Grofer Beleg

Role-based adaptation

submitted by

Sebastian Gotz

born 19.05.1984 in Dresden

Technische Universitat Dresden

Fakultat Informatik
Institut fiir Software- und Multimediatechnik
Lehrstuhl Softwaretechnologie

Supervisor: MSc. Ilie Savga
Professor: Prof. Dr. rer. nat. habil. Uwe Afmann

Submitted November 14, 2008

Contents

1 Introduction

1.1
1.2
1.3

From Object-Orientation to Roles
University Management System
Separation of Adaptation Concerns

2 Role-Based Adaptation

2.1
2.2
2.3
2.4

Collaborating Components
Basic Elements of Role-Based Adapters
Composite Collaborations - The Necessity of Ambassadors
Achievement of Objectives,

3 Realization

3.1
3.2
3.3

Language Selectiono oL
ObjectTeams/Java: A Short Introduction
Implementation Using ObjectTeams/Java
3.3.1 Realization of the Motivating Example
3.3.2 Challenges on the Level of Implementation

4 Related Work

4.1
4.2

Compositional Filters
Exogenous Connectors o oo

5 Conclusion

5.1
5.2

Contributions L e
Future Work o
5.2.1 Collection of Empirical Data Using an Experiment
5.2.2 Using Role-Based Adapters for Change Encapsulation . .
5.2.3 Parameterizable Role-Based Adapters

23
23
25
27
27
29

33
33
35

39
39
40
40
41

CONTENTS

Chapter 1

Introduction

One of the basic principals in software engineering is divide and conquer. Soft-
ware systems are developed to address problems, which shall be solved. Hier-
archical decomposition is one way to derive subproblems, which are easier and
can be solved separately. Mechanisms to merge subsolutions are required to
obtain an overall solution for the original problem. This thesis examines a novel
mechanism to merge subsolutions.

1.1 From Object-Orientation to Roles

40 years ago, in 1968, leading experts of software industry meet in Garmisch
to discuss the so called "software crisis". The complexity of problems grew
faster and faster and computer power increased rapidly. As consequence it be-
came catchier to write correct, understandable and verifiable software. Object-
orientation was one of the many solutions for this crisis. It combined data-
centered approaches, which were beneficial to describe static properties of in-
formation, but weak in describing functionality, with behavior-centered ap-
proaches, which were weak in describing static properties of information, but
excellent in describing functionality.

Object-oriented design is based on the concept of objects and classes as com-
mon abstractions on them. The Unified Modeling Language [8] (UML) provides
a set of models to design the structure and the behavior of software systems.
A model to describe the structure is the class diagram, whose main elements
are classes, associations and inheritance relations. Furthermore operations and
attributes are added to classes. Next the behavior is designed using sequence
diagrams, in which the interaction of objects - instances of classes described in
the class diagram - is described for specific scenarios. Collaboration diagrams
may be used as an alternative to sequence diagrams. They describe specific sce-
narios of interacting objects, too. Models usable for general, i.e. non-exemplary,
descriptions of collaborations are missing. Additionally state diagrams are used
to describe states of objects, conditional events leading to a state change and
actions triggered by state changes. But the essence of what is done today using
the object-oriented paradigm is to describe object interactions - that is collabo-
rations of objects.

The term role stems from theater. During a performance actors play different

6 CHAPTER 1. INTRODUCTION

roles. E.g. in a theater play about "Dr. Jekyll and Mr. Hide" one actor plays
two roles. In real life we play many roles at the same time. E.g. a person may
play the role of a teacher, father and car-owner concurrently. If he has a car
accident and totals his car he hopefully stops playing the role of a car-owner,
but continues to play his other roles.

A more formal approach to describe roles is to identify role types as dy-
namic types, which are non-rigid and founded [11]. Non-rigid means that an
actor may stop playing a role without losing its identity. A person playing the
role student stays the same person if she stops being a student. On the contrary
if a book is burned, it is not of type book anymore and loses its identity. Founded
means, that a type is only defined in relation to other types. The type driver
is founded, because the type driver relates to the type person or human being.
A natural type is rigid and/or not founded. Because role types are founded,
roles need to have a player. Roles further require a context, i.e. a delimited
environment. For example role student belongs to the context "University".

Common problems and their solution have been (and still are) collected in
catalogs as design patterns. The most famous catalog of design patterns is the
one published by the gang of four (GOF) [9]. To describe a design pattern they
first name and classify it. The intent of the pattern, a motivating scenario,
the applicability and structure is part of each pattern description, too. Inter-
estingly they identify participants - "classes and/or objects participating in the
design pattern and their responsibilities" [9, p.8] - and describe collaborations of
them. Indeed participants are roles, albeit they are not identified as such. The
structure of the pattern, mainly described using UML class diagrams [8], is a
prerequisite. The description of collaborating participants is the most important
part of the pattern description. In the following description on implementation,
all identified participants are mapped to classes. Thus much information about
participants and how they collaborate is lost. Sample code, known uses and a
set of related patterns finish the description of a pattern.

For example the adapter design pattern is described using 4 roles: client, tar-
get, adapter and adaptee. The client role is played by an object, which wants to
consume functionality, which is provided by an object playing the adaptee role,
whose interface does not fit to what the client expects. The interface the client
expects is provided by an object playing the target role. To provide function-
ality from the adaptee object through the target object an object playing the
adapter role is needed'. Depending on the scenario these roles are played by
different objects. An object playing the adapter role may also play the target
role, if it has the interface the client expects. In object-oriented design these
roles are mapped to classes. This leads to a loss of information about the col-
laboration. This is because multiple roles may be merged into the same class
and thus get intertwined.

Figure 1.1 depicts two kinds of object-oriented adapters. Figure 1.1(a) uses
delegation between adapter and adaptee, figure 1.1(b) inheritance. Because
delegation works on the level of objects and inheritance in this context on the
level of classes the adapter types are called object and class versions of the
adapter pattern. The choice of the kind of adapter depends on the language
and is a design decision.

Both figures, 1.1(a) and 1.1(b), have 3 classes. One class for each role. Figure

Inot necessarily a separate object

1.1. FROM OBJECT-ORIENTATION TO ROLES 7

(_Target) (Ldaptee) (_Target) (Adap(ee D)
é Adapter) (Adapter)
(a) object adapter (b) class