 by E. F. Codd[14]. A relation schema RS is comprised of a set of
attributes S = {A,B,C} and a set of constraints Σ = {C1, C2, ..., Cn}. A relation
R is an instance of a relation schema RS. It is comprised of tuples, which are sets
of values. A tuple t of a relation R, which is an instance of RS, contains exactly
as much values, as attributes are defined for RS. There is no order defined for
the values of t and/or the attributes of RS. The term R(A,B,C) stands for a
relation R, which is an instance of a relation schema RS, comprised of the union
of the attribute sets A, B and C, where A, B and C are disjoint. An A-tuple is
a tuple, containing as much values as A contains attributes. The X-value of a
tuple is the value of the tuple according to the attribute X.

The simplest form of a constraint is the functional dependency, introduced
by W.W. Armstrong[2]. In a relation R(A,B,C) a functional dependency FD =
A→B, where A and B are sets of attributes, states, that if a tuple (α,β,γ) exists,
than every other tuple, having α as its first value, must have β as its second
value. Or in other words: if two tuples agree in their A-value, than they agree in
their B-value, too. The value γ is not constrained by the functional dependency
A→B. Further types of constraints are introduced in the next section.

The attributes of a relation schema can be distinguished into prime and
non-prime attributes. A prime-attribute is unique for a relation. That is, if A is
a prime-attribute of the relation schema RS, than every A-value of every tuple
in each relation R, being an instance of RS, differs. Relation schemata may
contain multiple prime attributes. All combinations of these prime attributes
form candidate keys. A superset of a candidate key is called a super key. From
the set of candidate keys a single primary key has to be chosen, which is later
on used to address single attributes in so called foreign keys. A foreign key is
an inter-relational constraint defined between 2 relations. If relation A has the
primary key P1 and relation B has an attribute set AS, with the same number
of attributes as P1, a foreign key can be defined from B to A, meaning that the
AS-values of B point to tuples of A using the primary key of A as index.

These concepts of the relational model, summarized in table 3.1, form the
basis for the following sections. Of course, more concepts exist. Nevertheless,
they are not needed for the understanding of this thesis.

Concept Description
relation schema a set of attributes and a set of constraints
relation an instance of a relation schema; contains tuples
X-tuple set of values, conforming to the attribute set X
Y-value value of a tuple at the position of attribute Y
functional dependency if two tuples agree in their A-value,

than they agree in their B-value, too
prime attribute an attribute whereof all values are unique
candidate key each prime attribute combination of a relation
super key a superset of a single candidate key
foreign key constraint, wiring tuples of relations

Table 3.1: Summary of Basic Relational Concepts.

38

3.2. DEVELOPING FRAGRANT DATABASES

3.2 Developing Fragrant Databases

Edgar Frank Codd, the inventor of the relational model[14], introduced princi-
ples for the construction of good smelling databases. His aim was to help the
database engineer, to avoid common unwanted characteristics, such as insert,
update and delete anomalies. Furthermore redundancy shall be omitted. The
process of giving a database schema a good smell is called normalization.

In 1970 E.F. Codd introduced the first normal form[15]. The essence of
this form is that a database schema is comprised solely by flat relations, i.e.
no attribute is a relation itself. Figure 3.1 depicts this requirement using the
relation Student as an example.

Student
registerNo address

street city

Non-First Normal Form (NFNF)

@
@

�
�

Student
registerNo street city

First Normal Form (1NF)

Figure 3.1: Requirement for First Normal Form.

In 1971 E.F. Codd introduced the second and third normal form[16].
The essence of the second normal form is that no non-prime attribute pro-
vides a fact about only part of the whole key. Imagine an enrollment of a
student to a course. A suitable relation for such enrollments consists of the
attributes courseID, studentID, registerNo, name and timestamp, where the
last attribute is used to store the time at which the student enrolled himself
to the course. The candidate key of this relation is comprised of the attributes
courseID and studentID. Figure 3.2 depicts this relation.

Enrollment
courseID studentID registerNo name timestamp

Figure 3.2: Example Relation Violating the Rules of 2NF. Contained Func-
tional Dependencies: registerNo→studentID; name → registerNo; timestamp →
{courseID,studentID}.

Examining the attributes reveals that timestamp is directly functional de-
pendent on the candidate key, but the attributes registerNo and name only de-
pend on studentID. Furthermore name only transitively depends on studentID,
as it directly depends on registerNo, which depends on studentID. The func-
tional dependency registerNo→studentID violates the requirement of the second
normal form (2NF). In order to transform this relation to fulfill the requirements
of the 2NF, the relation needs to be split into the relations Enrollment and
Student. Figure 3.3 depicts a redesign of Figure 3.2, which is in 2NF.

The essence of the third normal form is, that each non-prime attribute ”must
provide a fact about the key, the whole key and nothing but the key.”[39, p.120].

39

CHAPTER 3. OBJECT-RELATIONAL MAPPING

Enrollment
courseID studentID timestamp

Student
studentID registerNo name

Figure 3.3: Transformed Relation From Figure 3.2 Supporting 2NF.

It thus goes further than 2NF in that it prohibits transitive functional depen-
dencies, i.e. functional dependencies that have attributes as their result, which
are the value of another functional dependency which has the key or other at-
tributes as their result. 3NF requires all non-prime attributes to be directly,
i.e. non-transitively, dependent on the whole key. Another viewpoint on 3NF
has been provided by Zaniolo in 1982[68]. He claims, that a relational schema
is in 3NF if for all functional dependencies X → Z, where X and Z are sets of
attributes, at least one of the following three requirements is fulfilled:

1. Z contains X, i.e. the dependency is trivial

2. X is a super key, i.e. a superset of the candidate key

3. X is a prime attribute.

Recall Figure 3.3, which depicts two relation schemata, which are in 2NF. The
relation Student still contains two functional dependencies: registerNo → stu-
dentID and name → registerNo. The second dependency only transitively de-
pends on the key (that is studentID). Thus this relation violates the rules of
3NF. Figure 3.4 shows a transformation of relation Student into two relations,
which fulfill the requirements of 3NF.

StudentRegisterNo
studentID registerNo

StudentName
studentID name

Figure 3.4: Transformed Relation Student From Figure 3.3 Supporting 3NF.

In 1974 Raymond F. Boyce and E.F. Codd introduced the Boyce-Codd
normal form[17]. This normal form further restricts 3NF in that it requires
all attributes, including prime attributes, to provide a fact about the whole
key. Another way to define BCNF is, to eliminate the third requirement of
Zaniolos requirements for 3NF. Imagine a relation Student, comprised of the
attributes studentID, name and courseOfStudy. A student is meant to study
only one course of study. This relation contains two functional dependencies:
studentID→name and studentID→courseOfStudy. The relation is in 3NF, as it
does not contain any non-prime attributes, which provide a fact about only part
of the key. Indeed the relation does not contain any functional dependencies
having a non-prime attribute as its source, i.e. left-hand side. But the relation is
not in BCNF, as it contains prime attributes, which do not provide a fact about
the whole key. Namely both dependencies violate BCNF. Figure 3.5 shows a
transformation to BCNF for this example.

A further normalization step has been introduced in 1977 by Ronald Fagin
as the forth normal form[23]. Fagin introduced multivalued dependencies

40

3.2. DEVELOPING FRAGRANT DATABASES

Student
studentID name COS*

100 INF hans
200 IST alex

non-BCNF, but 3NF

@
@

�
�

Student
studentID name

100 hans
200 alex

StudiesIn
studentID COS

100 INF
200 IST

Boyce-Codd Normal Form

Figure 3.5: Transformation of Relation Student into two Relations supporting
BCNF. *COS=courseOfStudy.

as generalization of functional dependencies. A functional dependency A → B
implies, that if two tuples agree in the value of A, then they agree in the value
of B, too. Multivalued dependencies take sets into consideration. See definition
1.

Definition 1 (Multivalued Dependency (MVD)) If in a relation R(A,B)
a and a’ denote tuples of A and b and b’ denote tuples of B, then a multivalued
dependency A →→ B implies, that if (a,b) ε R(A,B) and (a,b’) ε R(A,B), then
(a’,b) ε R(A,B) and (a’,b’) ε R(A,B).

Fagin defined a relation schema to be in forth normal form, if all multival-
ued dependency of it have the whole key as their result. Recall the relation
Student from the left hand side of Figure 3.5. Now imagine that a student
may study multiple courses of studies. This constraint eliminates the functional
dependency studentID→courseOfStudy. But this relation contains two multival-
ued dependencies, where one is a functional dependency: name→studentID and
studentID→→courseOfStudy. This relation is not in 4NF (and not in BCNF,
due to the first MVD), as it contains multivalued dependencies, which do not
have the whole key (indeed not even part of the key) as its result. Figure 3.6
depicts a valid transformation of this relation into two relations fulfilling the
requirements of 4NF. In fact it is the same transformation as in Figure 3.5.

Student
studentID COS* name

100 INF hans
100 IST hans

non-4NF

@@

��

Student
studentID name

100 hans

StudiesIn
studentID COS

100 INF
100 MINF

Fourth Normal Form (4NF)

Figure 3.6: Transformation of Relation Student into two Relations supporting
4NF. *COS=courseOfStudy.

In 1979 Ronald Fagin introduced the projection-join normal form[24]
(PJ/NF), which is more restrictive than the fourth normal form and thus can be
seen as the fifth normal form. The name PJ/NF emphasizes the normalization
process, which uses solely the projection and join operators. In order to define
the PJ/NF, Fagin introduced the concept of the join dependency, which is a
generalization of multivalued dependencies. See definition 2. In simple words:

41

CHAPTER 3. OBJECT-RELATIONAL MAPPING

a join dependency *{A,B} exists, if the relation R(A,B) can be decomposed into
two relations without loss of information. A relational schema is in PJ/NF, i.e.
5NF, if every join dependency is implied by the candidate key. The aim of 5NF
is to decompose relations until no further decomposition, except it is based on
keys, is possible[24, p.157]. In most cases 5NF does not differ from 4NF, except
if some symmetric constraint on the data exists.

Definition 2 (Join Dependency) A set A of columns, is join-dependent on
another set B of columns, if the relation R(A,B) is the result of the join R’(A)
* R”(B), where A and B share at least one attribute, i.e. A / B ≠ ∅.

Definition 3 (Trivial Join Dependency) If A and B are sets of attributes
of the relation R and A∪B contains all attributes of R, than a join dependency
*{A,B} is called trivial, if either A or B contain all attributes of R.

A ”bizarre” example of a relation schema, which is in 4NF, but not in PJ/NF
was presented in [24, p.157]. A relation schema, which is comprised by three
attributes A, P and C (A for agent, P for product and C for company) and
obeys the join dependency σ = *{AP,AC,PC} is in 4NF. The join dependency
σ says, that if:

1. agent a sells product p for company c’,

2. agent a sells product p’ for company c and

3. agent a’ sells product p for company c, than

4. agent a sells product p for company c.

Now, additionally the constraint, that an agent must not work for two com-
panies, whose products overlap, is assumed. This constraint violates the join
dependency, because now, if some agent a sells product p for company c’ and an
agent a’ sells product p for company c, than companies c and c’ share product
p and as agent a works for company c’ he cannot work for company c, i.e. the
above statements 2 and 4 cannot occur. As shown, no non-trivial join depen-
dencies exist1, hence the relation schema is in 4NF. But it is not in 5NF, as
the join dependency σ, although instances of it can never occur, is not logically
implied by the trivial functional dependency APC→APC.

In 1981 Ronald Fagin introduced the Domain/key normal form[25]. To
clearly define this normal form two new types of dependencies need to be intro-
duced: domain dependency (see 4) and key dependency (see 5).

Definition 4 (Domain Dependency) A domain dependency IN(A,S) holds
for a relation R(X), if A is an attribute, A ε X, S is a set of values (e.g. all
strings of length 5, comprised solely by the big letters A-Z) and no tuple of R
exists, which has an A-entry (i.e. the tuples value for attribute A) having a
value not in S.

Definition 5 (Key Dependency) A key dependency KEY(K) holds for a re-
lation R(X), if K is a subset of X and K is a key, i.e. the functional dependency
K → X holds.

1as the join dependency σ cannot be fulfilled

42

3.2. DEVELOPING FRAGRANT DATABASES

Intuitively, a relation schema is in DK/NF, if it is free from any insertion
and deletion anomalies. To properly define DK/NF, R. Fagin introduced a
definition if insertion and deletion anomaly using the concepts of domain and
key dependency. He defined a tuple t to be compatible with a relation R, if it
does not violate any domain or key dependencies of R and if the tuple has the
same attributes as R. He notably omitted other dependencies, e.g. functional
dependencies. If there is a relation R, comprised by a set of tuples, which don’t
violate any dependencies, and there is a tuple t, which is compatible with R, than
an insertion anomaly as defined by Fagin occurs, when the insertion of t into R,
i.e. {t}∪R, results in a new relation R’, which violates some dependency. Or, in
other words, an insertion anomaly occurs if a newly inserted tuple t, which is
seemingly valid, i.e. is compatible with R, leads to a new relation R’=t∪R, which
violates some dependency. A deletion anomaly occurs, if a tuple t is deleted from
a relation R and the resulting relation R’ violates some dependency.

In 2002 Chris Date, Hugh Darwen and Nikos Lorentzos introduced the sixth
normal form[20]. They focused on temporal data, i.e. data which is enriched
with the information of when it has (or will be) valid. To temporalize a relation
they add an interval attribute to it. If a table is in fifth normal form, that
is, all nontrivial join dependencies are implied by a key, relations are further
reducible. In general, if you have a relation R(A,B,C), where A is key of the
relation and the join dependency *{AB,AC} is satisfied by R, than R is reducible
to R(A,B) and R(A,C). Nevertheless R(A,B,C) is in fifth normal form as it does
not contain any nontrivial join dependencies, which are not implied by a key.
Temporalizing such a relation, i.e. adding an interval attribute, leads to the
problem, that it is unclear, to which attribute the interval is related. That
is, if you enrich R(A,B,C) with an interval attribute I to R(A,B,C,I), it is not
clear, onto which attributes I relies. Imagine a relation Student, comprised
of the attributes registerNo, surname and courseOfStudy. The attribute
registerNo is meant to be the key of this relation. Two join dependencies exist:
*{{registerNo,surname}, {registerNo,courseOfStudy}}. The relation is
in fifth normal form, but further reducible. If this relation is enriched with
an interval attribute, that is, the relation is to contain the information during
which interval a given student had which surname and which course of study,
it will be unclear, if that interval relates to the students surname or to its
course of study. Therefore Date et. al. introduced the sixth normal form,
which requires a relation to contain no non-trivial join dependencies at all or, in
other words, the relation is irreducible. For the given examples it follows, that
R needs to be decomposed into two relations R1(registerNo, surname) and
R2(registerNo, courseOfStudy).

Table 3.2 gives a short overview of all normal forms presented in this section.
As mentioned at the beginning of this Section, the aim of normalization is

to design relation schemata, which do not suffer from insert, delete or update
anomalies. From this point of view, 5NF is the ultimate normal form, if no
temporal data has to be taken into consideration. Else 6NF would be the best
choice.

It is important to mention, that the normalization of relation schemata to
avoid such anomalies is only necessary if humans interact directly with the
database. In case a persistence management layer is used by software written on
top of it, these anomalies are avoidable by implementing a persistence manager,
which takes care of the specific design of the database.

43

CHAPTER 3. OBJECT-RELATIONAL MAPPING

Normal Form Meaning
NFNF relation contains attributes, which are non-atomic,

i.e. relations themselves
1NF all attributes are atomic
2NF no non-prime attribute provides a fact about

only part of the key
3NF each non-prime attribute must provide a fact about

the key, the whole key and nothing but the key.
BCNF each attribute, including prime attributes, must provide

a fact about the key, the whole key and
nothing but the key

4NF all multivalued dependencies have a key, the whole key
and nothing by the key as result

5NF (PJ/NF) every nontrivial join dependency is implied by a key
DK/NF the relation is free of all insertion and deletion anomalies
6NF the relation is free of any nontrivial (see definition 3)

join dependencies, i.e. is irreducible

Table 3.2: Overview of Normal Forms Introduced in this Section.

Though these anomalies thus are not important in the context of persistence
managers, performance is. How long does it take to insert a new business object
into the database? How long does it take to update it? How long does it take
to delete it? And how long does it take to fetch it from the database? These
four questions can be transformed into requirements for a persistence manager:

1. creation, i.e. insertion, should be as fast as possible,

2. read access should be as fast as possible,

3. updates should be as fast as possible,

4. deletion should be as fast as possible.

The third requirement, updates, competes against the others. This is, be-
cause changes, which do not affect the whole business object, will be updateable
faster, as only those relations need to be updated, which hold the according parts
of the business object. On the other hand side, if a business object is scattered
across multiple relations, it will take longer to read it from the database, than
it would take, if it is mapped to a single relation. The reason therefore is, that
more joins need to be executed by the database management system. The cre-
ation of a business object, as well as its deletion, will take longer, too. This is
because multiple inserts or deletes need to be executed. If the business object
is mapped to a single relation, only one insert or delete would be necessary.

These performance tradeoffs, with regard to normalization, show, that it is
not necessarily the case, that a higher, i.e. stronger, normal form is always the
better choice. The stronger the normal form, the more relations are introduced
for the same business object. In case of a web application, which is less often
updated than viewed, a weaker normal form should be preferred.

44

3.3. CLASSES AND RELATIONS - OBJECT RELATIONAL MAPPERS

3.3 Classes And Relations - Object Relational
Mappers

In order to persist the business objects state of an application in a database,
the structural description of them needs to be transformed into a relational
form. In order to restore an application with such a persistence mechanism, the
relational structure needs to be transformed back into the original class schema.
Interestingly, object-orientation and the relational schema are not completely
different from each other. They have a set of similarities and differences. The
differences have been examined in detail for a long time and therefore even have
a dedicated name: the impedance mismatch[22].

Five key differences between both paradigms can be identified. First, at-
tributes of relations always have a primitive type, whereas attributes of classes
are usually references to other objects. Second, references in the object-oriented
paradigm are in general unidirectional. Ternary or n-ary relationships are not
directly supported. In contrast, the relational model supports n-ary relation-
ships in a straight forward way, using foreign key constraints[18]. Third, the
unidirectional relationships of classes are explicit. Relationships in the rela-
tional model are only implicit. But, using foreign key constraints, it is possible
to express them explicitly, too. The ability to query the data in combination
with bidirectional relationships allows easier data access in the relational model.
Object-oriented relationships only allow querying objects in one way, but not in
the other. Central to this difference is that the relational model is set-oriented,
whereas the object-oriented paradigm is not. Forth, both paradigms handle n:m
relationships in a different way. In the object-oriented paradigm collection types
at both ends can be used. In the relation model a separate collection relation
is needed. Notably, the object-oriented paradigm does not directly point to all
elements of a collection, but to a collection object. Hence, both paradigms have
in common, that they do not support collections in a direct manner, but they
differ in how they do not support them. Fifth, references in the object-oriented
paradigm originate from an attribute, but refer to a whole object. References in
the relation schema reference only part of the referenced relation that is the pri-
mary key. This is, because the identity of objects is an implicit property, which
needs special care in the object-oriented paradigm. The relational schema uses
primary keys to explicitly express identity.

The object-oriented paradigm and the relation schema have in common, that
both base on a single central concept: the class or the relation. Both comprise
a set of typed attributes. Notably both are flat, that is classes and relations
are not nested. Admittedly, relations may be nested, if they are in non-first
normal form. Nevertheless, usual database schemata should adhere at least to
the first normal form. Inner classes do not break the flatness property, too,
because an inner class can be seen as a separate structure. Most remarkably,
both paradigms do not consider relationships between their concepts as first
class citizens.

In the following the transformation between classes and relations is discussed
and existing solutions are described.

45

CHAPTER 3. OBJECT-RELATIONAL MAPPING

3.3.1 Transformations Between Classes and Relations

Classes describe, like relations, a set of attributes. Additionally they describe
methods, which contain behavior. In the context of business object persistency,
the behavior is not of interest. The instances of classes, objects, contain values
for these attributes, like tuples of relations. Hence, in the simplest case a class
can be directly transformed into a relation. The relation only has to have the
same attributes as described by the class.

The object-oriented paradigm enables the programmer to define abstract
and concrete classes. Objects can only be instantiated from concrete classes.
Abstract classes cannot be instantiated. Hence, they do not directly need to be
persisted. Only if there is a concrete subclass of them, their attributes will be
persisted.

Of course the transformation is much more complex than described in the
last two paragraphs, which is due to further properties of classes. First, classes
may not only contain attributes of some data type, but also attributes, which
are references to other objects. Second, They may also contain attributes, which
have a collection type. Third, classes may inherit attributes from other classes.
Forth, classes may have static attributes. Finally, classes may be nested. These
5 properties of classes need special care as described in the following.

Handling Object References

If an attribute of a class references another class, then the attribute cannot
directly be transformed into a relational attribute. The problem lies in the data
type of the attribute. An attribute in the relational model needs to have a
simple data type, like INTEGER or VARCHAR. There are two ways to solve this
problem.

First, the referenced relation is nested into the referencing relations. As a
consequence the relation schema will be in NFNF, due to the attribute, which
is a relation itself. The resulting relation can easily be transformed into 1NF,
by flatting the relation and renaming the attributes, if necessary. But if mul-
tiple classes reference the same class X, the resulting relations will contain the
attributes of the transformed class X multiple times, leading to a waste of data
space.

Second, the type of the primary key of the referenced relation is used as type
of the referencing attribute. Additionally a foreign key constraint is defined,
wiring the two relations together using the referencing attribute and the primary
key. This way the attributes of the classes occur only once in the relations after
the transformation. If the relation of the referenced class has multiple attributes
as its primary key, then the attribute of the referencing class will be transformed
into multiple attributes, too. Note, that it is possible for an object of a class
referencing another class, that the reference is null, i.e. no other object is
referenced. Hence, the attribute(s) forming the source of the foreign key need
to allow null-values, too.

In comparison to the first approach the data usage is lower, as every attribute
exists only once in the whole schema. The cost of this benefit is additional time,
which is needed when the tuples have to be transformed back into objects. The
additional time is due to the needed join of the tuples. For applications which

46

3.3. CLASSES AND RELATIONS - OBJECT RELATIONAL MAPPERS

often read data, but rarely store it, i.e. OLAP2 applications, the first approach
is more beneficial, because time is more important than space. For application
which store data at least as often than they read it, i.e. OLTP3 applications,
the second approach is more beneficial, because space is more likely to get a
problem, than time. Because the requirements of OLTP and OLAP applications
contradict, the approach can only be optimized for one of them. DAMPF uses
the second approach.

Handling Collections

Classes may have attributes, whose values are collections of some type, i.e. are
more than a single value. The relational model does not provide collection types.
Hence, a direct transformation is not possible. There are three ways, to solve
this problem.

First, the attribute of collection type is transformed into an attribute of
a string type, i.e. VARCHAR. All values of the collection are transformed into
their string representatives and joined by comma, like it is known from comma
separated value (.csv) files. This approach has multiple problems:

� Complex Transformation. Not every value has an easily reconstruct-
able string representative. Imagine a value, which is a reference to another
object. It is possible to transform it into a string, containing all data,
which is needed to reconstruct the object later on, but it is a complex and
time consuming task.

� Loss of Collection Type. The type of the collection is lost by trans-
forming the collection value into comma separated values. Imagine a set
of integer values and a list of float values. Sets must not contain dupli-
cates, lists are allowed to have duplicates. In order to detect the type of
a collection solely by looking at its values rules are needed. One of these
rules would be, that if every value only exists once, i.e. no duplicates exist,
the type of the collection is set. If the list of float values does not contain
any duplicates (it is only allowed to have them, but does not need to have
them) the reconstructed collection type will be set and not list. The only
way to reconstruct the correct collection is to add a string representative
of the collection type to the list of comma separated values.

� Separator Character. If the collection comprises string values, than
these values may contain the separator character. Many approaches exist,
to deal with this problem. The most common one is, to preprocess each
string value before it is added to the list of comma separated values and
to put a special character in front of each occurrence of the separator
character. Nevertheless these approaches are well known to be error-prone.

Although using this approach has the aforementioned problems, it should be
taken into consideration as it requires the fewest data space. Ordered collections
are supported, too, as the order of the values is implicitly contained in the order
of the comma separated values.

2OLAP = Online Analytical Processing
3OLTP = Online Transaction Processing

47

CHAPTER 3. OBJECT-RELATIONAL MAPPING

Second, the collection attribute can be transformed into many attributes,
which hold each value of the collection values. This approach is only feasible,
if a maximum number of values per collection is known and if this maximum
is relatively small. If both criteria fit, than this approach allows for collection
values of different type, for example a collection value containing string and
float values. Ordered collections are not supported by a relational database
management system (RDBMS) in general, as the attributes of a relation have
no defined order. Nevertheless, most RDBMS provide ordered attributes, as
can be seen by SQL-Extensions of ALTER TABLE, supporting to add attributes
at a specific position.

Third, the collection attribute can be transformed into a separate relation.
The attribute will not exist as attribute in the relation of the transformed class.
The separate relation contains each collection value as a tuple and has an at-
tribute, having the type of the primary key of the relation of the transformed
class. Additionally a foreign key is defined, wiring the collection relation with
the relation of the transformed class. Having each collection value as a separate
tuple provides the ability to use the comparison and selection features of the
relational database management system, like for example DISTINCT. It is fur-
thermore easily possible to support ordered collections by adding an attribute
for the position to the collection relation. Support for collections with values of
different type requires more than one collection relation. For each type, which
is present in the collection, a separate relation is to be created. The foreign keys
are defined from the collection relations to the relation of the transformed class,
hence the do not pose a problem. If it is not possible to foresee every possible
type in the collection, this approach reaches its borders. Nevertheless using
collections with values of different, unforeseeable types is a bad programming
practice. Hence not supporting them is only a minor drawback of the approach.

In comparison all three approaches support ordered collections and collec-
tions with values of different types. The third approach requires these types
to be predictable. The fewest data usage is achieved by applying the first ap-
proach, whose biggest drawback is the time needed to handle all the problems
mentioned before. The second approach can only be applied, if the collections
have a relatively small limited number of values. Although the third approach
requires the most data space, it can provide the fastest and cleanest way to
transform collection attributes. The time needed to join the collection values
with the tuple they belong to is less, than the time needed to preprocess each
tuple and to reconstruct each value from its string representative. Hence the
third approach is the most beneficial.

Handling Inheritance

One of the biggest features of the object-oriented paradigm is inheritance. For
the persistence aspect the inheritance of attributes is of interest. Classes inherit
all non-private attributes of their superclasses. The relational model does not
provide inheritance between relations, it is hence necessary to use other mecha-
nisms to emulate inheritance. This problem is well known and over time three
approaches emerged.

1. Single Class. For each inheritance hierarchy a single table is created,
containing all attributes of the hierarchies’ classes. Additionally an at-
tribute to assign the tupels to their originating class is needed, which

48

3.3. CLASSES AND RELATIONS - OBJECT RELATIONAL MAPPERS

usually contains the name of the class as string value. This approach
leads to very high data redundancy, but offers fast restore times.

2. Table per Class. A class, which has superclasses, is transformed into a
single relation, having all attributes of the original class and all non-private
attributes of all direct and indirect superclasses. This approach offers fast
restore times, too, as no joins are needed. It furthermore eliminates the
data redundancy, but introduces schema redundancy, as non-primitive
attributes of superclasses exist at least twice - in the subclass and in the
superclass. Hence, this approach requires less data space than the first
one, but more than the last one.

3. Joinable Table per Class. For each class a separate relation is created,
containing only the attributes of the class itself and additional attributes,
which point to the relations of the superclasses. Benefit and drawback
of this approach are the opposite of the first two approaches, that is this
approach requires the fewest data space, but therefore more time to restore
the objects, because the tupels need to be joined.

In comparison the first approach is the least beneficial approach, due to
its data and schema redundancies. The second approach provides fast restore
times, whereas the third approach provides no redundancies and hence less
data usage. Depending on the type of application, i.e. OLAP versus OLTP,
a different approach should be used. OLAP application focus on fast restore
times, hence the second approach is more beneficial. OLTP applications focus
both on fast restore times and low data usage. Hence the third approach is
feasible.

Handling Static Attributes

Classes have two types of attributes: class- and instance-level attributes. At-
tributes on instance-level are tied to instances, i.e. objects. Class-level at-
tributes are tied to the class itself, viz. they are the same for all objects. Of
course they can be persisted just like instance-level attributes, but that is not
necessarily optimal.

Storing static attributes like instance-level attributes leads to data redun-
dancy, because for each object the same values are stored over and over again.
There are two approaches, which address this problem. First, a separate rela-
tion can be introduced, which stores the values of static attributes. This relation
needs as many attributes, as static attributes exist. If for each class such an
additional relation for static attributes is created, these relations will always
contain no more than a single tuple. Thus it is worth to think about a single
relation for all static attributes of all classes, which is the second approach. The
problem with this approach is, that the amount of all static attributes may be
very high, leading to a relation with lots of attributes and sparse data, as each
tuple only contains the values for the attributes of the class they belong to. It
is possible to lower the amount of needed attributes by transforming the values
to their string representatives, as described as a possible solution for collection
attributes, but leading to the same problems.

If an application comprises many static attributes the first approach is to be
preferred. Else the second approach is feasible. For classes, of which only few
objects will exist, no separate relation for static attributes is feasible, too.

49

CHAPTER 3. OBJECT-RELATIONAL MAPPING

Handling Nested Classes

The object-oriented paradigm allows nesting classes, leading to so called inner-
classes. Inner classes can be transformed just like usual classes, with a single
difference. They need to have an additional attribute, pointing to their enclosing
instance, viz. the instance of their enclosing class.

Another possibility is to transform a nested class to an attribute, leading to
a relation in NFNF. To transform such a relation to 1NF this attribute needs
to be flattened. For small nested classes, which do not contain further nested
classes, this approach is feasible, but the bigger these inner classes get and the
deeper the nesting is, the bigger the resulting relation will be. Because RDBMS
define a maximum number of attributes for relations, this approach is not always
feasible. It furthermore leads to sparse data, as not every instance of a class
with a nested class needs to have an instance of this nested class.

In comparison the first approach offers less data usage, but requires more
time to restore objects than the second approach. For deeply nested classes with
many attributes the resulting relations of the second approach get very huge,
leading to performance penalties in terms of time, too. Hence, for applications
which only have a few inner classes, whereof most only have few attributes, the
second approach is more beneficial. Else the first approach is to be preferred.

Transforming Relations to Classes

The last Subsubsections described in detail how classes and objects can be trans-
formed into relations and tuples. But an Object Relational Mapper needs to be
able to restore objects from tuples in the database, too. Notably, there is no
need to reconstruct the class schema from relations, because applications store
this information in files anyway. Depending on the approaches for transforming
classes to relations, as described before, simple and fast queries can be used
to load the required data of an object. If classes are split into many relations,
more complex queries, which join the tuples and apply projections on them, are
needed.

The complexity in restoring objects is implementation specific. Usually
object-oriented programming languages use constructors, to create an instance
of a class. Constructors are used to initialize the objects appropriately, which
does not mean, that they initialize all attributes. Furthermore classes may
have multiple constructors, initializing the objects in different ways by requir-
ing different arguments as input. These arguments are not necessarily directly
connected with the attributes of the class. Imagine an attribute date and a
constructor taking the arguments day, month and year. In the constructor
the arguments are used to create a date value, but each argument alone is not
directly connected with the attribute of the class.

Hence all approaches for object reconstruction require the introduction of
a special constructor, which differs from all existing ones. This constructor is
used to create an empty object of the class, i.e. an object whose attributes are
not initialized. Additionally means to initialize the attributes are needed, which
leads to another problem: private attributes.

The problem with private attributes is, that they can only be altered inside
of methods of the class they belong to. Hence for all attributes a single or
separate method needs to be introduced, initializing the attributes and taking

50

3.3. CLASSES AND RELATIONS - OBJECT RELATIONAL MAPPERS

the value to be used as an argument. Of course these methods can be merged
into the special constructor, so only one method, that is the constructor, needs
to be introduced.

The introduction of such a special constructor is necessary, if all kinds of
objects need to be restorable. Other approaches, which allow for object recre-
ation, make assumptions about the application, narrowing the creative freedom
of programmers and designers.

3.3.2 Existing Technologies

The Java Persistence API (JPA [30]), part of the EJB 3.0 specification from JSR
220, forms a standard for object relational mappers in the context of Java. Many
implementations of this standard exist. For example Hibernate4, EclipseLink5,
TopLink Essentials6 and OpenJPA7.

The most important concepts in JPA are Entity, EntityManager and Per-
sistenceContext. Entities are domain objects, subject to persistency, like in
DAMPF. In order to persist objects, the EntityManager is to be used. It pro-
vides a method persist, which takes the domain object, to be persisted, as
an argument. Furthermore it provides methods to search and restore domain
objects from the database. Besides finding entities by their primary key, using
method find, complex SQL-like queries can be used. These queries allow to
conjunctively or disjunctively connect attribute-value pairs. Because the JPA
is in productive use, most implementations offer functionality for very sophis-
ticated queries. Range checks, for example, are just one of the many features.
With regard to the conceptual architecture of DAMPF, presented in Section
4.3, the EntityManager provides the runtime utilities Store and Search and Re-
store. Further transactional features, which are out of scope for this thesis, are
provided by the EntityManager. The PersistenceContext defines a boundary
for sets of domain objects. It enables the developer to group objects, which are
subject to persistency, together. An EntityManager is directly connected to a
PersistenceContext. That is, it is responsible for the management of all objects,
belonging to the corresponding PersistenceContext.

Notably the JPA was designed for applications, running in a container. That
is enterprise applications, which run in application servers, or web applications,
which run in web servers. The reason for it is, that JPA implementations need
to inject dependencies to the code, but use another approach than DAMPF.
The injection is done by the container, not by the JPA implementation. Thus
JPA is not directly usable in standalone applications. In order to use JPA in
standalone applications anyway, the developer needs to take care about the in-
jections himself. Indeed, there is no injection anymore at all, but the developer
directly uses the API of the JPA to get instances of, for example, an Entity-
Manager. This leads to very low transparency for the users of this persistency
solution.

In summary, the JPA is a sophisticated persistency solution, providing a very
expressive search feature, but its reasonable application is limited to enterprise
and web applications.

4http://www.hibernate.org
5http://www.eclipse.org/eclipselink
6http://www.oracle.com/technology/jpa
7http://openjpa.apache.org

51

CHAPTER 3. OBJECT-RELATIONAL MAPPING

52

Chapter 4

The Concept of DAMPF

53

CHAPTER 4. THE CONCEPT OF DAMPF

To realize the main features of DAMPF a novel approach to persistency of
object-oriented systems supporting roles as first-class citizens is needed. The
three main features of DAMPF are its support for schema evolution, the support
for distribution of domain objects in heterogeneous environments and its support
for context-based security.

The first main feature focuses on the evolution of application schemata,
which are bound to a database schema, due to the application of an object-
relational mapper. Current mappers do not allow schema changes in the object-
oriented application, without losing the data in the database. This is, because
changes to the application require the mapper to recreate the database schema,
which is usually done by removing the whole schema and creating a new one.
DAMPF will support changes to the application schema without loss of data
in the database. Moreover, DAMPF will support to reuse data from earlier
versions of the application. That is, for example data of classes, which formerly
existed and are reintroduced, will be available again, too.

Distributed systems are designed to work together on a common task. To
do so, they need to exchange the domain objects they are working on. Crucial
to this distribution of domain objects is the serialization and deserialization of
domain objects. Current approaches base on complex transformations. DAMPF
will not support another transformation mechanism, but means for distributed
systems to use domain objects they do not fully understand. A domain object
adheres to the domain model of its originating system. Other systems are likely
to have different domain models. But distributed systems are developed to work
together and hence, are likely to have at least similar domain models. Thus,
those parts of the domain object, which adhere to the domain model of a system,
should be usable for that system. DAMPF will simply hide those parts of the
domain object, which to not adhere to the domain model. Importantly, the
hidden parts do not lead to loss of data, as the data is just hidden, but not
deleted.

The tasks of distributed systems might incorporate domain objects, con-
taining confidential data. To ensure, that only systems see data, which they

Persistence
Manager

Bytecode
Transformer

DB Prolog

Runtime

Running
Application

Startup-Time

Original Application

Sublimated
Application

Figure 4.1: Coarse-grain Overview of Architectural Parts and Their Connection.

54

4.1. THE FIVE STEPS OF DAMPF

are granted to see, highly sophisticated, but also complicated, mechanisms ex-
ist. The complexity stems from the requirement of considering the context in
regard to access rights. DAMPF will support context-sensitive security, by its
ability to hide parts of domain objects. In order to ensure, that a system does
not see confidential data, only its domain model needs to be designed accord-
ingly.

Existing approaches do not support schema evolution, distribution in het-
erogeneous environments or context-based security. In the following, first a
coarse-grain overview of the conceptual parts is given, followed by an explana-
tion on the steps accomplished by DAMPF from the applications startup until
runtime.

The main conceptual parts of DAMPF are depicted in Figure 4.1. The
original application is transformed by a bytecode transformer, so it exposes
its implicit dataflow in form of an explicit event stream. This transformer also
inspects the application and writes out the applications schema to a Prolog fact
base, which is dedicated to schema information. This fact base is from now
on referred to as schema fact base. Schema changes are identified and noted
by the transformer in that fact base, too. All this happens at startup time.
When the application started up, the running application communicates with
the Persistence Manager, which is the entry point into the runtime utilities
of DAMPF. In fact, the Persistence Manager is listening to the event stream of
the application, formerly exposed by the bytecode transformer. All events are
traced, that is they are logged into a Prolog fact base. As this information is
collected at runtime, it is noted in the so-called runtime fact base. The runtime
utilities furthermore provide means to store, search and restore domain objects.
All these activities force the Persistence Manager to connect and communicate
with the database. In case the Persistence Manager connects to the database
the first time, he creates the complete database schema. Else only changes
are applied. Changes are handled at runtime, whereby applications can be fully
dynamic, that is they can be changed at runtime. Finally, sending and receiving
objects is provided by the Persistence Manager. The three parts on the right of
Figure 4.1 are the major architectural parts of DAMPF: the transformer, the
manager and the fact bases. The transformer focuses on sublimating the original
application and the extraction and comparison of the applications schema. The
manager provides functionality to trace the running application and to react
accordingly. Notably, two Prolog fact bases exist: a schema fact base, containing
a description of the applications schema and changes to it, and a runtime fact
base, comprising knowledge about the application collected at runtime. The
following Section describes the basic steps of the approach, which are derived
from the main conceptual parts.

4.1 The Five Steps of DAMPF

In order to realize these features, DAMPF follows a set of steps, which will be
described in the following.

1. Sublimate - Transparently adjust applications to make their data flow
explicit.

2. Compare - Collect static information for comparison with older versions

55

CHAPTER 4. THE CONCEPT OF DAMPF

1 Sublimate 2 Compare 3 Adjust 4 Trace 5 React

Figure 4.2: The Five Steps of DAMPF.

or remote applications.

3. Adjust - React accordingly on changes in the current version.

4. Trace - Collect runtime information and derive further information from
it.

5. React - Provide runtime utilities, which base on the explicit data flow
and react accordingly.

Figure 4.2 depicts these five steps.

Sublimate. Persisting the domain objects of applications means to store a
snapshot of the current application in the database. To derive such a snapshot
all domain objects need to unfold their state. There are two approaches to
derive snapshots.

First a one-shot approach is possible. That is, at one point in time, at which
the system shall be persisted, all the information is collected. This requires
a way to find all domain objects. Usually a central data structure is used
therefore. Some programming languages, like Java, provide tooling for this
purpose. For Java the JVMTI, that is the Java Virtual Machine Tool Interface,
can be used. Using the JVMTI allows to access the state of a currently running
virtual machine, including the states of all objects, which are currently in the
heap. As all objects are found this way, a mechanism to distinct between domain
objects and system objects is needed. The easiest approach therefore is, to use
annotations. Domain objects are marked with annotations like @Entity. The
tool searches for this annotation, to identify domain objects. Objects, which
are directly related to a domain object, need to be persisted, too. A more
detailed explanation can be found in Chapter 5. When all domain objects have
been found and their state has been unfolded the transformation to relations,
as described in Section 3.3 and 4.2, follows.

The second approach to derive snapshots is to trace the state of domain
objects. In order to get a trace, the classes of domain objects need to be
sublimated. They are modified in a way that they unfold their implicit data
flow. In Java this can be done by so-called bytecode modifiers. The modification
can take place as an additional step after compilation, using post-processors, or
at load-time of the class. Post-processing modifies the application before it
has been deployed. Its benefit is that customers do not get in touch with the
modifications at all. On the other hand side, the shipped code is fixed, that
is changes to the post-processor have no effect on the application, after the
application has been shipped to the customer. The benefits and drawbacks of
load-time weavers are exactly the other way around. Customers potentially see
the use of the load-time weaver, for example as an additional startup parameter.
But load-time weavers are not part of the application and thus, can be updated
separately. Another benefit of load-time weaving is, that it can be combined

56

4.1. THE FIVE STEPS OF DAMPF

with other weavers. If a customer is already using a set of weavers, the order
of them is important. If one of the weavers removes statements from a method
body, which would be changed by another weaver, a different final application
would result, with regard to the application order of the weavers.

Regardless if post-processing or load-time weaving is used, the changes to
domain classes are the same. The only difference is the time, at which these
classes are changed. All class-based object-oriented programming languages
define classes with constructors, attributes and methods. In order to unfold
the dataflow, which is implicitly contained in a class definition, constructors
and methods need to be adjusted. The invocation of a constructor reveals the
creation of a new object. The invocation of a method potentially changes a
set of attributes. Which attributes are changed can be identified by analyzing
the bytecode of the method. Thus at the end of constructors an event is to
be fired, signaling the creation of a new object. At the end of each method
an event is to fired, signaling the values of the changed attributes. By using
events to unfold the implicit data flow, the problem of encapsulation is avoided.
The basic principle of encapsulation is not violated, as it extends the principle
of encapsulation with so-called friendly classes. Friendly classes in this context
are classes, which are listeners to this event stream. Notably the listeners are
bound to the domain objects by code in the domain classes. The listeners don
not look into the domain objects, but the domain objects tell them their inner
state.

Changes to roles highly dependent on how the language (extension) for them
is implemented. All implementations should have in common, that there is some
method to create a new role, there is a method signaling the destruction of a
role and that there are methods that are used to bind the role to its context
and player. Furthermore roles have methods changing their state. Notably role
methods may change the state of their player, too.

Thus, in general three relevant types of methods in roles can be identified:
creators, destructors, binders and usual methods, which have no effect on the
roles life cycle. Creators need to be adjusted in the same way, like constructors
of classes are, that is they need to signal the creation of a new role. Destructors
need to signal the end of a roles life cycle. Binders need to fire an event, signaling
which role has been bound to which context or player. Life-cycle independent
methods potentially change the roles state and hence need to be sublimated,
like methods of classes, viz. signaling the values of changed attributes.

The last two paragraphs described how classes and role types are adjusted to
unfold their implicit data flow. In summary, the firing of events, related to the
life cycle of objects and roles or to value changes of attributes, is incorporated
into the methods. The listener for these events is fixed in the modified code and
will be described in more detail in this Section under the paragraph of React.

Compare. At the same time the application is sublimated, the schema of
the application is extracted to a fact base. That is, either immediately after
the compilation (post-processing) or at class load-time (load-time weaver). The
schema will be extracted completely, if no old fact base, which has formerly
been extracted, exists.

All structural information of the applications domain objects will be written
into a Prolog fact base. For example, the existence of each class, role, context

57

CHAPTER 4. THE CONCEPT OF DAMPF

and attribute will be noted as a separate fact. The relations between classes,
that is inheritance hierarchies and references between classes, will be noted, too.

If, at an application startup, a formerly extracted schema already exists,
the facts are compared. That is, for every fact, which is extracted from the
new schema, its existence will be checked. If the fact already existed, there has
been no change to this part of the structure. If the fact does not exist, it has
either been changed or removed. It is not always possible to determine, whether
the fact has been removed or changed. Facts of attributes can be changed in
three ways: the type, name or both. If only the type has been changed, the
change can be identified by the name of the attribute, which needs to be unique
for the class. This does not work, if the name has been changed. Although
names of attributes need to be unique, the intention of the developer cannot be
reconstructed. It might be, that the developer removed the old attribute and
added a new one, of the same type. Or he removed an old attribute and added
a new attribute with a different type, but the same name. The same holds for
facts about the existence of classes. If a class has been renamed and is not
related to any other class, it is impossible to determine, whether the developer
removed the old class and added a new one, or if he just renamed the already
existing class. Thus changes to facts will in general be recognized as removals
and additions. By default the name will be used to identify changes.

The information derived from the comparison needs to be noted, too. This
is, because the database schema, which already exists in that case, needs to be
adjusted. As all changes are removals, additions or combinations of both, the
fact base is extended with a set of facts, representing the changes in this way.
Having this knowledge in the fact base enables to react on changes at runtime
in a flexible way. For example, knowing, that an attribute has been removed,
allows to avoid removing the attribute from the database and thereby removing
all the values of it, but just not to fetch it from the database. That is, when
the domain objects are restored from the database, this attribute will not be
contained in the projection of the corresponding query. The next paragraph,
elaborating the Adjust-Step, will present ways to react on changes.

Every time an application is started, the formerly described comparison
takes place. Thus, if the application is started for the third time or above,
the already existing fact base contains facts about former changes, too. This
information must not be removed. The fact base will contain all changes to the
application, beginning at its first version. This leads to a stacking of change
information, which is beneficial in terms of knowledge, but disadvantageous in
terms of space. One of the features of DAMPF is, that it can be used for
applications under development. Thus, it will be common, that an application
is started the hundredth time with changes. To avoid crowding of the fact base,
the developer needs to get the ability to tell DAMPF, that at the next startup
all already existing changes shall be fixated and removed from the fact base.
An earlier removed field, for example, will be removed from the database, if the
developer decides to fixate all changes. To enable the developer to decide on
this fixation, he needs to mark the current application as a milestone release. If
a version is marked as milestone, developers start a new iteration, which usually
does not rely on old data, viz. the application is unlikely to reuse attributes of
earlier versions.

58

4.1. THE FIVE STEPS OF DAMPF

Cause Effect
Added attribute add corresponding attributes and

possibly required relations to the schema
Removed attribute leave the attribute in the schema
Added class, role or context add corresponding relations

to the schema
Removed class, role or leave corresponding relations
context in the schema
Role changed context in general a runtime change, add
or player corresponding attribute to new context,

but leave attribute in the old context
Added reference add corresponding foreign key to the schema

(is always connected to an added attribute)
Removed reference remove corresponding foreign key from the

schema (always connected to a removed
attribute)

Table 4.1: Effect of Application-Schema Changes to the Database.

Adjust. When the application is started for the first time, no schema fact base
exists, but will be created. The adjustments, which are subject to this step, are
not performed in this case. If the application is started for the second time or
above, the already existing schema fact base is used along with the applications
schema to identify changes. If schema changes have been found, DAMPF needs
to handle them. To do so, the database schema needs to be adjusted and
when storing and restoring domain objects the changes need to be considered,
too. The adjustments highly depend on the type of the identified change. In
the following the database adjustments in accordance to the identified changes
are examined, followed by a description on how changes are considered, when
storing and restoring domain objects. Table 4.1 shows the database adjustments
as effect on application-schema changes at a glance.

If an attribute is added to a class or role, a corresponding attribute needs
to be added to the database schema. This attribute is nullable by default.
Developers can provide default values by setting the value in-place, viz. not
in the constructor, but where the instance attribute is defined. If the added
attribute is a reference to another class, an attribute pointing to the primary
key of the corresponding object of the other class is to be added. If the added
attribute is a collection, a collection relation and an attribute pointing to it is to
be added. In general the addition of an attribute leads to relational constructs
as described in Chapter 3 and Section 4.2.

If an attribute is removed from a class or role, the corresponding attribute
remains in the database schema. It is not deleted, except the developer marks
the current version as milestone release. In such a case, the corresponding at-
tributes and connected collection relations need to be removed from the database
schema.

The addition of classes, contexts and roles leads to the addition of corre-
sponding relation schemata. The transformation of roles and contexts will be
done, as described in Section 4.2. The removal of them does not lead to their
deletion from the database schema. They will be kept in the database, like at-

59

CHAPTER 4. THE CONCEPT OF DAMPF

tributes, until the developer marks the application version as milestone release.
Changes, which are more complex in their handling, are changes to the

bindings between roles and contexts. In general roles are able to change their
context. Thus, conceptually these changes are runtime changes, which should
be considered while sublimating the application, so they are fired as life-cycle
events. Because ObjectTeams, which is used for the references implementation,
only supports fixed players and contexts, the reference implementation of this
thesis can consider such changes from a schematic point of view. The change
of a unary binding of a role to its context is recognizable as removal of the role
from one context and addition of the role to another context. Developers need
to provide the information, if the role already existed in the former context,
or if a new role is added. The easiest way for the developer to provide this
information is to annotate the role class.

Roles might also change their player. Again, ObjectTeams fixes a role to a
single player, so the reference implementation can see player changes as schema
changes. In general the change of a player should be seen as a life cycle event.
If another player class is bound to the role in the new version, the relation
schema of the role needs to be updated. As old roles rely on old players and
the developer might want to rollback its changes in the future, a new attribute
pointing to the primary key of the new player is added, along with a foreign
key for this connection. The old foreign key stays untouched! If the developer
marks the current application version as milestone release, all former foreign
keys and attributes pointing to the old players are removed from the database.
Whether a role is actively played by an object is not relevant to the schema,
because starting or stopping to play a role, as well as playing a role or not, is
information available at runtime only.

Finally, references can be added or removed. The relational counterpart of
references is the foreign key constraint. Hence, the addition of a reference leads
to the addition of a corresponding foreign key to the database schema. Unlike
for classes and attributes, the removal of a reference does lead to the removal
of the corresponding foreign key!

Example 6 Possibly the most important domain concept of a university man-
agement system is the student. In a first version of such a system a class
Student with the attributes name and height exists. In a future version of the
system the height attribute has been removed, as it is of no interest for the uni-
versity. Furthermore an attribute country is added, which points to an instance
of the newly added class Country, which has a single attribute name. The first
time the application is started, the original schema is noted in the schema fact
base and a database schema with a relation Student, having three attributes, id,
name and height, is created. When the application is started, after the above
explained changes have been applied, a set of changes is identified. First, the
removal of the height attribute. Second, the addition of the country attribute.
Third, the addition of the Country class, along with its attribute. And finally,
the addition of the reference from Student to Country. The adjustments to
the database are the addition of a new attribute country to the Student rela-
tion, the addition of a new relation Country, along with two attributes, id and
name, and the addition of a foreign key constraint, expressing that the attribute
country in relation Student points to the id attribute of the Country relation.
Figure 4.3 depicts this example.

60

4.1. THE FIVE STEPS OF DAMPF

Student

name
height

Student

name height

Student

name

Country

name
country

Student

name height country

Country

name

foreign key

ididid

First version Second version

Figure 4.3: Example of Database Adjustments, due to Schema Changes in the
Application.

Besides changes to the database schema, DAMPF needs to take care of
schema changes when storing and restoring domain objects, too. Both activities
are subject of the runtime utilities, which are examined in more detail in the
paragraph for step React. In short, storing boils down to the insertion of one
or more tuples to the database, restoring to fetching one or more tuples and
joining them.

If attributes of a domain object have been removed from the application
schema, they still exist in the database schema. Storing such a domain object
needs to explicitly name all attributes, in order to leave out the removed one.
Alternatively, the value for the removed attribute needs to be stated as null.
This does not pose a problem, as all attributes, derived from class attributes,
are nullable. Of course, in object-oriented programs it is possible to ensure,
that an instance attribute must not be unset after object instantiation, it is
always possible, that in an upcoming version of the application, this attribute
will be null for some objects. In general attributes referencing objects, are by
default null. Because even common data types like integers and booleans are
often represented as objects, all attributes need to allow null as a value. When
restoring a domain object, in the context of removed attributes, only the still
existing attributes need to be fetched from the database. These principles for
the handling of removed attributes are valid for classes, contexts and roles.

The addition of attributes needs to be considered, too. Storing a corre-
sponding domain object requires to store the value of the new attribute, too.
Restoring needs to take care of default values, viz. the domain object is re-
stored with null as the value for the new attribute, but in the corresponding
class, context or role the attribute may have a default value, which needs to be
set.

The addition of separate classes will be handled, just like for all classes at
the first application startup. The same holds for contexts and roles. The change
of role—context and role—player bindings needs to be considered, in that the
corresponding insertions and selections leave out the old binding-attribute, but

61

CHAPTER 4. THE CONCEPT OF DAMPF

use the new binding-attribute.
In summary, database adjustments, along with runtime adaptations are re-

quired, to handle schema changes of an application. Renaming poses a problem,
in that it requires the developer to provide information about his intend. Ei-
ther he renamed the attribute, class, context or role. Or he removed the old
and added a new one. Additions and removals do not pose any problems for
DAMPF.

Trace. This step denotes an important part of the runtime utilities, which are
presented as a whole in the last paragraph of this Section. As described in the
Sublimation-step, the implicit dataflow is transformed into an explicit event
stream. This event stream exposes the state of the domain objects as well as
their life cycle. This information is highly important for DAMPF. Hence, it is
logged. As shown in step Compare, schema information is noted in a Prolog
fact base. The same is done with the event stream. This way static and runtime
information is available for further processing.

Not every value-change event needs to be logged separately. More interesting
is the current state of an instance, viz. all values of the instance. This is where
Prolog provides its first benefit for DAMPF. As the structure of domain objects
is available in Prolog and the value-change events, too, it is possible to derive
the current state of the domain object in Prolog.

A further benefit of having static and runtime information as Prolog fact
base is, that it allows for completely automatic normalization. In order to
normalize a schema, its functional dependencies need to be identified. Therefore
more than just the schema is needed, but runtime information, viz. actual data,
too. As will be shown in Section 5.4, normalization of real-world schemata is too
time-consuming for nowadays desktop computers. The reason therefore is that
classes, having 20 or more attributes, have an enormous amount of possible
functional dependencies. Optimizations to the normalization algorithm allow
deriving the normalized schema with limited memory space and in shorter time,
but even single classes, with lots of attributes, consume time in the range of
minutes, which is not feasible for DAMPF to normalize on the fly.

Normalizing a schema leads to splitting of classes and, consequently, to the
need to join them later on. In Prolog rules can be defined, that accomplish this
task. The ability to split and join tuples as well as classes in Prolog, allows
handling domain objects, which are part of an inheritance hierarchy, separately.
This helps with handling the value-change events, fired at the creation of an
object and enables to postpone the decision, how to persist inheritance hierar-
chies.

Summarizing, the use of Prolog to trace runtime as well as schema informa-
tion, enables DAMPF to derive further information from the application, which
is not available otherwise.

React. This final step is, like the former, related to the runtime of applica-
tions in that it provides runtime utilities. It contains the listener of the event
stream from step Sublimate. Besides forwarding the events to the trace util-
ity, described in the last step, it provides utilities to store and restore domain
objects.

When an object is to be stored, can be defined in multiple ways. The

62

4.1. THE FIVE STEPS OF DAMPF

developer can choose from a set of persistence strategies. Those range from
very course-grain to fine-grained levels:

1. Application Level - all objects are stored, when the application is shut
down

2. Instance Level - all objects are stored, whenever a new object is instanti-
ated

3. Value Level - single objects are stored, whenever a value of them changes

4. Manual - the developer proactively invokes a method provided by DAMPF

Notably, the Java Persistence API only provides the last persistence strategy.
That is, the developer needs to manually incorporate the logic, when to persist
which domain objects. DAMPF offers application developers the choice.

With application level persistency all objects are only stored, when the appli-
cation shuts down. This leads to the lowest runtime-penalties, because there is
no database interaction while the application is running. In contrast, this strat-
egy does not support multiple users to work concurrently on the same data.
Furthermore no transactional features can be provided, which would be helpful
if the system crashes.

Instance level persistency lowers the drawbacks of the application level strat-
egy, but lowers the benefits, too. This strategy persists all objects, whenever
a new object is instantiated, or more specifically, when the instantiation of the
object finished. Using this strategy, multiple users can work concurrently with
the same data. They see course-grain changes of each other. Also course-grain
transactional features are supported. Changes, which have been done since
the last storing, can be undone, using the trace log, as described in the last
step. On the contrary the applications performance is lowered, because now the
application will interact with the database while the application is running.

Finally, value level persistency is the most fine-grained level one can think of.
Whenever a value is changed, this change will be reflected in the database. Of
course this leads to massive performance penalties, but offers the best multi-user
support and fine-grained transactional security.

If all these strategies do not fit the developers’ needs, he can decide to
manually invoke the persistence mechanism. All he needs to do is to invoke
the store-method of the runtime utilities. DAMPF will provide a mechanism
to inject this method. The former strategies simply weave this call into the
appropriate places, for example, into the handler of value changes, to achieve
value level persistency.

To restore objects a search mechanism is required. DAMPF focuses on
domain objects, not applications as a whole. Thus, it is not possible, to restore
all domain objects and hook them into the application. The same holds for
well-known object relational mappers, like those following the JPA. In order
to search and restore domain objects, a set of search criteria can be send to
the runtime utilities of DAMPF. Search criteria consist of attribute-value pairs,
which can be connected conjunctively (and) or disjunctively (or).

Example 7 To search, for example, for an instance of class Person, having
the attributes firstname and surname, representing the person ’John Doe’, two

63

CHAPTER 4. THE CONCEPT OF DAMPF

attribute-value pairs [firstname,’John’] and [surname,’Doe’] are connected con-
junctively and send as an argument to the search method. If such an object has
been persisted formerly, it will be found.

Because the focus of this thesis is on schema evolution and support for
distribution in role-based systems, the search criteria API provides only limited
expressiveness. Further development, to support for example value ranges, is
future work.

Distribution and Security. The distribution and security features crosscut
the five steps presented before. The composition of multiple, distributed appli-
cations to work on the some global task, usually requires all these applications
to have a common domain model or complex conversations of the shared data.
Web services base on conversations. They are described by the web service defi-
nition language (WSDL), which particularly defines the structure of messages a
web service understands or will give as an answer. These messages form the do-
main objects send to and from the web service. In order to invoke a web service
the corresponding message needs to be constructed, which requires converting
the domain object into the requested message format. Another approach to
distributed processing is to use a classic middleware layer. In essence, different
clients work on the same data and share a domain model provided by the mid-
dleware layer. In contrast to web services, this approach leads to tight coupling
of clients. Or in other words, developing clients independently from each other
is much more complicated.

Using the approach to persistency of DAMPF in combination with the dy-
namic properties of roles, a novel approach for distribution emerges. Applica-
tions, which shall be composed to work on the same global task, need to share
only a single concept, that of a task. The only property of such a task is, that
it has an identity. Everything else is realized through roles, which are played
by that task. If two applications have the same role definitions, they will both
understand this part of the domain object. A complex domain object, playing
many roles, will be understood by every participating application. Complex
conversions are not needed, because each application will understand those part
of the domain object, defined by the roles of the applications domain model.
This way security can be ensured, too. Confidential data is part of roles, whose
definition will only be available in those applications, which shall have access to
it. Most importantly, the data which cannot be seen by an application, will not
be removed by DAMPF, but just be hidden. This way an application can work
on parts of a complex domain object, without understanding the entire object.
Those parts, which were not understood, remain unchanged and are available
in the next application in the processing chain, which knows about these parts.
The feature of leaving parts of a domain object untouched is essential to the
schema evolution feature of DAMPF. Remind that the removal of attributes
from the class schema does not lead to their removal from the relation schema.

The distribution of domain objects poses another problem. The objects to
be send need to be serialized and, when received, deserialized again. Many
approaches for how to serialize objects exist. DAMPF provides a novel way.
Each object of an application is, in consequence of the Trace step, available
as a set of Prolog facts. These facts are textual and do not need to be read
in a specific order. Hence they already denote a serialized form. DAMPF

64

4.2. ROLE-RELATIONAL MAPPING

1 Sublimate 2 Compare

3 Adjust4 Trace

5 React runtime schema

Figure 4.4: Cycling Steps of DAMPF with Fact-Base Connection.

will provide injectable methods to send and receive domain objects. Whenever
these methods are used, the object identifier is used to fetch the corresponding
facts from the Prolog fact bases, and to the shipment of them. Furthermore
encryption technologies can be used, for a secure transfer.

Summary. The first three steps all affect application startup time, viz. the
application is sublimated at startup time, thereby transforming the implicit
dataflow into an explicit event stream, followed by the schema comparison and
database adjustments. The last two steps focus on runtime utilities, used to
trace the application and to store, as well as restore, domain objects. The
steps Sublimate and Compare lead to two fact bases: the runtime fact base
and the schema fact base. The third step relies on the schema fact base for
the database adjustments. The last two steps base mainly on the runtime fact
base. Figure 4.4 depicts the dependencies. It furthermore shows the cycling
nature of the five steps. Each time an application is started, a new cycle begins.
When the application is running, DAMPF will be in the last two steps, that is
Trace and React, until the application is shut down and a new cycle is waiting
to begin. When domain objects are stored, is up to the application developer,
who can choose from differently coarse- or fine-grained persistency strategies.
DAMPF provides means to enable the developer to define, when domain objects
are restored.

4.2 Role-Relational Mapping

Chapter 3 investigated how classes and objects can be transformed into their
relational counterparts. The transformation of roles, contexts and bindings
between roles, contexts and players into the relational world belongs to the
contributions of this thesis, because it has not been investigated, yet. This
Section elaborates on these transformations.

The transformation of classes and objects to relations and tuples has been
investigated for a very long time, but not the transformation of roles and related

65

CHAPTER 4. THE CONCEPT OF DAMPF

concepts into relational concepts. The dynamic nature of roles as extension to
objects puts additional requirements on such a transformation.

The research field of role-relational mapping is very new and has been inves-
tigated, up to now, in only one other work than this thesis. Olaf Otto extends
EclipseLink, an implementation of the JPA, to support the role concepts of
ObjectTeams in his thesis[54]. The thesis focuses solely on ObjectTeams and
does not investigate other approaches for role oriented programming. Because
ObjectTeams does not provide a direct mechanism for an object to start or stop
playing a role, viz. a pattern is needed to implement these tasks, this thesis
does not examine the dynamic characteristics of roles. The focus of his thesis is
on the aspectual character of roles in ObjectTeams. The result of the thesis is
an extension to EclipseLink, supporting the concepts of ObjectTeams, although
not all features of ObjectTeams can be used, which is due to bugs in EclipseLink,
for example [53].

As described in Chapter 2 there are two important concepts related to roles.
First, roles are bound to a context. Or, in other words, a context provides a
boundary for the interaction of roles. Second, roles are bound to a player, viz.
an object, playing this role. Roles have at most one player at a time and belong
analogously to one context at a time. On the contrary, contexts comprise many
roles and players can play more than one role at a time.

Objects are described by the class, whose instance they are. Role types form
the description of role instances. Thus the transformation of roles to relational
concepts divides into the transformation of role types and role instances. As
classes are transformed to relations and objects to tuples, the same can be done
with role types and role instances.

Depending on the specific language or language extension used, role types
are realized as classes. Rava [35] for example realizes roles as usual classes.
ObjectTeams [36] defines role types as inner classes, whose outer class is a con-
text. This way the context-dependency is modeled using standard mechanisms
of the language, namely enclosing instances. An important difference between
role types and classes is, that role types describe, besides behavioral changes,
how the structure of their player changes. Usually this is done by defining a
completely new structure in the role type. Callers using the player through
a role instance of that type will only see this structure. No current language
(extension) offers the feature to define changes of the players’ attributes declar-
atively. ObjectTeams provides a usable mechanism, but is limited to method
signatures. It is possible to declare a method in a role type, which represents
an attribute in the player, but it is not possible to declare an attribute in a
role type which refers to an attribute of the player. The structural changes do
not need to be taken into consideration for the transformation, because they do
not change the structure of the player in a sustainable way. Indeed they do not
change the structure of the player at all, but provide another interface.

Three different approaches can be used to transform roles, contexts and
players to relations. First, all are transformed into completely separate relations.
Second, role-player combinations can be transformed into a single, that is a
combined, relation. Third, the transformation of the second approach is used,
but the resulting relations are normalized to NF3.

66

4.2. ROLE-RELATIONAL MAPPING

Student
student id

login
since

University
name<<context>>

Person
name
age

<<playedBy>>

Figure 4.5: Example Scenario in Class-Role Representation.

Person

id name age sid
3 Hans 20 5
4 Hans 20 6

student id login since ctx id
3013737 h1 2003 1
1005 hans 2006 2

id
5
6

Student University

id name
1 TUD
2 LMU

Figure 4.6: Complete-Separation Transformation of Example Scenario into Re-
lational Representation with Exemplary Data.

4.2.1 Complete Separation of Roles, Contexts and Players

Role types can be transformed like classes into relations, whereas each attribute
of the role type becomes an attribute of the corresponding relation. Addition-
ally references to the current enclosing context and to the current player need to
be represented as attributes. The context and the player, which both are repre-
sented as classes, are transformed to separate relations. The transformation of
role instances reveals another required attribute: a role identifier. Conceptually
roles do not have an own identity, because they are non-rigid. That is a role
shares the identity with its player. Nevertheless, for a relational representation
of roles an identifier is required to express, to which player the role belongs at
the point in time the application has been persisted. Hence, the role identi-
fier does not compromise the formal properties of the role concept. Note that
objects suffer from a similar problem. That is, they do not have an explicit
identity. Hence all object relational mappers introduce a primary key into their
relational counterparts.

Example 8 Imagine the role Student, which is played by instances of class
Person in the context of the University. Persons have a name and an age.
Students have a student id, a login and an attribute since, expressing the year
they started to study. Universities have a name. Figure 4.5 depicts this scenario
as class-role diagram. Figure 4.6 depicts its transformation, according to the
complete-separation approach. It furthermore contains exemplary data. Hans
studies at 2 universities. Since 2003 he studies at the TUD and since 2006 at
the LMU.

As you can see in Example 8 the role identifier is not used as target of a
foreign key, that is, it is not used to reference the role instance. The reason for
the identifier to exist is that other role types might exist in the future, which
reference this role.

4.2.2 Class-Role Relations

An alternative way of transforming roles to relations is, to add their attributes
to their players. In general role types are not bound to a specific player class,

67

CHAPTER 4. THE CONCEPT OF DAMPF

that is roles may be played by any object. Usually this freedom is limited to a
set of role types, whose instances are allowed to play the role. But this limits the
dynamics of roles in that only anticipated players can be used. It thus gets more
complex to support unanticipated changes. Some languages, like ObjectTeams,
even limit role types to be played by objects of only one player class. But in
return ObjectTeams provides powerful, expressive declarations to define how
the role changes the behavior of its player.

In consequence the attributes of a role type are added to all relations of
its transformed player classes. Figure 4.7 depicts this transformation, based on
Example 8. Depending on the limitation of the language this leads to semantic
redundancy. Additionally each player relation needs an attribute pointing to the
enclosing context of the role. Because players may play many roles this swiftly
leads to very big relations. It furthermore leads to relations with sparse data,
because the primary use of the relation is to store instances of the transformed
player class, which will rarely play all roles the player might play.

The first approach, the complete separation of roles, contexts and players
is hence more beneficial. A way to avoid the redundancy of this approach is
to normalize the resulting relations to NF3 as will be described in the next
Subsection.

4.2.3 Normalized Class-Role Relations

As described in the last Subsection, the attributes of roles can be added to
relations of their players, leading to a considerable schema redundancy. The
typical approach of a database engineer, to get rid of this redundancy, is to
normalize the relations to NF3. The consequences of NF3 are, as described in
Section 3.2, no schema and no data redundancy. DAMPF provides a tool to
automatically normalize relations, so the user does not need to do this complex
task manually. The tool contains all required steps to normalize in a fully
automatic way. That is, functional dependencies are discovered by inferring
them from the runtime fact base, an optimal primary key is inferred, functional
dependencies violating normal forms are identified and the relations, which do
not adhere to a given normal form, are split accordingly. The Prolog rules,
realizing this functionality are listed in the appendix. Section 5.4 elaborates on
normalization.

Example 9 Remind Example 8. Using the normalized class-role relations ap-
proach in a first step two relations will result: one for University and another
one for Person and Role, as depicted in Figure 4.7. Due to normalization the
Person relation is split into the relations Person1 and Person2, as depicted in

Person

id name age student id login since ctx id
3 Hans 20 3013737 h1 2003 1
4 Hans 20 1005 hans 2006 2

University

id name
1 TUD
2 LMU

Figure 4.7: Transformation to Class-Role Relations of Example Scenario into
Relational Representation with Exemplary Data.

68

4.3. CONCEPTUAL ARCHITECTURE OF DAMPF

Person1

id name age pid
3 Hans 20 5
4 Hans 20 6

student id login since uid
3013737 h1 2003 1
1005 hans 2006 2

id
5
6

Person2 University

id name
1 TUD
2 LMU

Figure 4.8: Normalized Class-Role Relations Transformation of Example Sce-
nario.

Figure 4.8. Notably, the same relations as for the complete-separation transfor-
mation result, which is not necessarily the case.

4.3 Conceptual Architecture of DAMPF

The last Section elaborated in detail all concepts of DAMPF. This Section
focuses on the architecture from a conceptual viewpoint. This Section presents
a fine-grained, detailed overview of the architecture.

Figure 4.9 depicts all major parts of the conceptual architecture. Solid lines
denote activities, dotted lines information usage. For example the part runtime
utilities actively change the runtime fact base and use the information from
both fact bases. Each part will be described in the next paragraphs.

Two categories can be identified: startup and runtime utilities. The original
application is passed to the startup utilities, which sublimate the application
and extract, as well as compare the schema from the application, as described
for the step Compare.

The sublimation of an application can be done using a post-processor, which
is run every time an application has been compiled, or a load-time weaver, which
sublimates the application each time it is started. The current usual way to
distribute applications to customers is by enabling the customer to download
software from the World Wide Web. But there are more modern ways of soft-
ware distribution already available. For example Java WebStart1. Applications
are deployed from servers to the customers’ desktop computer. Because many
software companies exist, the customer has the choice, which software to use.
In the near future the customer might be able to compose its software from
parts developed by companies from all over the world. In such a scenario, the
post-processing approach cannot be used anymore, because it requires a single
developer team to provide the software. Therefore DAMPF provides a load-
time weaver, which works independently from software vendors.

The second category of the architectural parts comprises runtime utilities.
These comprise tracing of the applications event stream and utilities to store,
search and restore domain objects. They correspond to step Trace and React.
Storing domain objects requires information from the schema and runtime fact
bases, to transform them into their relational counterpart. The transformation
is done completely in Prolog. Tracing the event stream implicitly prepares the
transformation. This is, because it does not just log all life-cycle and value-
change events, but already derives the full state of the domain objects. A value-
change event leads to the update of a fact in the runtime fact base, representing

1http://java.sun.com/javase/technologies/desktop/javawebstart/

69

CHAPTER 4. THE CONCEPT OF DAMPF

DAMPF

Original
Application

startup utilities runtime utilities

Schema
fact base

Runtime
fact base

Sublimated
Application

DB

Figure 4.9: Conceptual Architecture of DAMPF.

the state of the domain object, which was effected by that event. To store the
object, this fact is used. The retrieval of an objects state is not done using
the one-shot approach, leading to few, but big performance penalties in terms
of delayed execution. Instead the runtime penalties are spread over time, as
the value-change and life-cycle events are. Having many small penalties, spread
over time, is better than having few, big penalties, because the user is more
likely to notice the second.

To search and restore domain objects, mainly the schema fact base is needed.
This is because database queries need to be build, to fetch the data of the domain
objects, which shall be restored. Importantly, schema changes need to be con-
sidered at this point. For example an attribute, which has been removed from
the class schema, still remains in the database and thus, must explicitly not be
fetched by corresponding queries. The runtime fact base can be used for per-
formance optimizations, viz. as a cache in front of the database. This requires
a sophisticated cache policy, which is out of scope of this thesis. Searching par-
tially relies on the runtime fact base. How much this fact base is used, depends
on the persistence strategy chosen in step React. Application-level persistency
enables to use the runtime fact base as only source of information, because
changes from other users, will not be available until the application is restarted.
At application startup the runtime fact base is rebuild, thereby querying the
database. Starting from instance-level persistency, down to manual persistency
requires consulting the database in order to get up-to-date results. To validate
search queries the schema fact base is used, because it contains the information,
which attributes exist and of which type they are.

In Summary, DAMPF comprises four distinct architectural parts: the
startup and runtime utilities, as well as the schema and runtime fact bases.
Because the fact bases are Prolog programs, they are able to provide more
information, than the information, which has been written into them.

70

Chapter 5

Implementation

71

CHAPTER 5. IMPLEMENTATION

This chapter elaborates on the actual implementation, based on the con-
ceptual reflection presented in the Chapter 4. The concepts do not base on a
particular programming language. Any class-based object-oriented language,
extended with the roles concept, can be used as target platform, to realize
DAMPF. The reference implementation presented here is based on the Java
programming language and ObjectTeams/Java as extension, supporting roles
as first-class constructs. Hence almost all of the following implementation de-
tails are specific to Java and ObjectTeams and might differ for other languages.

Figure 5.1 depicts a detailed overview of the architecture of DAMPF. The
most course-grain parts of the architecture are the startup and runtime utilities,
as well as the fact bases, which will be explained in the following.

5.1 Startup Utilities

The startup utilities, Sublimate, Compare and Adjust, are merged in a single
implementation artifact: a so-called Java agent. Java agents are a technology
available since Java 1.5. They support to intercept the classloading process and

Startup Utilities

runtimeschema

Original
Application

Runtime Utilities

Search and
Restore

Store

Trace

Extract and
Compare

Sublimated
Application

Load-Time
Weaver

Database
Adjustment

DB

Securely
Distribute

Figure 5.1: Detailed Architecture of DAMPF.

72

5.1. STARTUP UTILITIES

thereby to transform a class, before it is loaded. This ability fits the needs
for step one, Sublimate, perfectly. Whenever a class is loaded, the Java agent
is involved and is able to decide, whether and how to transform the class to
be loaded. Additionally, agents can execute further code, whenever a class is
loaded. This ability is used to realize step two and three, Compare and Adjust.
Whenever a class is loaded, the schema fact base gets updated and, if the facts
to be added already exist, compared. Based on the updated schema fact-base
the Java agent also initiates the database adjustments.

Java agents have a simple structure. They are implemented as classes, which
have a static premain-method. This method has two parameters. A String-
attribute to fetch startup arguments for the agent and an instance of class
java.lang.Instrumentation, which offers methods to add so-called transform-
ers amongst others. The premain-method is executed once, before the applica-
tion starts up, that is before the applications main-method is executed. What
happens, when a class is loaded, is defined by transformers. They need to imple-
ment the interface ClassFileTransformer in package java.lang.instrument.
This interface offers a single, but important method: transform. It takes a
class loader, the current class name, an instance of type Class, a protection
domain and a byte array, representing the class file, as arguments. Its purpose
is to transform the byte array and to return it, when finished. Every time a
class is loaded, this method will be executed.

To realize the actual transformation, third-party libraries can be used. With-
out them, the developer needs to manually adjust the byte array. Three different
libraries exist for that purpose: Apaches BCEL1, ASM2 of the OW2 consortium
and Shigeru Chibas Javassist[13]. All three are powerful tools for bytecode trans-
formations. One is as powerful as the other. For the reference implementation,
Javassist has been chosen, because it is most comprehensively documented.

The first task of the transformer in order to sublimate the application is,
to identify, if the current class is an entity or not. As system classes do not
differ from domain classes the annotation @Entity is provided to the application
developer, to signal, that a class belongs to the domain model of the application.
The transformer checks, whether this annotation exists or not. But even in
small systems this leads to considerable performance penalties. The reason is
that at application startup all classes, needed to run the application are loaded.
This includes classes of the Java Runtime Environment and possibly third-party
libraries used by the application. Checking a single class for the annotation
consumes only little time. But checking thousands of classes requires seconds,
thus slowing down the application startup perceptibly for the user. Excluding
classes from the Java Runtime Environment only lowers the penalty for small
systems, which do not use third party libraries. Because it cannot be foreseen,
which libraries the application developer will use, a white list, defining those
packages, which shall be checked, is used, to narrow the annotation check to
application classes only. Though this test requires some time, too, it is much
faster than reflecting a class, to test for an annotation. It boils down to a simple
string comparison.

Classes, marked as entities, may reference other classes, not marked as en-
tities, in different ways. Either they have an attribute, pointing to an instance

1http://jakarta.apache.org/bcel/
2http://asm.ow2.org/

73

CHAPTER 5. IMPLEMENTATION

of another class or they inherit from another class. Additionally, roles reference
their player and context. In some of these cases, the referenced class needs to
be considered as an entity, too, although it is not marked as such. Attributes,
pointing to instances of other classes, do not require the other class, to be con-
sidered an entity. This is, because the referenced class potentially is a system
class. If the referenced class belongs to the domain, it should be marked as such.
Contrarily, inheritance requires the referenced class to be considered an entity,
even if it is a system class. The reason lies in the requirement to be able to
restore the object afterwards. If the class of an object is a subclass, the objects
state comprises values of the superclasses attributes. These need to be persisted
as well. The players and contexts of roles belong to the domain model and are
marked as such.

To identify superclasses of classes, marked as entity, the class loading order
needs to be examined. Creating an instance of a subclass, that is invoking the
constructor of the subclass, leads to the invocation of the superclasses construc-
tor. Notably the superclass constructor is called by the subclass constructor
at its very beginning. Thus, first the superclass constructor followed by the
subclass constructor is executed. In contrast, the classes are loaded the other
way around. That is, first the subclass is loaded, followed by the superclass.
To identify, that the current class needs to be considered as an entity, although
it is not marked as such, the transformer uses a map, storing the superclasses
of already loaded classes. Thus, whenever a class is loaded, which has a su-
perclass, this fact is stored in that map. As classes, related by inheritance are
always loaded in the same order, that is subclasses prior to superclasses, this
map suffices.

Example 10 Clerks are, of course, humans, which in turn are mammals. For
this reason Mammal is a superclass of Human, which in turn is a superclass of
Clerk. Figure 5.2 depicts this example. When an instance of class Clerk is
created, first the constructor of Mammal is executed, followed by the execution
of the constructor of class Human and finally the constructor of Clerk. Hence,
visually in accordance to the figure, instantiation goes top-down, that is from
superclasses to subclasses. Class loading works exactly the other way around.
First class Clerk is loaded, followed by class Human and, finally, class Mammal.

As can be seen in Example 10, the classes of an inheritance hierarchy are
loaded bottom up, that is starting at subclasses going up the ladder of super-
classes. The reason lies in the way the virtual machine identifies classes to be
loaded. The instantiation of a subclass only mentions only that subclass. Hence
first the subclass is loaded. After this class has been loaded, the virtual machine
knows that there is a superclass and starts to load it. Loading the superclass
possibly reveals that there are further superclasses, which in turn are loaded,
too. In summary, first all classes of an inheritance hierarchy are loaded bottom
up and then the constructors are executed top down.

A reference to the runtime utilities is injected into each identified entity.
This reference forms a listener for the events fired by the sublimated application.
Indeed it is not a real listener, as the entities will send messages to this reference,
to signal value changes and life cycle events. Additionally an integer field for
an object identifier is added to each entity. This identifier is required internally
of DAMPF to relate objects to each other.

74

5.1. STARTUP UTILITIES

Mammal

Human

Clerk

C
lass Lo

ad
in

g

In
stan

tatio
n

create instance

Figure 5.2: Class Loading and Instantiation of Subclasses.

If a class has been identified as an entity, its schema is introspected prior
to the sublimation. Inheritance relations are directly available using the Java
Reflection API or the reflection API of the chosen byte code modifier library.
The same holds for attributes, except they are of collection type. Java allows
defining arrays and provides a collection API. Both types need special care, as
has been described in Subsection 3.3.1 in Chapter 3. Arrays are easier to handle
than collections. Indeed they can be considered as constrained collections, as
will be shown later. Java Collections are more than sets of values, because
they provide further properties. For example, the collection type Set prohibits
duplicate values, whereas type List allows for them. Prior to Java version
5, collections could contain values of any type. Newer versions still support
this type of collections. It is for example possible, to put a string, an integer
and some user-defined object into a collection. Generics constrain the possible
types of the values of a collection and are available since Java version 5. Arrays
are special collections, because they can be considered as lists, viz. allowing
duplicates, constrained to allow only a single type for its values. Mixing values
of different, unrelated types in a collection is error-prone and can be seen as a
bad programming habit. DAMPF supports generic collections and arrays. If an
attribute of such a type is identified, it is handled, like described in Subsection
3.3.1.

But to identify the generic type of a collection, a little obstacle of Java is
in the way. Although in source code the type description contains the generic
parameter, this parameter is hidden in the bytecode produced by the compiler.
Fortunately an extension to the Java Language Specification[43] describes where
the compiler puts this information. Generic parameters can be extracted from
signature attributes in the class pool.

Sometimes domain objects have attributes, which should explicitly not be
persisted. Usually this is due to bad programming habits, leading to interweaved
domain and system code. To enable the application developer to exclude certain
attributes from persistency, the annotation @Ignore is provided.

Each time a class is loaded and has been identified as an entity, its structure
is written into the schema fact base. The existence of the class, all attributes,

75

CHAPTER 5. IMPLEMENTATION

Identify
Entities

Inject Runtime
Utilities

Extract
Structure

Compare
Structure

Initiate
Adjust

Sublimate

(1)
Sublimate

(2)
Compare

(3)
Adjust

Figure 5.3: Process of Startup Utilities and Connection to Conceptual Archi-
tecture.

except those marked with @Ignore, references to other classes, the subclass
relation and if the class is a role or context is examined and noted. The first
part of Section 5.2 presents all resulting predicates in the schema fact base.

If a predicate for the structural element already exists in the schema fact
base, it stays as it is. A change is identified, if some of the arguments of the
predicate differ. For example, attributes are identified by their name and class
and can differ in their type or position. Each identified change is written to the
schema fact base.

If schema changes have been identified, which require changes to the data-
base, the handling of them is initiated by the Java agent, too. The application
of the changes is accomplished by the runtime utilities.

Finally, the currently processed class is transformed in order to sublimate
it. All constructors are enhanced with calls to the runtime utilities, signaling
the creation of a new object. All other methods are analyzed in regard to the
attributes they use. At the end of each method a call to the runtime utilities is
added, signaling which attributes have been changed along with the new values
of them.

Lifter methods of roles are adjusted, too, signaling the lifting of a new role.
It is important to note, that the lifting of a role is not necessarily the creation
of a new role. Lifting may also lead to the reuse of an already existing role! The
creation of roles involves the execution of their constructor, which is adjusted
like a usual constructor, but signaling the creation of a new role. The same holds
for contexts. Some methods, which are internal to ObjectTeams, are excluded
from sublimation. These methods can be identified by their name, because all
begin with OT$.

In summary the Java agent first identifies, whether the current class is an
entity, injects the runtime utilities, inspects the structure of the class and writes
it to schema fact base, compares with already existing structure and writes
changes to schema fact base, too, initiates adjustments to the database and
finally sublimates classes to signal events. Figure 5.3 depicts this process and
how it is connected with the conceptual architecture.

76

5.2. SCHEMA AND RUNTIME FACT-BASE

5.2 Schema and Runtime Fact-Base

Two fact bases are used to store information about the application. The schema
fact base contains all structural information. Runtime data, like the current
states of domain objects, is contained in the runtime fact base. Both are ex-
plained in detail in the following.

Schema Fact-Base. The fact base is based on the programming language
Prolog, which is a declarative, logic programming language. The fundament
of Prolog programs are horn clauses, that is clauses, with at most one positive
literal. Horn clauses can be represented as logical implications. Their typical
form is (a ∧ b ∧ c ∧ ...) → z. Robert Kowalski proposed to see horn clauses as
procedures[41] and thereby laid the foundation for logic programming. In [42],
Kowalski gives a good summary on the history of Prolog.

A Prolog program is a set of horn clauses. Syntactically the implication is
drawn the other way around, viz. z ← (a ∧ b ...). The logical and-operator is
represented by a comma, the implication← is represented by :-. In consequence,
a typical Prolog clause has the form head :- body. Such clauses are called
rules. Rules with an empty body are called facts and are written fact.. To
derive further information from facts, rules can be used.

The benefit of using Prolog for the schema and runtime fact-bases is exactly
this ability, to derive further information using rules. Other languages, providing
the same benefit exist: Datalog and Frame-Logic.

From a syntactical point of view, Datalog[12] is a subset of Prolog. Never-
theless Prolog programs differ from Datalog programs in their semantics. The
order of rules and facts is of great importance in Prolog, but of no importance
in Datalog. Furthermore Prolog programs cannot guarantee termination, but
Datalog programs can. Though this is very beneficial, Datalog has some draw-
backs, too. Most notably, Datalog programs need to be stratified. A set of
horn clauses is called stratified, if a function exists, which maps all predicates
to numbers, adhering to the following rules. Each predicate, which positively
depends on another predicate, must be mapped to a bigger or equal number,
than the referenced predicate. If a predicate negatively depends on another
predicate, it needs to have a bigger number, than the referenced predicate. The
guaranteed termination is one of the consequences of the stratification.

Frame-Logic looks more powerful than Prolog. It allows using object-orien-
ted concepts in a logic-based environment[40]. Nevertheless, frame-logic pro-
grams can be transformed into Prolog programs and even into Datalog programs.
Hence, frame-logic is not more powerful than Prolog, but more convenient to
use in DAMPF.

In comparison, using Datalog instead of Prolog leads to more implementation
effort. It is time-consuming to stratify clauses, which is required in Datalog. The
benefit of knowing that stratified rules terminate definitely is not worth the
effort. Furthermore no implementation of Datalog is publicly available, which
can be used in a Java environment. Frame-Logic would be a good choice for the
fact-bases, too, but suffers the same problem as Datalog. No implementation
usable in a Java environment exists.

The facts of the schema fact-based describe the applications schema and are
listed in Table 5.1. The existence of each class is express by isClass/1. An
attribute a, belonging to class C, of type t is represented by the predicate

77

CHAPTER 5. IMPLEMENTATION

isClass(C) class C exists
isRole(R,C,P) role R exists in context C

and is bound to player P
isContext(C) context C exists
hasAttribute(C,a,t,p) class C has attribute a of type t at position p.
hasStaticAttribute/4 same as hasAttribute/4,

but for static attributes
references(C,a,D,b) class C’s attribute a references class D’s

attribute b (usually unknown)
subclasses(A,B) class A is a direct subclass of class B

Table 5.1: Predicates Used in Schema Fact Base.

hasAttribute(C,a,t,Position). The position of the attribute is required
internally, in order to identify attribute-value pairs in combination with the
runtime fact-base. The visibility of an attribute is not relevant to DAMPF,
because their values are to be stored regardless of their visibility. Static at-
tributes are expressed like instance attributes, but using another predicate:
hasStaticAttribute(C,a,t,Position). To denote, that class Super is the
superclass of class Sub, the predicate subclasses(Sub,Super) is used. To
determine transitively, if a class is a subclass of another class, the predicate
superClass(Sub,Super) was implemented.

superClass(Sub ,Super) :- subclasses(Sub ,Super).

superClass(Sub ,Super) :- subclasses(Sub ,X),

superClass(X,Super).

The references between classes, viz. attributes pointing to instances of
classes, are expressed using the references/4 predicate. To denote for exam-
ple, that class C1 has an attribute a1 of type C2, thus pointing to an instance of
C2, the predicate is references(C1,a1,C2,’’). The fourth argument can be
used to define a specific target attribute. In order to express arrays or generic
collections, the type name of the attribute needs to contain this additional in-
formation.

The existence of roles and contexts is represented by isRole and isContext.
If roles and contexts are realized as classes, this fact will be reflected by an ad-
ditional isClass/1 in the schema fact base. The second argument of isRole/2
points to the player type of the role and is an optimization for the ObjectTeams
implementation. The current player is referenced in the runtime fact base and
the current context as well. Because ObjectTeams only supports a single player
type for a role, DAMPF uses this simplification to optimize the derivation of
further information.

Additionally schema changes are noted in the schema fact base. Table 5.2
lists all predicates, expressing such changes.

For classes, roles and contexts predicates, expressing that they were added
or removed exist. These are the six predicates AddedClass, RemovedClass,
AddedRole, RemovedRole, AddedContext and RemovedContext. Renamings
cannot be detected, because the depend on the intend of the developer. Re-
naming a class can also be seen as removal of the old class and addition of the
new one. Based on the structure of the classes, the old and the new class can be
compared, which allows to infer a similarity level. Using heuristics it is possible

78

5.2. SCHEMA AND RUNTIME FACT-BASE

to decide, whether a rename has happened or not. Nevertheless, using heuris-
tics leads to false positives. If, for example, the developer removed a class, and
created a new one, which has a very similar structure, but completely different
semantics, the heuristic-based decision was false. In consequence the data of the
old class is used for the new. Thus data from completely different objects will
be used, leading to problems in the application, which cannot be anticipated.
Hence, using heuristics is not a possibility in this approach. In consequence,
renamings cannot be detected.

Classes, roles and contexts can change their superclass, too. It might happen
that a class, which formerly had a superclass, now has none. Or a class, which
formerly had no superclass, now has one. Finally, a class, which formerly had
a superclass, might now have another superclass. The third type of changes to
the inheritance hierarchy includes special cases. A new class can be introduced
between two formerly connected ones. That is, a class A, having a superclass B,
gets a new superclass C, which has B as superclass. In contrast, a class might
be removed from a hierarchy, so that its subclass afterwards has the superclass
of its former superclass. In other words, a class A, having a superclass B, which
has a superclass C, is changed in a way, that it now has superclass C. B is either
completely removed from the hierarchy, that is it does not have C any longer
as its superclass, or it simply loses its state as superclass of A. Further changes
to inheritance hierarchy can be identified, but are left for future work. In the
schema fact base, changes to the inheritance hierarchy are expressed by the

AddedClass(C) class C has been added
RemovedClass(C) class C has been removed
AddedRole(R,C,P) role R has been added to context C

and is bound to player P
RemovedRole(R,C,P) role R, bound to player P

has been removed from context C
AddedContext(C) context C has been added
RemovedContext(C) context C has been removed
AttachedSuperclass(C,SC) class C now has superclass SC
DetachedSuperclass(C,SC) class C no longer has superclass SC
AddedAttribute(C,N,T,P) attribute, with name N in

class C, with type T
at position P has been added

RemovedAttribute(C,N,T,P) attribute, with name N in
class C, with type T
at position P has been removed

ChangedAttribute(C,N,T,P) attribute, with name N in
class C, with type T
now has position P

ChangedPlayer(R,PC) role R now is bound to
players of type PC

AddedReference(SC,SA,TC,TA) rule, inferring added references
RemovedReference(SC,SA,TC,TA) rule, inferring removed references

Table 5.2: Predicates Denoting Schema Changes.

79

CHAPTER 5. IMPLEMENTATION

predicates DetachedSuperclass, AttachedSuperclass. The special cases do
not need separate predicates, as they can be inferred from the two predicates.

Attributes can be added, removed and might change their name, type or
position. To note an addition or removal of an attribute the predicates Added-
Attribute and RemovedAttribute are used. Changes to attributes cannot al-
ways be identified. This is due to the same reasons, like for classes, contexts and
roles. If an attribute has been changed or not, depends on the developers intend.
If the name of an attribute changed, but type and position remain unchanged,
it is likely, that the developer really renamed the attribute. Nevertheless, it is
possible, that the developer removed an attribute and added a new one at the
same position, with the same type. The same holds, if only the type has been
changed, but not the name and position. If only the position has changed, the
developer removed the attributed and added it at another position. It is still the
same attribute. Thus, changes to the position can be identified. The predicate
ChangedAttribute is used for that purpose.

The references between classes, context and roles might change, too. As
described in Chapter 3, references boil down to foreign key constraints in the
database schema. The removal of a reference implicitly contains the removal of
an attribute, namely the source attribute of the reference. The removal of the
attribute is noted by RemovedAttribute, as mentioned in the last paragraph.
The removal of the reference can be inferred from these facts, by the Prolog
rule RemovedReference. A newly added reference can also be inferred, as it is
a direct consequence of a newly added attribute, whose type is a domain class.
The Prolog rule AddedReference is used for that purpose. Changes to references
are to be seen as removals of the old and addition of the new reference. Special
to references is solely the connection between two classes, roles or contexts. All
other changes are changes to the involved attributes. The predicates inferring
addition and removal of references are presented in the following:

RemovedReference(SrcClass , SrcAttr , TgtClass , TgtAttr) :-

references(SrcClass , SrcAttr , TgtClass , TgtAttr),

RemovedAttribute(SrcClass , SrcAttr , _, _).

AddedReference(SrcClass , SrcAttr , TgtClass , _) :-

AddedAttribute(SrcClass ,SrcAttr ,TgtClass ,_).

Finally, changes to the bindings of roles need to be considered. The program-
ming language extension used for the implementation of the prototype, that is
ObjectTeams, fixates the player and context of a role statically. In the general
case, these changes happen at runtime. A role might change the type of its play-
ers, which is denoted by ChangedPlayer. The binding of a role to its context
cannot be removed, without adding the role to another context, because a role
needs to be bound to a context at any time. If a role has been moved from one
context to another cannot be detected, due to the same reasons like renamings
of them cannot. Hence, only the predicates AddedRole and RemovedRole are
used.

These changes need to be considered at the applications startup and at
runtime. To allow the application to change its schema at runtime, database
adjustments need to be performable at runtime, too. For this reason, the han-
dling of database adjustments is part of the runtime utilities. Furthermore,
these changes need to be considered, when storing, searching and restoring do-

80

5.2. SCHEMA AND RUNTIME FACT-BASE

instanceof(C,S) an instance of class C with state S exists
sameInstance(C1,C2,ID1,ID2 the instances with ID1 and ID2

of classes C1 and C2 are the same
contextState(C,ID,S) the context of type C with the id ID is

either active or not

Table 5.3: Predicates Used in Runtime Fact Base.

main objects. Finally the send and receive feature needs to take care of the
changes. Because all of these features are used at runtime, they are handled by
the runtime utilities, too.

Runtime Fact-Base. The sublimated application signals value changes as
well as life cycle events. Both events affect the runtime fact base. The fact
base contains the current state of the domain objects. Table 5.3 summarizes
the predicates, which are used in the runtime fact-base.

The predicate instanceof(C,S) expresses, that an instance of class C exists
and that it has the state S. The state is represented as a comma separated string
of values. Change events are directly reflected in that string.

Example 11 Students have an identifier and a name and can be represented
as class Student, with the attributes studentid and name. Furthermore the
startup utilities will add an object id and create the following predicates in the
schema fact base:

isClass(’Student ’).

hasAttribute(’Student ’,’studentid ’,’int ’,0).

hasAttribute(’Student ’,’name ’,’java.lang.String ’,1).

hasAttribute(’Student ’,’__DAMPF__oid ’,’int ’,2).

The instantiation of a student with student id 300, whose name is John,
leads to a sequence of events. First a new object event is fired, followed by
multiple value change events, signaling the value change of each attribute.
The runtime fact base emerges in the following sequence:

instanceof(’Student ’,[-,-,1]).

instanceof(’Student ’,[300,-,1]).

instanceof(’Student ’,[300,’John ’ ,1]).

The new object event leads to the first predicate. The object id is already
set, all other values are undefined. The following value change events for the
student identifier and the name lead to the subsequent predicates in that order.

The object id is used to index the predicates of the runtime fact base and
to relate instances to each other. Values of attributes, referencing objects, will
be represented using the object id of the referenced objects. In order to access
the object id the following rule is used:

getInstanceof(Class ,OID ,Values) :-

instanceof(Class ,Values),

hasAttribute(Class ,’__DAMPF_oid__ ’,_,POS),

nth0(POS ,Values ,OID).

81

CHAPTER 5. IMPLEMENTATION

Persistence-
Manager

Database-
Manager

Prolog-
Manager

Client

Fact
Bases

DB

Figure 5.4: Architecture of Runtime Utilities.

The nth0 predicate is provided by Prolog and allows accessing the nth value,
starting at 0, in a list.

To keep track on the state of objects, whose classes are part of an inheri-
tance hierarchy, the partial states are traced. For each class up the inheritance
hierarchy a separate state is logged. Additionally the relation of all these states
is expressed using the sameInstance predicate.

Because ObjectTeams does not allow roles to switch players or contexts at
runtime, these features have not been implemented. Nevertheless, ObjectTeams
supports to activate and deactivate contexts. Hence the current state needs to
be tracked. For this purpose, the contextState predicate can be used. It takes
three arguments: the context’ class name, the object id of the context and a
boolean value, expressing whether the context is currently active or not.

5.3 Runtime Utilities

In order to trace and react on the events fired by the sublimated application
runtime utilities are required. Furthermore search and restore, as well as store
functionality needs to be provided. Finally, the distribution and thereby security
feature is realized as part of the runtime utilities. Central to these utilities is a
single class — the PersistenceManager.

The PersistenceManager needs to communicate with the database and the
Prolog fact bases. In order to clearly separate these access layers two classes
have been extracted from the PersistenceManager: DatabaseManager and
PrologManager. Figure 5.4 depicts this architecture. The DatabaseManager
is responsible for the communication with the database and the PrologManager
for communicating with the fact bases.

Database Adjustments. As mentioned earlier, required adjustments to the
database are triggered by the startup utilities, but accomplished by the run-
time utilities. The DatabaseManager provides a dedicated entry method for
that purpose: processSchema(). It is not directly accessible, but through the

82

5.3. RUNTIME UTILITIES

name type cause
fireNewInstance life cycle instantiation
fireInstanceRemoved life cycle explicit remove
fireNewRole life cycle instantiation
fireRoleLifted life cycle lifting
fireContextActivated life cycle de/activation
fireValueChange - method execution

Table 5.4: Events Fired by the Sublimated Application.

PersistenceManager. Depending on the chosen persistence strategy, the per-
sistence manager decides, when processSchema() is called. Manual, value and
instance level persistency leads to its execution whenever the user manually
triggers to persist the domain objects. This is because the applications schema
might change at runtime, due to the dynamic features of roles. Admittedly, Ob-
jectTeams does not allow runtime changes to the schema, other languages might
do. Application level persistency, that is persisting every time the application
is shut down, does not need to keep track on changes at runtime. Hence, the
schema changes are applied once at application startup.

The database adjustments mainly lead to the creation of new attributes
or relations. Removed attributes or classes do not lead to their removal in
the database schema by default. Only, if the application developer marked
the application to be a milestone release, those elements are removed. But
sometimes attributes cannot be deleted directly. If there is an index or foreign
key pointing to them, these elements need to be removed first. In case many
attributes have to be removed, their order is important. Because the whole
schema is available in Prolog, the order of classes along their keys can be resolved
by a Prolog rule, which is called resolveFKs. This rule and all required helping
rules can be found in the appendix.

The reference resolution using resolveFKs is also important for persisting
domain objects. If multiple domain objects have to be stored, they need to be
stored in the right order. But before any object can be stored, its state needs
to be revealed, which is the task of step 4, Trace.

The Event Stream. The functionality of Trace is merged into the Per-
sistenceManager. At sublimation a reference to that manager is injected into
each entity class. Firing life cycle or value change events boils down to calling the
appropriate method of the PersistenceManager. The events are summarized
in Table 5.4.

The newInstance event first leads to the creation of a new object id. The
PrologManager is than asked, to add a new instanceof fact for the correspond-
ing class with the newly created object id to the runtime fact base. If the class,
which fired the event, is a not the runtime class of the object, it is a superclass
and the PrologManager is forced to add a sameInstance fact to the runtime
fact base, too. If the runtime class and the class, which fired the event, are the
same, the PrologManager needs to check if there are sameInstance facts and
properly update them, like shown in Example 16.

If fireInstanceRemoved is executed, the corresponding instanceof and
sameInstance facts are removed from the runtime fact base. Java does not sup-

83

CHAPTER 5. IMPLEMENTATION

port to explicitly delete objects, instead the garbage collector decides, whether
an object is to be deleted or not. To enable the application developer to explic-
itly remove objects, the annotation @Remove is provided, which is to be used to
mark a method of the domain class, the developer wants to use for that purpose.

The creation of a new role fires a newRole event. The PersistenceManager
reacts almost like a new object is created, but fetches the current player and
context, too. The resulting instanceof points to them by their object id. In
case of a roleLifted event, the runtime fact base needs not to be changed, but
its recognition might be useful for future work. The activation or deactivation
of a context leads to the execution of fireContextActivated, which in turn is
reflected by the change of the contextState fact in the runtime fact base.

Finally, the change of an attributes value leads to the execution of fire-
ValueChanged. Depending on whether the attribute is a collection or not, dif-
ferent actions follow. If the attribute is not a collection, the new value is send
to Prolog, which exchanges the old against the new value. Else, the values of
the collection are compared, to identify, which values have been removed and
which have been added. Again, Prolog is used for that purpose.

Storing Domain Objects. Essential to DAMPF is the persistency mecha-
nism. The PersistenceManager provides a method persist() for that pur-
pose. If the application developer decided on manual persistency he needs to
invoke this method on his own. But he shall not need to call this method
directly, because this would lead to a very tight coupling of DAMPF to the ap-
plication. Instead an annotation @Store is provided. The application developer
adds this annotation to one if his methods, if he wants to use that method to
trigger persistency.

The method persist() delegates to the DatabaseManager, which in turn
uses the methods processSchema() and processRuntime(). As already men-
tioned, in case of application level persistency, processSchema() is omitted
at this place, but executed once at application startup. The execution of
processRuntime() first uses the PrologManager to get the current states of
instances. Next the ordered list of classes is retrieved. Using this order the
instance are either added to the database or updated in the database. Whether
an instance needs to be updated or added is examined by the PrologManager,
which in turn uses the DatabaseManager to get the instance states from the
database. An important aspect of adding or updating the representatives of
objects in the database is, to take care of schema changes. The INSERT and
UPDATE queries are created in accordance to the change information, available
in the schema fact base.

Search and Restore. Besides storing domain objects to the database, they
need to be restoreable, too. Developers need to express, which domain objects
they want to be restored, but they do not know about the object id, which is
internal to DAMPF. Therefore a search criteria API is provided. The prototype
only contains a very simple implementation. To search and restore a domain
object, the PersistenceManager offers a method getObject, taking the class
name and a set of search criteria as arguments. A search criterion is a Map,
whose keys and values are strings. The keys represented attribute names, the
values represent accordingly the expected values for the attribute. If the map

84

5.3. RUNTIME UTILITIES

contains multiple keys, DAMPF interprets them as conjunctively connected. If
multiple maps are sent to getObject, viz. the list comprises multiple maps, the
criteria are connected disjunctively.

Example 12 Persons have a first name and a surname and thus can be repre-
sented by class Person with the attributes firstname and surname. To search
and restore for persons, whose surname is Meier, the method getObject()

is to be invoked with ’Person’ as first argument and the map [’surname’ =

’Meier’] as second argument. To search for John Smith, the maps needs to
be [’firstname’ = ’John’, ’surname’ = ’Smith’]. To search for persons
who either have John as first name or Smith as surname, the following list of
maps needs to be send to getObject: [’firstname’ = ’John’], [’surname’

= ’Smith’].

A considerable part of the work to restore found objects is done in Prolog.
All required tuples are fetched from the database and are added to or updated
in the runtime fact base in such a way that single instanceof facts for each
domain object result. Multiple instanceof and sameInstance facts result, in
case the objects class is part of an inheritance hierarchy. The creation of an
object in general is a simple task. It does not need any more than calling a
constructor. But calling one of the provided constructors affects the state of
the object to be created. Furthermore it is likely, that all provided constructors
have arguments, viz. the default constructor with no arguments is not available.
Finally, after instantiation, the values cannot freely be set. Private attributes
prohibit setting them from outside the class. The solution of DAMPF is to add
creators and initializers to each entity, when it is sublimated.

Creator methods are static. Their purpose is to create a new object using
one of the provided constructors. After the object has been created, the initial-
izer is triggered. Initializers set values according to their arguments and call
their super-method if there is a superclass. The PersistenceManager gets the
expected state from the PrologManager and sends it to the creator, who in turn
sends it to the initializer. Because both, creators and initializers, are woven into
each entity class, they are allowed to set private attributes.

Retrieving the data for domain objects from the database needs to consider
changes to the schema. Notably, the used SELECT statements need to by
adjusted, according to the changes identified, like shown in Example 13.

Example 13 The central domain concept of a system for a medical practice is
the patient. In the first version of the system, patients have a name, an employer

and a health insurance company, denoted by hic. In the second version, the em-
ployer is removed from Patient, but an attribute illnesses is added, pointing
to a set of illnesses. In addition class Illness is added, which has a name and
a description.

The relational schema for the first version consists of a relation patient

with four attributes id, name, employer and hic. To fetch patient John Smith
in the first version, the following SELECT-query suffices:

SELECT id, name, employer, hic

FROM Patient

WHERE name LIKE ’John Smith’

85

CHAPTER 5. IMPLEMENTATION

The schema for the second version has two additional relations: first, the
relation Patient Illnesses, with the attributes patient id and illness id.
Second the relation Illnesses, with the attributes id, name and description.
Furthermore two foreign key constraints are added to the schema. The first
connects Patient Illnesses with Patient, using the patient id and the id

of Patient, the second connects Patient Illnesses with Illness, using the
illness id and the id attribute of Illness. Notably, the attribute employer

of Patient remains in the database!
To fetch the patient John Smith in the second version, the SELECT-query

needs to be adjusted. The new query looks as follows:

SELECT p.id, p.name, p.hic, i.id, i.name as i_name, i.description

FROM patient p, patient_illness pi, illness i

WHERE pi.patient_id = p.id and

pi.illness_id = i.id and

p.name LIKE ’John Smith’.

Send and Receive. The ability to distribute domain objects is one of the
main features of DAMPF. From a technical point of view, lots of technologies
for distribution exist. For example plain sockets can be used, to create a chan-
nel between to processing units. But usually the infrastructure of application
containers, like application servers, is used. Typical Java Application Servers
provide various means to distribute objects. OSGi 3 is a well known application
container, too. The extension R-OSGi4 offers facilities specifically for distribu-
tion. The focus of DAMPF is not to provide a new technology to send and
receive data, but a new concept on how to distribute domain objects.

What DAMPF provides, is a novel serialization technique, which is inherent
to the whole approach. Domain objects are represented as a set of Prolog facts.
These facts are textual and do not depend on a specific order. To send a domain
object all its Prolog facts are packaged. The transfer of such a package boils to
transferring streams of characters.

To provide the application developer means to use the transmission technique
of their choice, DAMPF provides two annotations, @Sender and @Receiver,
which are to be applied on methods of the application. Methods marked with
@Sender need to have at least one argument, representing the domain object to
be send. DAMPF injects code, which transforms the argument into its string
representative. If the application developer wants to, for each domain object a
separate method can be implemented, but a single sender method suffices, too.
Receiver methods follow the same principle. They need to have an argument of
string type, representing the textual representation of a domain object. DAMPF
injects code, to insert the domain object into the receiving application. The
actual transmission code uses these sender and receiver methods to serialize
and deserialize the domain objects. Notably, the transmission code only covers
the transmission of the character streams. How domain objects are serialized,
deserialized and inserted into the running, receiving application is accomplished
by DAMPF.

Special about the receiver methods is, that they handle domain objects,
which differ from the domain model of the current application. They insert

3http://www.osgi.org
4http://r-osgi.sf.net

86

5.4. NORMALIZATION

all information into the Prolog fact bases. Those parts, which conform to the
current domain model, are inserted into the database, too. When such a domain
object is send again, the complete data set of the domain object is updated by
the data from the database and serialized. This allows systems, with partially
different domain models to work together and takes the burden of complex
conversions from the developers.

Context-based security is an implicitly available feature. Systems, which
shall not see the whole data, will only see the data, which corresponds to their
domain model. Thus, to realize context-based security, the systems domain
models need to be created accordingly. Complex code, to hide parts of the
data, gets superseded by DAMPF.

5.4 Normalization

As examined in Section 3.2, a relational database schema can be classified by
the normal form it adheres. An important discipline in database technology is,
to transform relational schemata into higher order normal forms, which is called
normalization. Most schemata, which are in practical use, adhere to at most
the third normal form. Higher normal forms still have an academic status.

Automatic decomposition of relation schemata into normal forms has been
thoroughly investigated. Ceri and Gottlob[11] present an approach for the de-
composition of relational schemata into BCNF, which is based on algorithms,
specialized on the parts of the overall algorithm. They base on Bernstein’s
approach[7] for the decomposition into 3NF, use Lucchesi’s and Osborne’s algo-
rithm[44] to identify the keys of relations and finally decomposition into BCNF
using Tsou and Fischer’s approach[65]. Diederich and Milton present another
approach[21] to decompose relations into 3NF. Furthermore Grahne and Räihä
developed an algorithm[28] for decomposition into 4NF, which considers multi-
valued dependencies, too. Many more approaches exist.

Notably, approaches focusing on decomposition of relational schemata base
on knowing all functional dependencies. Approaches to automatically derive
these dependencies are a well discussed research topic, too. The approaches of
Huhtala et al.[37], Savnik and Flach[59] and Mannila and Räihä[45] are just
some of them.

Central to the first three normal forms is the resolution of functional depend-
encies[2]. As described in Chapter 3, a functional dependency is a relation
between data of different attribute sets of the same relation. If for all tuples of
a relation, the values of the attribute set A always occur with the same values of
attribute set B, a functional dependency A→B exists. Hence, both runtime data
and the schema description are required to identify such dependencies. Because
functional dependencies are defined between attribute sets, which are allowed
to overlap, vast amounts of potential functional dependencies exist. Example
14 shows, how many dependencies exist in a relation with four attributes.

Example 14 A relation with four attributes a, b, c and d comprises 15 at-
tribute sets: a, b, c, d, ab, ac, ad, bc, bd, cd, abc, abd, acd, bcd

and abcd. The number of functional dependencies accords to the number of
elements of the Cartesian product of this set, viz. 15 times 15, thus 225.

87

CHAPTER 5. IMPLEMENTATION

In general the number of different attribute sets of a relation is based on
the number of elements of the power set of all attributes, which is defined as
∣ ℘(AS) ∣ = 2∣AS∣. The definition of the power set includes the empty set, which
is not of interest for functional dependencies. Hence, the number of possible
functional dependencies of a relation with n attributes is: (2n−1)2 = 22n−2n+1+1.
In consequence, a relation with 5 attributes leads to 210−26+1 = 961, 6 attributes
lead to approximately 4,000 and 10 attributes to more than a million possible
dependencies. Each possible dependency needs to be checked in regard to the
values of the attribute set. Current personal computers require minutes to
accomplish this task, even with small sets of data.

Many combinations of attribute sets do not need to be investigated. A set of
general rules to identify functional dependencies exist. First, every attribute set
obviously depends on itself. Hence, all combinations AS→AS do not need to be
investigated. Second, if an attribute is unique, that is all values differ from each
other, it will always be the source of a functional dependency. This is, because
for every value of the unique attribute only one corresponding value set exists.
Third, static attributes, that is all values are the same, will always be the target
of a functional dependency. This is, because it does not matter which attribute
set is the source of such a functional dependency, as all value sets will imply
the same value. Forth and finally, if a functional dependency AS1 → AS2 exists,
each superset of AS1 will imply AS2, too. Formally, the following functional
dependencies exist for a relation R by definition:

1. A → A ∣ A ∈ ℘(R)

2. A → B ∣ A,B ∈ ℘(R) ∧ unique(A)

3. A → B ∣ A,B ∈ ℘(R) ∧ static(B)

4. A → B ∣ A,B ∈ ℘(R) ∧ C → B ∧ C ⊂ A

The forth rule can be applied to the former three and thereby further narrows
the amount of possible functional dependencies. The first rule covers 2n − 1
dependencies for a relation with n attributes. The second rule covers 2n − 1
dependencies per unique attribute set. The same holds for the third rule, but
in regard to the number of static attribute sets. Interestingly, the combination
of the first and forth rule covers all trivial functional dependencies.

Nevertheless, although using these rules considerably reduces the number of
possible functional dependencies, investigating the remaining ones still requires
time in the magnitude of minutes.

To check, whether a possible functional dependency qualifies or not, each
value combination in accordance to the attribute sets of the dependency needs to
be examined. DAMPF is using Prolog to identify and check these dependencies.
To check a dependency, the values are seen as a function. If the range of
this function only contains single values, the dependency qualifies. Possible
dependencies are declared straight forward in Prolog, using the four general
rules along with the definition of the powerset.

To transform a relation into first normal form, every attribute needs to be
flattened. Thus, if an attribute is a relation itself, the attribute is to be trans-
formed into the set of its attributes. Knowing which functional dependencies
exist, allows transforming a relation into the second normal form. As described
in Section 3.2, the second normal form requires that no non-prime attribute is

88

5.5. EVALUATION

Workflow-
Engine 1
Workflow-
Engine 1
Workflow-
Engine 1

Distri-
buted

Workflow
Engine #4

Coordinator

Director

decides for or
against adaptation

adapts by
coordinating

manual request
for adaptation

queries

Figure 5.5: Dynamic Adaptation of Workflows in OSPP.

functionally dependent on only part of the primary key. It does not pose a vi-
olation, if a dependency only transitively provides a fact about the key. Hence
the identified functional dependencies need to be checked in this regard. To
transform a relation into third normal form, it needs to be checked, that all
functional dependencies starting from non-prime attributes reference the whole
key and nothing but the key. Both checks can be implemented straight forward
in Prolog.

Finally, normalization requires relations to be split if necessary. The iden-
tified dependencies define how to split them. Each violating dependency is
potentially only a subordinate dependency. The highest violating dependency
defines, that the union of its attribute sets should be extracted as a separate
relation.

Unfortunately the identification of dependencies is too time-consuming. Due
to this reason, normalization is not integrated into DAMPF, but available as a
separate set of Prolog rules, which are listed in the appendix.

5.5 Evaluation

In order to evaluate the usability and practicability of DAMPF, a system, which
needs to persist domain objects in a distributed environment, is required. Fur-
thermore, this system should utilize roles as extension to the object-oriented
paradigm. Because the prototype has been implemented using ObjectTeams,
the system needs to base on ObjectTeams, too.

A medium sized system of approximately 80.000 lines of code, fulfilling these
requirements is the Open Service Process Platform[31] (OSPP), which is de-
veloped at the University of Technology Dresden. Therefore OSPP has been
chosen, to evaluate the prototype of DAMPF.

OSPP is a distributed, multi-purpose workflow engine and provides an in-
frastructure for service oriented architectures. Its key features are its support

89

CHAPTER 5. IMPLEMENTATION

for arbitrary extensions, the integrated solution for the design and execution of
workflows and, most importantly, its adaptivity. OSPP allows designing work-
flows, which can be adapted at runtime. The requirement for runtime adaptivity
emerges from the nature of distributed systems. A distributed workflow, viz.
a workflow, whose tasks are performed by more than one workflow engine, can
easily fail, for example due to non-availability of an engine. To avoid the failing
of distributed workflows, the workflow needs to be able to adapt to changes in
the environment, like breakdowns of engines. OSPP provides a sophisticated
approach for runtime adaptivity, based on so-called directors and coordinators.
The coordinator is able to adapt running processes, if necessary. The direc-
tor decides, whether an adaptation is needed or not. Figure 5.5 depicts the
adaptation approach of OSPP. Different, exchangeable implementations of the
directors exist. The BDI-director[10] is based on the concept: believe, desire
and intend, known from artificial intelligence. The decision for or against adap-
tations is derived using case-based reasoning. The Semantic-BDI director[60]
bases on the BDI concept, too, but uses reasoning over ontologies, to derive
decisions. Finally, a less powerful statechart-based director[34] exists, which
derives decisions using statecharts.

Each workflow engine needs to persist the tasks it is currently executing, to
ensure that their data is not lost, due to system breakdowns. As each OSPP
engine can be used to design new processes, viz. distributed workflows, at run-
time, these process definitions need to be persisted, too. Special for OSPP is
that tasks are realized using roles. Tasks play roles of five different contexts,
namely from a behavioral, a functional, an informational, an organizational and
an operational context. Admittedly, the behavioral context does not comprise
roles, but the individuals, which are refined by the roles from the other con-
texts. The individuals are parts of petri nets, namely transitions, edges, places,
tokens and the petri net itself. The informational context contains roles, ded-
icated to collect or reference data. The organizational context comprises roles
to denote the type of organizational unit, like for example Human or Computer.
The functional context provides means to distinguish between functions and
conditions. Finally, the operational context focuses on information, required to
execute operations. For example a WebService role contains information about
an invokable webservice.

Integrating DAMPF into OSPP revealed a set of requirements, which are
special to systems having a size like OSPP.

First, sublimating classes, when they are loaded, leads to valuable perfor-
mance penalties in terms of delayed execution. During system startup vast
amounts of classes are loaded, whereof most are system classes. Checking each
class for the annotation @Entity consumes too much time. A whitelist of pack-
age names is used, to overcome this problem. Each time a class is loaded, the
only check done is, whether it is in a package denoted in the whitelist. Only if
this check evaluates to true, further processing is done.

Second, exposing the state of each object in the runtime fact base swiftly
leads to an oversized fact base. A few hundred objects do not pose a problem,
but a few thousands do. Especially in regard to instances of classes, which
are at the bottom of an inheritance hierarchy. The full state of such instances
is derived at runtime, which gets time-consuming in an oversized fact base.
DAMPF does not need the state of all currently existing objects in the runtime
fact base, but only those, which are currently, actively in use. Due to limited

90

5.5. EVALUATION

Composite

Component

Leaf

*

Figure 5.6: Composite Design Pattern, redrawn from [26]

time, this feature has been postponed to future work.
Furthermore the existence of cycles in the schema of applications revealed

to be common. Most of them are intra-class-cycles, viz. classes, which have an
attribute of their own type. This way object chains are designed. Structural
design patterns, like composite or decorator[26], usually contain cycles, too. The
composite class in the composite pattern, like depicted in Figure 5.6, points to
its superclass, forming an indirect cycle. The same situation shows up in the
decorator pattern. In general, designing object chains or trees leads to cycles in
the schema. These cycles do not pose a problem on the creation of the relational
schema or on the mapping in general, but on the way objects are inserted into
the corresponding relations. To properly insert objects, which reference objects
of the same type, the order of their insertion is important. Prior to all other
objects the top-most object, viz. the root, in the object tree or chain needs to be
inserted. In the next step all direct ascendants of the root can be inserted and so
on. This ordering can be achieved by sorting on the self-referencing attributes.
Additionally bidirectional associations lead to cycles. This is, because the first
class references the second, which references the first in turn. In contrast to
object chains and trees, such a situation cannot be handled easily. The reason is
that no order can be derived. In some cases the first class might be instantiated
prior to the second, in some other cases the second might be instantiated prior
to the first. To handle such situations, the cyclic attributes need to be marked,
so no foreign keys are introduced for them. The realization of this feature has
been postponed to future work.

In the current implementation of OSPP another persistence mechanism is
used: XStream5, which provides means to translate between Java objects and
XML files. The application of XStream requires using temporary objects, which
is a common programming technique. Each time OSPP is started a dummy
master process is created, along with a dummy state machine and many more
objects. These helper objects have not to be persisted, as they are created at
each startup. Using DAMPF as persistency mechanism, these helper objects
would be persisted, too, which is not intended. Hence, programmers have to be
able to explicitly exclude certain instances from being persisted. This feature
has been postponed for future work.

The prototype of DAMPF has been improved considerably, due to its inte-
gration into OSPP. Interestingly the performance penalties in terms of delayed
execution are low. Admittedly, the first time DAMPF stores the applications’

5http://xstream.codehaus.org/

91

CHAPTER 5. IMPLEMENTATION

domain objects, a perceptible performance penalty occurs. This is due to the
need to create the database schema. In contrast to other approaches, DAMPF
creates foreign keys, too. In OSPP almost 70 relations and more than 70 foreign
keys need to be created in the simplest case. Once the schema has been created,
only small changes to it will follow. Handling small schema changes, for example
adding or removing an attribute, does not lead to noticeable performance penal-
ties. Tracing the state of objects as well as extracting and comparing the schema
of classes revealed to be faster than perceptible, too. The number of facts in
the schema fact base exceeded 480, whereof most (273) are hasAttribute/4,
leading to a file size of about 58kb. The number of facts in the runtime fact
base showed up to be 34 in the smallest example run, viz. only one very sim-
ple process was defined, leading to only 4kb. It is important to note, that the
runtime fact base swiftly grows to several hundred kilobytes or more, if many
complex processes are defined.

Using the monitoring and management utilities of Java almost side-effect
free insights into the memory usage of OSPP can be obtained. Running OSPP
without DAMPF utilizes in the simplest case approximately 60mb of memory,
whereof 15mb are heap-memory and 45mb are non-heap memory. If DAMPF
is incorporated, the total memory usage does not grow, but has another dis-
tribution. DAMPF grows the heap-memory by 5mb, but shrinks the non-heap
memory by 5mb, too. Storing domain objects does not lead to a valuable change
to the size of used memory, if XStream is used. Using DAMPF the heap grew
by 2mb, whereas non-heap memory grew by 3mb when storing a simple pro-
cess. Storing multiple more complex processes, the heap grew to 30mb and
the non-heap space to 45mb. Thus DAMPF does lead to considerable per-
formance penalties in terms of higher memory usage, as in complex scenarios
approximately 25% more memory is utilized. Notably, OSPP with DAMPF
exceeds, at least in complex scenarios, 64mb of required memory. This leads to
OutOfMemory exceptions, if the corresponding virtual machine is started using
the default for memory size, which is 64mb. Large systems should be run using
-Xmx256m, viz. 256mb of runtime memory.

The prototype of DAMPF comprises only about 4.000 lines of Java code and
400 lines of Prolog code, which stem from 108 predicates. The reason for such
a small amount of code lies in power of Prolog. If DAMPF did not have used
Prolog, but solely Java, several ten thousands lines of code would have been
needed. In consequence, DAMPF has a quite small footprint of about 100kb.
Admittedly, DAMPF requires a set of third party libraries. First, the Java
Prolog API of SWI, which comprises 128kb. Second, Javassist, which roughly
requires 600kb. Furthermore a JDBC driver for the corresponding database is
needed. The driver for MySQL takes about 700kb. Thus, altogether DAMPF’s
footprint is approximately 1.5mb. Finally, SWI-Prolog needs to be installed on
the system, the application shall be run, which requires further 22mb.

In conclusion, DAMPF has successfully been integrated into OSPP. The per-
formance penalties are, except for the first time a system is persisted, very low.
The integration evaluates the approach of DAMPF to be usable in productive
environments. To be utilized productively, the current prototype needs further
work, as already pointed out.

92

Chapter 6

Conclusion

93

CHAPTER 6. CONCLUSION

DAMPF is a novel approach to object-relational mapping, supporting and
utilizing the dynamic properties of roles as an extension to the object-oriented
paradigm. The main features are support for schema evolution, distribution of
domain objects in heterogeneous environments and context-based security.

The core principle of DAMPF can be explained in five steps: Sublimate,
Compare, Adjust, Trace and React.

Original applications are sublimated by a bytecode modifying Java agent,
which reveals the implicit data flow of the application as an explicit event stream.
Sublimated applications fire events, signaling the creation or destruction of ob-
jects, roles and contexts, as well as the binding of a role to its player or con-
text. Furthermore every method signals those values of attributes, which have
changed. Besides exposing the data flow, further adjustments are made to the
application. Every class, context and role gets a new integer attribute, rep-
resenting an object identifier. In the object-oriented paradigm the identity of
objects is an implicit property. To process objects in Prolog this identity needs
to be made explicit. Finally code, injecting an instance of the Persistence Man-
ager, which represents the entry point to the runtime utilities, is added.

In the next step the schema is extracted from the application and compared
with older versions of the schema. Special about this schema extraction is, that
the schema is represented as a set of Prolog facts. The existence of a class
is denoted by the fact isClass/1, taking the name of the class as argument.
If a class is marked as a context, an additional isContext/1 fact is added.
Roles are denoted by isRole/2, which in the reference implementation takes the
player class as an argument, too. This is, because ObjectTeams, which has been
chosen as language extension supporting roles, requires a role to have players of
only one class. In general a role might change its player freely. ObjectTeams
has been chosen, because it is currently the only mature language extension
supporting roles. All alternatives are in a stage of early research. The structure
of classes, contexts and roles comprises their attributes, too. Those are denoted
by hasAttribute/4, which takes the name, type, position and the class, the
attribute belongs to, as arguments. Although attributes are unordered in the
object-oriented paradigm and in the relation schema, the position argument of
attributes is needed for internal processing reasons. Static attributes are express
in the same way, but using isStaticAttribute/4. In plain object-oriented
languages, all attributes are pointers to objects. Thus, classes reference each
other using attributes. To express such references, the predicate references/4
is used. It takes the source class and attribute, as well as the target class
and attribute as arguments. Finally, inheritance hierarchies are denoted by
subclasses/2 predicates, which relate two classes in the hierarchy. A Prolog
rule is used, to retrieve the transitive closure of the inheritance hierarchy.

Besides extracting these facts from the application, they are compared with
already existing facts. If a fact already exists, the corresponding structure of
the application has not changed. If a fact partially differs, it depends on the
arguments, which differ. In general attributes, classes, roles and contexts can be
identified by their name. If the developer changes a name, his intent, viz. that
he renamed something, cannot be inferred. Either he removed the old entity
and added a new one or he just changed the name of the old one. Changes are
in general interpreted as combined removals and additions. Chapter 5 explains
the identification of changes in detail.

In case the comparison identified changes, the database schema needs to be

94

adjusted at startup time, too. Additional classes, roles, contexts or attributes
lead to additional relations or attributes in the database schema. Importantly,
the removal of them does not lead to removals in the database schema. This
enables developers to reuse data from earlier stages of development. To fixate
all changes, and force the removals in the database schema, the developer needs
to mark the application as milestone release. Notably, more than changes to the
database schema are require by a changed application. When domain objects
are stored or restored, these changes need to be taken into consideration, too.
This is done in the last step, viz. React.

Sublimation, comparison and adjustment happen at startup time. The last
two steps happen at runtime. While the application is running, it fires life cycle
and value change events, due to its sublimation. The events are traced in
order to defer further information. Like the applications schema, this runtime
information is represented as a set of Prolog facts, too. But, in contrast to the
schema facts, not every event leads to a new runtime fact. The main purpose
of the runtime fact base is, to defer the current states of all objects. Whenever
a create event is fired, a new instanceof/2 predicate is added. This predicate
represents an object and takes the name of the class as first argument and
contains the current state as second argument. The current state is a Prolog list.
The creation of an object leads to the creation of a new unique object identifier,
which is the only value available immediately after object instantiation. Value
change events lead to updates of that predicate. Because the events are fired
by the object, whose values changed, private attributes do not pose a problem.
The destruction of an object leads to the removal of the corresponding fact
from the fact base. Inheritance is handled in a special way, which is described
in detail in Section 5.2. Special to ObjectTeams is the notion of active and
inactive contexts. In the runtime fact base this information is noted by the
predicate contextState/3, taking the name of the context, its object identifier
and state, viz. active or inactive, as arguments.

The last step describes the remaining runtime utilities of DAMPF. These in-
clude the features to store, search and restore and to distribute domain objects.
Storing domain objects boils down to process the Prolog facts. If the object
already exists in the database, DAMPF checks, if an update is required. Else
the object is inserted. The transformation of Prolog facts to database data ma-
nipulation queries, that is INSERT or UPDATE, is straight forward. To restore
objects, a search facility is provided. To search for a domain object, the devel-
oper expresses expected attribute-value pairs and connects them conjunctively
or disjunctively. Restoring an object boils down to a SELECT query, whose
result set is transformed into Prolog facts. The final part of the runtime utili-
ties is a facility to distribute domain objects. Notably, not a new transmission
technique is provided, by a new way to distribute domain objects. One of the
mature problems in distribution, namely serialization, is a feature inherent to
the approach of DAMPF. Each object is represented as a set of Prolog facts.
Because these facts are strings and do not require a specific order, they are al-
ready in a serialized form. To distribute domain objects their Prolog predicates
are packaged. How to transmit the string package can be freely chosen by the
developer.

These five steps lead to three main architectural parts: a set of startup
utilities, a set of runtime utilities and the Prolog fact bases. Sublimation,
schema extraction and comparison, as well as database adjustments belong to

95

CHAPTER 6. CONCLUSION

the startup utilities. The first two are realized as a bytecode transforming Java
agent. Database adjustments are realized as part of the runtime utilities, to
support schema changes at runtime, too. Storing, searching, restoring and dis-
tributing domain objects, as well as tracing the running application are features
of the runtime utilities. All of them need to communicate with the database
and the Prolog fact bases. The main entry point to the runtime utilities is
the PersistenceManager. Communication with the database and Prolog is
extracted into separate units: the DatabaseManager and the PrologManager.
Both use a dedicated Communicator interface to support multiple database and
Prolog implementations. The reference implementation has been developed
against MySQL and Microsoft SQL Server as database implementations and
SWI Prolog as Prolog implementation. The fact bases are split into a schema
and a runtime fact base. The rules to defer further information from these facts
are in a third fact base. All these parts are almost invisible to the developer,
which is only required to add the Java agent in form of a startup parameter.
Startup and runtime utilities, as well as the fact bases, are transparently woven
into the application by this agent.

Special about DAMPF is its support for schema evolution, which is mainly
due to the compare and the adjustment step. The development of applications
usually runs through many iterations. In each iteration the schema potentially
changes. Current object-relational mappers require to completely recreate the
database, whenever such a change happened. DAMPF does not! Changes to
the applications schema only lead to a performance penalty in terms of delayed
execution at startup time, because the database schema is adjusted accordingly,
which includes the migration of data from old to new relations, if necessary.
DAMPF even supports to reuse data from former iterations than the last. This
is, because a removal in the class schema does not lead to a removal in the
database schema by default.

A further unique feature is the novel approach to serialize domain objects in
order to distribute them. Though a lot of approaches for the distribution of
objects exist, none is combined with an object-relational mapper. Serialization
in such approaches is dedicated to the purpose of distribution. In DAMPF,
all objects are already serialized, as they are represented as Prolog facts. The
distribution feature furthermore eases the handling of domain objects, which do
not adhere to the current domain model. An application will always only see
those parts of the domain object, which adhere to the domain model. Those
parts, which cannot be interpreted, are hidden. Notably, hidden does not mean
ignored! A system can process a domain object, it does not fully understand,
and send it to the next application. The data, which was not understood by
that application, remains unchanged and is not lost!

The distribution feature implicitly provides a novel mechanism to context-
based security. Security constraints are implicitly expressed by the domain
models of applications. If a system shall not understand certain parts of a
domain object it processes, the corresponding elements need to be left out in its
domain model. Optimally domain objects should be realized by a single class,
which does not provide anything else than identity. Everything else should be
modeled using roles, played by objects of this class. This way domain objects
can be reconstructed easier.

Another contribution of this thesis is the investigation on how to map roles
and contexts to relations. Three different approaches have been presented in

96

6.1. FUTURE WORK

Section 4.2.
In summary, three features, not supported by any other object-relational

mapper, are realized, based on a shared approach. Developers of applications
are allowed to use object-relational mapping during development, which was
impossible or at least cumbersome before. Distribution and security, which both
were formerly developed independently from persistency, are packaged into an
overall solution: DAMPF.

6.1 Future Work

The concepts of DAMPF have been realized in a prototype, based on Java and
ObjectTeams. The search criteria API has been kept simple and should be
improved in the future. Optimizations to the approach, like special caching
techniques, are future work, too. Section 5.5 points to some more technical
tasks of future work. Furthermore the notion of roles needs to be investigated
in more detail. Chapter 2 provided an overview of the current role community
and our understanding of roles.

Central to most understandings is, that only the players provide identity
and roles do not. But how do roles and players depend on each other? In short,
players may exist without roles, but roles cannot. The only exception is a role
instance, which is temporarily unbound.

Example 15 John Smith is the executive of a company, which unexpectedly
died, due to a car accident. In other words, the person John plays the role
executive in a company context. When he died, the person does not exist any
longer as such, but the role sustains. After a few days a new executive is elected,
who carries over the role.

Example 15 shows, that there are situations, in which an identity is deleted,
but the role continues to exist. In contrast, there are situations, in which role
instances existentially depend on their players. For example a student role
instance. If the person, being the student, dies, the student role instance ceases
to exist, too. This is because there will never be another person, playing this
student role. Thus, whether a role instance existentially depends on its player
or not, depends on possible players in the future. Hence, a role-based system
requires models, defining the life-cycle of roles and thereby predicting the
future.

Modeling Interaction of Roles - Role Life Cycle Charts. In [57] Dirk
Riehle and Thomas Gross define a set of constraints for roles. The key idea is
to describe, which roles communicate with which other roles and which roles
can or must be played simultaneously and which must not. Figure 6.1 shows
an example model utilizing all five role constraints, introduced by Riehle and
Gross. An arrow from role r1 to role r2 denotes a direct use-relationship, viz.
r1 uses r2 in terms of sending messages to it. A plain line between two roles
denotes a bidirectional use-relationship, meaning that both roles send messages
to each other. At the ends of these two types of relationships are multiplicities,
defining the cardinality of the corresponding role. Figure 6.1 models a professor
sending messages to many students and the interplay between students and

97

CHAPTER 6. CONCLUSION

*
StudentProfessor

*
1..*

Teaching
A iStaff AssistentStaff

Figure 6.1: Role Life-Cycle Constraints Introduced by Riehle and Gross in [57]

teaching assistants. An arrow with a white arrowhead from role r1 to role r2
denotes that a player, playing r1 has to play r2, too. This relationship is called
role-implication. An arrow with a white arrowhead at both ends is shorthand for
two contrary role-implications and is called role-equivalence. Figure 6.1 depicts,
that each player, playing the role of a teaching assistant, has to play the role
of a student, too. Furthermore all players either are professor and staff at the
same time, or they are neither of it. Finally a line with a block at each end
between roles r1 and r2 denotes, that if r1 is played, r2 must not be played and
vice versa. This last constraint is called role-prohibition. The example models
the exclusion of being professor and student at the same time.

But these five constraints do not suffice to fully describe a life-cycle. They
enable the developer to model, which roles interact with each other and valid
states of role-player bindings. The problem is that the dynamic nature of roles
is not fully explored. Valid states refer to fixed time. Riehle’s constraints just
describe, which roles are allowed to be played at the same time. This provides
a way to model, which roles are allowed to be played in parallel, but not which
are allowed or have to be played in sequence.

Currently no approach is able to model valid sequences of roles. At a first
glance UML sequence charts look like a suitable base, because they model the
interaction of objects. They precisely define, which object sends which message
to which other object and the causality of message transfers, viz. the sequence.
The problem is that these sequence charts are of exemplary nature. That is,
they do not describe all valid sequences, but a single one. To model all valid
sequences a vast amount of sequence charts is necessary. Because they do not
provide the possibility of modeling all valid sequences with feasible effort they
cannot be used as a base for role life cycle charts.

Further possible base diagrams for role life cycle charts are Life Sequence
Charts[19], introduced by Damm and Harel in 2001, UML activity charts and
BPMN. Which type of chart qualifies best as base and how life cycle charts
finally will look like is future work.

Finally, further application areas of DAMPF need to be discovered, examined
and evaluated in the future.

98

Appendix A

Prolog Rules

99

APPENDIX A. PROLOG RULES

The implementation of DAMPF includes a variety of Prolog rules, used to
derive further information from the schema and runtime fact base. This Chapter
lists those rules, which are not covered in Chapter 5.

Merging Instances Connected By Inheritance. Instances of subclasses
are denoted in the runtime fact base by multiple instanceof facts, connected
by sameInstance facts. Example 16 shows the evolution of the runtime fact
base for such a scenario step by step.

Example 16 Students are, of course, humans. Special to students is only their
identifier. Humans have a name and are mammals, which have a birthday,
too. This scenario can be modeled using the class Student, with the attribute
studentid, subclassing class Human, which has the attribute name, subclassing
class Mammal, having the attribute birthday.

As explained in Section 5.1, classes of an inheritance hierarchy are loaded
bottom up. The schema fact base will emerge in the following order:

%--class Student is loaded

isClass(’Student ’).

subclasses(’Student ’,’Human ’).

hasAttribute(’Student ’,’studentid ’,’int ’,0).

hasAttribute(’Student ’,’__DAMPF_oid__ ’,’int ’,1).

%--class Human is loaded

isClass(’Human ’).

subclasses(’Human ’,’Mammal ’).

hasAttribute(’Human ’,’name ’,’java.lang.String ’,0).

hasAttribute(’Human ’,’__DAMPF_oid__ ’,’int ’,2).

%--class Mammal is loaded

isClass(’Mammal ’).

hasAttribute(’Human ’,’birthday ’,’java.util.Date ’,0).

hasAttribute(’Human ’,’__DAMPF_oid__ ’,’int ’,2).

The instantiation on the other hand runs top down the inheritance hierarchy.
Thus, first an instance of Mammal is logged in the runtime fact base, followed by
the instances of class Human and Student. If student John, with id 300, born
at the 19th of May 1994, is created, the runtime fact base emerges as follows.
After each comment the whole fact base at this point in time is shown.

%--new object event

instanceof(’Mammal ’,[-,0]).

sameInstance(’Mammal ’,’Student ’,0,-1).

%--change value event

instanceof(’Mammal ’,[’ 19 .05 .1984 ’ ,0]).
sameInstance(’Mammal ’,’Student ’,0,-1).

%--new object event

instanceof(’Mammal ’ ,[’19.05.1984 ’ ,0]).

i n s t an c eo f (’Human’ , [− , 1]) .
sameInstance(’Mammal ’,’Student ’,0,-1).

sameInstance (’Human’ , ’ Student ’ , 1 , −1) .

%--change value event

100

instanceof(’Mammal ’ ,[’19.05.1984 ’ ,0]).

instanceof(’Human ’,[’ John ’ ,1]).
sameInstance(’Mammal ’,’Student ’,0,-1).

sameInstance(’Human ’,’Student ’,1,-1).

%--new object event

instanceof(’Mammal ’ ,[’19.05.1984 ’ ,0]).

instanceof(’Human ’,[’John ’ ,1]).

i n s t an c eo f (’ Student ’ , [− , 2]) .
sameInstance(’Mammal ’,’Student ’,0,-1).

sameInstance(’Human ’,’Student ’,1,-1).

%--bottom of inheritance hierarchy reached

instanceof(’Mammal ’ ,[’19.05.1984 ’ ,0]).

instanceof(’Human ’,[’John ’ ,1]).

instanceof(’Student ’,[-,2]).

sameInstance(’Mammal ’,’Student ’,0,2).
sameInstance(’Human ’,’Student ’,1,2).

%--final value change event

instanceof(’Mammal ’ ,[’19.05.1984 ’ ,0]).

instanceof(’Human ’,[’John ’ ,1]).

instanceof(’Student ’,[300 ,2]).

sameInstance(’Mammal ’,’Student ’,0,2).

sameInstance(’Human ’,’Student ’,1,2).

sameInstance(’Human ’,’Student ’,2,2).

As can be seen in Example 16, the sameInstance predicates first store a -1
for the object id referencing the bottom-most object of the inheritance hierarchy.
Not before this last object has been created, the actual value can be set. In order
to persist an object, whose state is split in the runtime fact base, a Prolog rule
is used to merge the states. This predicate is called fullInstance:

fullInstance(Class ,OID ,Values) :-

getAllSuperInstances(Class ,OID ,X),

fullInstanceInner(Class ,OID ,Values ,X).

getAllSuperInstances(Class ,OID ,X) :-

findall ([SID ,Super],

sameInstance(Super ,Class ,SID ,OID),X).

%fetch usual instanceof ’s

fullInstanceInner(Class ,OID ,Values ,[]) :-

getInstanceof(Class ,OID ,Values),

\+ sameInstance(Class ,_,OID ,_).

%fetch instanceofs of superclasses and merge

fullInstanceInner(Class ,OID ,Values ,

[[SID ,SuperClass]|MoreS]) :-

getInstanceofWithoutID(SuperClass , SID ,V),

fullInstanceInner(Class ,OID ,MoreV ,MoreS),

append(MoreV ,V,Values).

%catch all instanceof /2 and extract their OID

getInstanceof(Class ,OID ,Values) :-

101

APPENDIX A. PROLOG RULES

instanceof(Class ,Values),

hasAttribute(Class ,’__DAMPF_oid__ ’,_,POS),

nth0(POS ,Values ,OID).

%catch all instanceof /2, extract their OID and

%remove it from the values

getInstanceofWithoutID(Class ,OID ,ValuesWithoutID) :-

getInstanceof(Class ,OID ,Values),

removeValueFromList(Values ,POS ,ValuesWithoutID).

removeValueFromList ([_|B],0,B).

removeValueFromList ([A|B],POS ,[A|More]) :-

X is POS - 1, removeValueFromList(B,X,More).

The fullInstance predicate uses the getAllSuperInstances predicate, to
the values and object identifiers of all superinstances. It furthermore uses the
predicate fullInstanceInner, which recursively merges the values. It merges
until the only value-set left, does not belong to a superinstance.

The fullInstance predicate bases on complete sameInstance facts. Dur-
ing object creation, these predicates are temporarily incomplete, in that their
pointer to the bottom-most instance id, is -1. Once the bottom-most instance is
created, the Prolog rule mergeTemp is used to update the sameInstance predi-
cates:

mergeTemp :- sameInstance(Src ,Tgt ,OID ,-1),

instanceof(Src ,List1),

latestInstanceof(Tgt ,List2),

hasAttribute(Src ,’__DAMPF_oid__ ’,_,POS),

hasAttribute(Tgt ,’__DAMPF_oid__ ’,_,NewPOS),

nth0(POS ,List1 ,OID),

nth0(NewPOS ,List2 ,NewOID),

retract(sameInstance(Src ,Tgt ,OID ,-1)),

assertz(sameInstance(Src ,Tgt ,OID ,NewOID)),

dumpschema ,

mergeTemp.

latestInstanceof(Class ,Values) :-

findall ([ID ,Values],

getInstanceof(Class ,ID ,Values),

X),

biggest(X,Values).

biggest ([[_,V]],V).

biggest ([[A,V1],[B,_]|_],V1) :-

A > B.

biggest ([[A,_],[B,V2]|More],Y) :-

A < B,

biggest ([[B,V2]|More],Y).

The rule dumpschema is used, to write out the modified version of the
schema fact base. A similar rule exists for the runtime fact base and is called
dumpruntime.

dumpruntime :-

tell(’runtime.pl ’),

102

listing(’instanceof ’),

listing(’sameInstance ’),

listing(’contextState ’),

told.

dumpschema :-

tell(’schema.pl ’),

listing(’isClass ’),

listing(’subclasses ’),

listing(’isRole ’),

listing(’isContext ’),

listing(’hasAttribute ’),

listing(’hasStaticAttribute ’),

listing(’references ’),

listing(’AddedClass ’),

listing(’RemovedClass ’),

listing(’AddedRole ’),

listing(’RemovedRole ’),

listing(’AddedContext ’),

listing(’RemovedContext ’),

listing(’AttachedSuperclass ’),

listing(’DetachedSuperclass ’),

listing(’AddedAttribute ’),

listing(’RemovedAttribute ’),

listing(’ChangedAttribute ’),

listing(’ChangedPlayer ’),

told.

Reference Resolution. In order to store and restore domain objects, the
foreign keys between relations need to be resolved. If a domain object is split
over many relations, these relations will depend on each other in terms of foreign
key constraints. Inserting the domain object into these relations requires the
insertion of those parts, which do not depend on other parts first. The predicate
resolveFKs is used for the required resolution of foreign keys.

resolveFKs(Resolved) :- refsAcyclic ,

resolve(R,[],[]),

flatten(R,Resolved).

The predicate refsAcyclic checks, if there are any cyclic paths created by
the foreign keys, except for those looping in the same relation.

refsAcyclic :- findall ((A->B),cpath(A,B,[]),

Cycles),

length(Cycles ,0).

To identify cyclic paths a further predicate, cpath is used:

cpath(Von ,[Von|More],Done) :-

references(Von ,_,Nach ,_),

\+ memberchk(Nach ,Done),

\+ roleToContextRef(Von ,Nach),

cpath(Nach ,More ,[Nach|Done]).

cpath(Von ,[Von ,Nach],Done) :-

103

APPENDIX A. PROLOG RULES

references(Von ,_,Nach ,_),

memberchk(Nach ,Done).

%check if role belongs to the context

roleToContextRef(Role ,Context) :-

isContext(Context),

isRole(Role ,Context).

This predicate recursively follows the references facts, to identify cycles.
Role to context references are excluded, because contexts and roles are likely
to form cycles, which do not pose a problem for persistency. Such cycles occur,
when a context holds an explicit reference to its roles. The cycles arise, because
roles are bound to their context and hence reference it.

The predicate resolve(Ordered, Unresolved, Done) investigates, which
classes are referenced by which other classes. The result is an ordered list of
classes, in accordance to references between those classes. It starts by splitting
the classes into referenced and non-referenced ones. The first argument will
contain the ordered list of classes, the second argument those classes, which
still need to be examined. The last argument contains the classes, which have
already been investigated. The predicate checks for each unresolved class, if its
referencing class has already been investigated and, if so, puts it into the list
Done, too. If the currently examined class is not yet referenced, it is moved
to the end of the Unresolved list. Finally, the predicate checks, if really all
classes have been processed and cuts further unification for performance reasons,
because one solution suffices.

resolve ([NonRC|More],[],[]) :-

allNonReferencedClasses(NonRC),

allReferencedClasses(RC),

resolve(More ,RC ,NonRC).

resolve ([Cur|More],[Cur|Rest],Done) :-

referencedBy(Cur ,Done),

resolve(More ,Rest ,[Cur|Done]).

resolve(More ,[Cur|Rest],Done) :-

\+ referencedBy(Cur ,Done),

addAtEnd(Cur ,Rest ,Temp),

resolve(More ,Temp ,Done).

resolve ([],[],Done) :-

allClasses(All),

length(All ,L),

length(Done ,L), !.

allClasses(Classes) :-

findall(Class ,isClass(Class),Classes).

allReferencedClasses(ReferencedClasses) :-

findall(Class ,(references(X,_,Class ,_),

X \= Class),

ReferencedClassesList),

list_to_set(ReferencedClassesList ,

ReferencedClasses).

104

allNonReferencedClasses(NonReferencedClasses) :-

allReferencedClasses(ReferencedClasses),

allClasses(AllClasses),

subtract(AllClasses , ReferencedClasses ,

NonReferencedClassesList),

list_to_set(NonReferencedClassesList ,

NonReferencedClasses).

referencedBy(Class ,List) :-

findall(X,(references(X,_,Class ,_),

X \= Class ,

\+ roleToContextRef(X,Class)),

AllX),

subtract(AllX ,List ,IS),

length(IS ,0).

addAtEnd(Elem ,List ,NewList) :-

reverse(List ,RList),

reverse ([Elem|RList],NewList).

Notably the predicate referencedBy transitively checks the references
facts from the schema fact base. The other predicates, allNonReferenced-
Classes, allReferencedClasses, addAtEnd and allClasses do what their
names pretend.

Normalization. Automatic normalization of relational schemata is a well dis-
cussed research topic. DAMPF includes a Prolog implementation for this pur-
pose, too.

As normalization is a complex task, different subtasks can be identified. First
of all functional dependencies need to be identified. Next these dependencies
can be used to normalize the according relations.

To infer functional dependencies, the following Prolog rules are used.

allFDs(Class ,FDs) :-

findall ((A->B),

checkForFD(Class ,A,B),

FDs).

allNonTrivialFDs(Class ,FDs) :-

findall ((A->B),

checkForNonTrivialFD(Class ,A,B),

FDs).

checkForFD(Class ,A,B) :-

attributeCombinations(Class ,Combis),

member(A,Combis),

member(B,Combis),

A \= B,

A \= [],

B \= [],

functionalDependend(Class ,A,B).

checkForNonTrivialFD(Class ,A,B) :-

105

APPENDIX A. PROLOG RULES

attributeCombinations(Class ,Combis),

member(A,Combis),

member(B,Combis),

A \= B,

A \= [],

B \= [],

intersection(A,B,[]),

functionalDependend(Class ,A,B).

attributeCombinations(Class ,SortedPowerSet) :-

findall(X,hasAttributeAll(Class ,_,X),Pos),

powerset(SortedPowerSet ,Pos).

functionalDependend(Class ,SrcPos ,TgtPos) :-

valueBagForSrcTgt(Class ,SrcPos ,TgtPos ,Bag),

allSubSetsAreSame(Bag).

hasAttributeAll(Class ,Attribute ,Type ,Pos) :-

allAttributesOfClass(Class ,All),

member ([_,Attribute ,Type ,Pos], All).

powerset(S,List) :-

sortedSubs(X,List),

list_to_set(X,S).

rsubs([],_).

rsubs([H|T],L) :-

member(H,L),

subtract(L,[H],R),

rsubs(T,R).

sortedSubs(Y,L) :-

findall(S,(rsubs(X,L), sort(X,S)),Y).

valueBagForSrcTgt(Class ,SrcPos ,TgtPos ,Bag) :-

setof ([V,TgtVals],

(valuesAtPositions(Class ,SrcPos ,V),

valuesForValues(Class ,SrcPos ,TgtPos ,

V,TgtVals)),

Bag).

valuesAtPositions(Class ,Positions ,AllVals) :-

instanceof(Class ,Values),

selectFromList(Values ,Positions ,AllVals).

valuesForValues(Class ,SrcPos ,TgtPos ,

SrcVals ,TgtVals) :-

findall(TV,

valuesForSrcTgt(Class ,SrcPos ,

TgtPos ,SrcVals ,TV),

TgtVals).

valuesForSrcTgt(Class ,SrcPositions ,

TgtPositions ,SrcVals ,TgtVals) :-

106

instanceof(Class ,V),

selectFromList(V,SrcPositions ,SrcVals),

selectFromList(V,TgtPositions ,TgtVals).

selectFromList(_,[] ,[]) :- !.

selectFromList(List ,[A|B],[Val|Rest]) :-

nth0(A,List ,Val),

selectFromList(List ,B,Rest).

allSubSetsAreSame ([]) :- !.

allSubSetsAreSame ([[_,SubSet]|Rest]) :-

allValuesTheSame(SubSet),

allSubSetsAreSame(Rest).

allValuesTheSame(Values) :-

list_to_set(Values ,AsSet),

length(AsSet ,1).

The first two predicates, allFDs and allNonTrivialFDs are used in the
next step, which derives an optimal primary key for the relations. The criterion
for optimality is the maximum number of functional dependencies, defining the
attribute set. Because normalization bases on the primary key, the resulting key
is persisted in the fact base once it has been inferred. Recalculation of primary
keys is done using the updatePK predicate.

setPK(Class) :- maxCKByFDCount(Class , CK , _),

assert(isPK(Class , CK)).

updatePK(Class) :- retract(isPK(Class ,_)),

setPK(Class).

maxCKByFDCount(Class , CK, Count) :-

allCKsWithFDCount(Class , CKs),

aggregate(CKs ,AggCKs),

maxElemFromList(AggCKs ,CKn ,Count),

flatten(CKn ,CKl),

list_to_set(CKl ,CK),

!.

allCKsWithFDCount(Class , CKs) :-

findall ([C,A],cksWithFDCount(Class ,A,C),CKs).

cksWithFDCount(Class , A, Count) :-

uniqueAttributeSets(Class ,A),

findall(L,checkForNonTrivialFD(Class ,A,L),AllL),

length(AllL ,Count).

uniqueAttributeSets(Class , A) :-

attributeCombinations(Class ,Combis),

member(A,Combis),

A \= [],

allValuesAtPositions(Class ,A,Vals),

list_to_set(Vals ,Set),

length(Set ,X),

length(Vals ,X).

107

APPENDIX A. PROLOG RULES

allValuesAtPositions(Class , Positions , AllValues) :-

findall(AllVals ,

valuesAtPositions(Class ,Positions ,AllVals),

AllValues).

%e.g. [[0,a],[0,b],[1,c],[1,d]] becomes

% [[0,[a,b]] , [1,[c,d]]]

aggregate ([] ,[]).

aggregate(Input , Agg) :-

findall ([Key ,Values],

(keyset(Input ,KeySet),

member(Key ,KeySet),

findForKey(Input ,Key ,Values)),

Agg).

keyset(List ,Set) :-

keylist(List ,KeyList),

list_to_set(KeyList ,Set).

keylist ([] ,[]).

keylist ([[K,_]|More],[K|Set]) :-

keylist(More ,Set).

findForKey ([],_,[]).

findForKey ([[K,V]|More],K,[V|MoreV]) :-

findForKey(More ,K,MoreV), !.

findForKey ([[_,_]|More],SK,MoreV) :-

findForKey(More ,SK ,MoreV).

%for lists of type [[5,x],[2,y],[7,z]|More]

maxElemFromList ([[Count ,Item]|More],MaxItem ,MaxCount) :-

maxElemFromList(More ,Item ,Count ,MaxItem ,MaxCount),

!.

maxElemFromList ([],MaxItem ,MaxCount ,MaxItem ,MaxCount) :-

!.

maxElemFromList ([[Count ,Item]|More], _,

CurMax , MaxItem , MaxCount) :-

Count > CurMax ,

maxElemFromList(More ,Item ,Count ,MaxItem ,MaxCount).

maxElemFromList ([[Count ,_]|More], CurItem ,

CurMax , MaxItem , MaxCount) :-

Count =< CurMax ,

maxElemFromList(More ,CurItem ,CurMax ,MaxItem ,MaxCount).

Once the primary key has been set using setPK, a fact isPK(Class, Key)
will exist. Based on this information it is possible to check, if a relational schema
adheres to NF2 or NF3.

isNF2(Class) :-

findall ([A,B],allFDsViolatingNF2(Class ,A,B),BadFDs),

length(BadFDs ,0).

isNF3(Class) :-

findall ([A,B],allFDsViolatingNF3(Class ,A,B),BadFDs),

108

length(BadFDs ,0).

%NF2: no non -prime attribute provides a fact about

% only part of the whole key

allFDsViolatingNF2(Class ,A,B) :-

checkForNonTrivialFD(Class ,A,B),

nonPrimeAttribute(Class ,A),

isPK(Class , PK),

subset(B, PK),

\+ B = PK.

nonPrimeAttribute(Class ,A) :-

hasAttributeAll(Class ,_,A),

isPK(Class ,PK),

\+ memberchk(A,PK).

%NF3: all non -prime attribute provide a fact about

% the whole key and nothing but the key

allFDsViolatingNF3(Class ,A,B) :-

checkForNonTrivialFD(Class ,[A],B),

nonPrimeAttribute(Class ,A),

\+ isPK(Class ,B),

assert(fdViolatingNF3(Class ,A,B)).

To normalize relational schemata to NF3 they need to be split. Please note
that the predicate allFDsViolatingNF3 asserts a new fact, fdViolatingNF3,
to the fact base, which is for performance reasons, so violating dependencies
only need to be inferred once. Identifying the new relations is done using the
transitive closure of those functional dependencies, which violate NF3.

extractableRelationsForNF3(Class ,AllClosures) :-

findall(SortedClosure ,

(hasAttributeAll(Class ,_,Pos),

findall(ClosureT ,

reachableByNF3From(Class ,

Pos ,ClosureT ,[]),

AllCs),

AllCs \= [],

flatten(AllCs ,Cs),

list_to_set(Cs ,Closure),

sort(Closure ,SortedClosure)),ASC),

list_to_set(ASC ,AllClosures).

reachableByNF3From(_,A,Temp ,Temp) :-

member(A,Temp).

reachableByNF3From(Class ,A,[B|More],Temp) :-

\+ member(A,Temp),

allDirectFD3s(Class ,Closure),

member ([A,B],Closure),

reachableByNF3From(Class ,B,More ,[A,B|Temp]).

allDirectFD3s(Class ,Closure) :-

findall ([A,B],

(fdViolatingNF3(Class ,A,Tgts),

member(B,Tgts)),

109

APPENDIX A. PROLOG RULES

ClosureList),

list_to_set(ClosureList ,Closure).

Finally, the actual split of the classes is implemented using the predicates
insertRef and extractColumns. They need to be triggered by the client!

%insert pk, fk and ref to/for relations.

insertRef(Class ,NewClass) :-

nextPos(Class ,LastPos),

concat(’refTo ’,NewClass ,Name),

assert(hasAttribute(Class ,Name ,LastPos)),

nextPos(NewClass ,LastNPos),

concat(’refFrom ’,Class ,NName),

assert(hasAttribute(NewClass ,NName ,LastNPos)),

assert(references(Class ,Name ,NewClass ,NName)).

%remove the selected attrs from Class and

%add them to NewClass

extractColumns(Class ,Cols ,NewClass) :-

member(Pos ,Cols),

retract(hasAttribute(Class ,Name ,Pos)),

nextPos(NewClass ,NewPos),

assert(hasAttribute(NewClass ,Name ,NewPos)),

assert(attributeOrigin(NewClass ,Name ,

NewPos ,Class ,Pos)).

nextPos(Class ,0) :-

findall(NPos ,

hasAttribute(Class ,_,NPos),AllNPos),

length(AllNPos ,0).

nextPos(Class ,NPos) :-

findall(NPos ,

hasAttribute(Class ,_,NPos),AllNPos),

maximum(AllNPos ,_).

maximum ([X],X).

maximum ([X|Rest],X) :- maximum(Rest , Max), X > Max , !.

maximum ([_|Rest],X) :- maximum(Rest , X).

110

List of Figures

1.1 Example for Schema Evolution Support in DAMPF. 7
1.2 Schema Evolution with Reuse of Data. 8
1.3 Example of Domain Object Distribution Between Heterogeneous

Servers. 9
1.4 Context-Based Security as a Direct Consequence of Transforma-

tive Domain-Object Distribution. 11

2.1 Using Inheritance to Model Students and Teaching Assistants (TA). 15
2.2 Using Delegation to Model Students and Teaching Assistants. . . 15
2.3 Role Object Pattern, redrawn after [6]. 16
2.4 Example of Mary, Playing Several Roles. 19
2.5 Possible States of Roles, Relative to a Given Context. 19
2.6 Basic Graphical Elements of ORM/NIAM. 22
2.7 Example Application of Basic ORM/NIAM Elements. 23
2.8 Example for Uniqueness Constraints of ORM/NIAM. 24
2.9 Example of Mandatory Role Constraints. 25
2.10 Example for Set Constraints of ORM/NIAM. 26
2.11 Example of Scattering and Tangling Activities in Classes. 31
2.12 Example of Activities Modeled using Role Models. 31
2.13 Composition of Role Models Shown in Figure 2.12. 31
2.14 Runtime Model of Objects Playing Multiple Roles Simultaneously. 32

3.1 Requirement for First Normal Form. 39
3.2 Example Relation Violating the Rules of 2NF. Contained Func-

tional Dependencies: registerNo→studentID; name → registerNo;
timestamp → {courseID,studentID}. 39

3.3 Transformed Relation From Figure 3.2 Supporting 2NF. 40
3.4 Transformed Relation Student From Figure 3.3 Supporting 3NF. 40
3.5 Transformation of Relation Student into two Relations support-

ing BCNF. *COS=courseOfStudy. 41
3.6 Transformation of Relation Student into two Relations support-

ing 4NF. *COS=courseOfStudy. 41

4.1 Coarse-grain Overview of Architectural Parts and Their Connec-
tion. 54

4.2 The Five Steps of DAMPF. 56
4.3 Example of Database Adjustments, due to Schema Changes in

the Application. 61

111

LIST OF FIGURES

4.4 Cycling Steps of DAMPF with Fact-Base Connection. 65
4.5 Example Scenario in Class-Role Representation. 67
4.6 Complete-Separation Transformation of Example Scenario into

Relational Representation with Exemplary Data. 67
4.7 Transformation to Class-Role Relations of Example Scenario into

Relational Representation with Exemplary Data. 68
4.8 Normalized Class-Role Relations Transformation of Example Sce-

nario. 69
4.9 Conceptual Architecture of DAMPF. 70

5.1 Detailed Architecture of DAMPF. 72
5.2 Class Loading and Instantiation of Subclasses. 75
5.3 Process of Startup Utilities and Connection to Conceptual Ar-

chitecture. 76
5.4 Architecture of Runtime Utilities. 82
5.5 Dynamic Adaptation of Workflows in OSPP. 89
5.6 Composite Design Pattern, redrawn from [26] 91

6.1 Role Life-Cycle Constraints Introduced by Riehle and Gross in [57] 98

112

Bibliography

[1] E. P. Andersen. Conceptual Modeling of Objects - A Role Modeling Ap-
proach. PhD thesis, University of Oslo, 1997.

[2] W. W. Armstrong. Dependency structures of data base relationships. In
IFIP Congress, pages 580–583, 1974.

[3] M. Baldoni, G. Boella, and L. van der Torre. Roles as a Coordination Con-
struct: Introducing powerJava. In Proceedings of the First International
Workshop on Methods and Tools for Coordinating Concurrent, Distributed
and Mobile Systems (MTCoord 2005), pages 9–29, 2006.

[4] M. Baldoni, G. Boella, and L. van der Torre. The interplay between rela-
tionships, roles and objects. In Proceedings of the 3rd International Con-
ference on Fundamentals of Software Engineering (FSEN’09), 2009.

[5] S. Balzer, T. R. Gross, and P. Eugster. A relational model of object collab-
orations and its use in reasoning about relationships. In E. Ernst, editor,
Proceedings of the 21st European Conference on Object-Oriented Program-
ming, ECOOP, pages 323–346, 2007.

[6] D. Bäumer, D. Riehle, W. Siberski, and M. Wulf. Role object. In N. Har-
rison, B. Foote, and H. Rohnert, editors, Pattern Languages of Program
Design 4, pages 15–32. Addison-Wesley, 2000.

[7] P. A. Bernstein. Synthesizing third normal form relations from functional
dependencies. ACM Transactions on Database Systems (TODS), 1(4):277–
298, 1976.

[8] L. Bettini, S. Capecchi, and B. Venneri. Extending java to dynamic object
behaviors. In Proceedings of the Workshop on Object Oriented Develop-
ments 2003 (WOOD), pages 33–52, 2003.

[9] G. M. Bierman and A. Wren. First-class relationships in an object-oriented
language. In Proceedings of the 19th European Conference on Object-
Oriented Programming, ECOOP, pages 262–286, 2005.

[10] W. Bücke. Reflexive workflows. Master’s thesis, University of Technology
Dresden, 2008.

[11] S. Ceri and G. Gottlob. Normalization of relations and prolog. Communi-
cations of the ACM, 29(6):524–544, 1986.

113

BIBLIOGRAPHY

[12] S. Ceri, G. Gottlob, and L. Tanca. What you always wanted to know about
datalog (and never dared to ask). IEEE Transactions on Knowledge and
Data Engineering, 1(1):146–166, March 1989.

[13] S. Chiba. Javassist — a reflection-based programming wizard for java. In
Proceedings of the ACM OOPSLA’98 Workshop on Reflective Programming
in C++ and Java, 1998.

[14] E. F. Codd. Derivability, redundancy and consistency of relations stored
in large data banks. IBM Research Report, RJ599, 1969.

[15] E. F. Codd. A relational model of data for large shared data banks. Com-
munications of the ACM, 13(6):377–387, 1970.

[16] E. F. Codd. Further normalization of the data base relational model. IBM
Research Report, RJ909, 1971.

[17] E. F. Codd. Recent investigations in relational data base systems. IBM
Research Report, RJ1385, 1974.

[18] E. F. Codd. Extending the database relational model to capture more
meaning. ACM Transactions on Database Systems, 4(4):397–434, Decem-
ber 1979.

[19] W. Damm and D. Harel. Lscs: Breathing life into message sequence charts.
Formal Methods in System Design, 2001.

[20] C. J. Date, H. Darwen, and N. A. Lorentzos. Temporal data and the rela-
tional model. Morgan Kaufmann, 2002.

[21] J. Diederich and J. Milton. New methods and fast algorithms for
database normalization. ACM Transactions on Database Systems (TODS),
13(3):339–365, 1988.

[22] R. Elmasri and S. B. Navathe. Fundamentals of Database Systems, 5th
edition. Addison-Wesley, 2007.

[23] R. Fagin. Multivalued dependencies and a new normal form for relational
databases. ACM Transactions on Database Systems, 2(3):262–278, 1977.

[24] R. Fagin. Normal forms and relational database operators. In SIGMOD
’79: Proceedings of the 1979 ACM SIGMOD International Conference On
Management Of Data, pages 153–160, New York, NY, USA, 1979. ACM.

[25] R. Fagin. A normal form for relational databases that is based on domains
and keys. ACM Transactions on Database Systems, 6(3):387–415, 1981.

[26] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Languages and Systems. Addison-
Wesley Longman Publishing Co., Inc., 1994.

[27] G. Gottlob, M. Schrefl, and B. Rck. Extending object-oriented systems
with roles. ACM Transactions on Information Systems, 14(3):268–296,
July 1996.

114

BIBLIOGRAPHY

[28] G. Grahne and K.-J. Räihä. Database decomposition into fourth normal
form. In VLDB ’83: Proceedings of the 9th International Conference on
Very Large Data Bases, pages 186–196, San Francisco, CA, USA, 1983.
Morgan Kaufmann Publishers Inc.

[29] K. B. Graversen. The nature of roles—A taxonomic analysis of roles as a
language construct. PhD thesis, IT University of Copenhagen, Denmark,
2006.

[30] E. . E. Group. Jsr 220: Enterprise javabeanstm,version 3.0 - java persistence
api. http://jcp.org/aboutJava/communityprocess/final/jsr220/index.html,
2006.

[31] D. Habich, S. Richly, A. Ruempel, W. Buecke, and S. Preissler. Open
service process platform 2.0. In SERVICES ’08: Proceedings of the 2008
IEEE Congress on Services - Part I, pages 152–159, Washington, DC, USA,
2008. IEEE Computer Society.

[32] T. A. Halpin. A Logical Analysis of Information Systems: static aspects of
the data-oriented perspective. PhD thesis, University of Queensland, 1989.

[33] W. Harrison and H. Ossher. Subject-oriented programming: a critique
of pure objects. In Proceedings of the 8th ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and applications, OOP-
SLA ’93. ACM, 1993.

[34] S. Hartung. Ereignisgesteuerte Einschrnkungen in Workflows basierend auf
Zustandsdiagrammen. Master’s thesis, University of Technology Dresden,
2009.

[35] C. He, Z. Nie, B. Li, L. Cao, and K. He. Rava: Designing a java extension
with dynamic object roles. In Proceedings of the 13th Annual IEEE In-
ternational Symposium and Workshop on Engineering of Computer Based
Systems, pages 453 – 459. IEEE Computer Society, 2006.

[36] S. Herrmann, C. Hundt, and M. Mosconi. Objectteams/java language def-
inition version 1.0. Technical report, Technical University Berlin, 2007.

[37] Y. Huhtala, J. Kärkkäinen, P. Porkka, and H. Toivonen. Tane: An effi-
cient algorithm for discovering functional and approximate dependencies.
Computer Journal, 42(2):100–111, 1999.

[38] S. Kelly. What’s in a relationship? on distinguishing property holding
and object binding. In Proceedings of the 3rd International Conference on
Information Systems, ISCO3: Towards a Consolidation of Views, pages
144–159, 1995.

[39] W. Kent. A simple guide to five normal forms in relational database theory.
Communications of the ACM, 26(2):120–125, 1983.

[40] M. Kifer, G. Lausen, and J. Wu. Logical foundations of object-oriented
and frame-based languages. Journal of the ACM, 42(4):741–843, 1995.

115

BIBLIOGRAPHY

[41] R. Kowalski. Predicate logic as programming language. In Proceedings of
IFIP Congress, pages 569–574, Stockholm, 1974. North Holland Publishing
Co.

[42] R. Kowalski. The early years of logic programming. Communications of
the ACM, 31(1):38–43, 1988.

[43] T. Lindholm and F. Yellin. The Java Virtual Machine Specification, 2nd
Edition — Revisions to ”The class File Format”. Prentice Hall, 1999.

[44] C. L. Lucchesi and S. L. Osborn. Candidate keys for relations. Journal on
Computer Systems and Science, 17(2):270–279, 1978.

[45] H. Mannila and K.-J. Räihä. Algorithms for inferring functional dependen-
cies from relations. Data and Knowledge Engineering, 12(1):83–99, 1994.

[46] S. Monpratarnchai and T. Tetsuo. The design and implementation of a role
model based language, EpsilonJ. In Proceedings of the 5th International
Conference on Electrical Engineering/Electronics, Computer, Telecommu-
nications and Information Technology (ECTI-CON 2008), pages 37–40,
2008.

[47] S. Nelson, J. Noble, and D. Pearce. Implementing first class relationships
in java. In Proceedings of the First Workshop on Relationships and Asso-
ciations in Object-Oriented Languages, RAOOL, 2007.

[48] S. Nelson, J. Noble, and D. J. Pearce. First class relationships for oo lan-
guages. In Proceedings of the 6th International Workshop on Multiparadigm
Programming with Object-Oriented Languages, 2008.

[49] S. Nelson, D. J. Pearce, and J. Noble. Implementing relationships using
affinity. In Proceedings of the 2nd Workshop on Relationships and Associ-
ations in Object-Oriented Languages, RAOOL, pages 5–8, New York, NY,
USA, 2009. ACM.

[50] Object Management Group. The object constraint language specification,
version 2.0. http://www.omg.org/spec/OCL/2.0/PDF/, 2006.

[51] Object Management Group. The unified modelling language specification,
version 2.2. http://www.omg.org/spec/UML/2.2/, 2009.

[52] J. J. Odell. Power types. Journal of Object-Oriented Programming, 7(2):8–
12, May 1994.

[53] O. Otto. Bug 275367 - no support for dynamically enhanced entity types.
https://bugs.eclipse.org/bugs/show bug.cgi?id=275367, 2009.

[54] O. Otto. Entwicklung einer Persistenzlösung für Object Teams auf Basis
der Java Persistence API. Master’s thesis, Technische Universität Berlin,
2009.

[55] M. Pradel and M. Odersky. Scala Roles - A lightweight approach towards
reusable collaborations. In International Conference on Software and Data
Technologies (ICSOFT ’08), 2008.

116

BIBLIOGRAPHY

[56] T. Reenskaug, P. Wold, and O. Lehne. Working with objects - The OOram
Software Engineering Method. TASKON, 1995.

[57] D. Riehle and T. Gross. Role model based framework design and inte-
gration. In OOPSLA ’98: Proceedings of the 13th ACM SIGPLAN con-
ference on Object-oriented programming, systems, languages, and applica-
tions, pages 117–133, New York, NY, USA, 1998. ACM.

[58] J. Rumbaugh. Relations as semantic constructs in an object-oriented lan-
guage. In Proceedings of the 2nd ACM Conference on Object-Oriented
Programming Systems, Languages and Applications (OOPSLA), pages 466–
481, 1987.

[59] I. Savnik and P. A. Flach. Bottom-up induction of functional dependencies
from relations. In Proceedings of the Knowledge Discovery in Databases
Workshop 1993, pages 174–185, 1993.

[60] S. Schmidt. Kooperative entscheidungsfindung in progressiv reflexiven
workflows. Master’s thesis, University of Technology Dresden, 2009.

[61] K. Smolander. OPRR: A model for modelling systems development meth-
ods. Next Generation CASE Tools, K. Lyytinen and V.-P. Tahvanainen
(Ed.), 1991.

[62] K. Smolander. GOPRR: a proposal for a meta level model. Technical
report, University of Jyväskylä, 1993.

[63] F. Steimann. On the representation of roles in object-oriented and concep-
tual modelling. IEEE Transactions on Data and Knowledge Engineering,
35(1):83–106, 2000.

[64] T. Tamai, N. Ubayashi, and R. Ichiyama. Objects as actors assuming roles
in the environment. In LNCS Software Engineering for Multi-Agent Sys-
tems V: Research Issues and Practical Applications, pages 185–203, 2007.

[65] D.-M. Tsou and P. C. Fischer. Decomposition of a relation scheme into
boyce-codd normal form. ACM SIGACT News, 14(3):23–29, 1982.

[66] R. K. Wong. Heterogeneous and multifaceted multimedia objects in
door/mm: A role-based approach with views. Journal of Parallel and
Distributed Computing, 56:251–271, 1999.

[67] R. K. Wong, H. L. Chau, and F. H. Lochovsky. Door: A dynamic object-
oriented data model with roles. Technical Report 12, The Hong Kong
University of Science and Technology, Clear Water Bay, Kowloon, Hong
Kong, May 1996.

[68] C. Zaniolo. A new normal form for the design of relational database
schemata. ACM Transactions on Database Systems, 7:489–499, 1982.

117

	Introduction
	Dynamic Collaborations with Roles
	A Conceptual View on Roles
	Motivating the Concept of Roles
	The Concept of Roles at a Glance
	History and State of the Art of Conceptual Roles

	Roles on the Level of Implementation

	Object-Relational Mapping
	Basic Terminology of the Relational Model
	Developing Fragrant Databases
	Classes And Relations - Object Relational Mappers
	Transformations Between Classes and Relations
	Existing Technologies

	The Concept of DAMPF
	The Five Steps of DAMPF
	Role-Relational Mapping
	Complete Separation of Roles, Contexts and Players
	Class-Role Relations
	Normalized Class-Role Relations

	Conceptual Architecture of DAMPF

	Implementation
	Startup Utilities
	Schema and Runtime Fact-Base
	Runtime Utilities
	Normalization
	Evaluation

	Conclusion
	Future Work

	Prolog Rules

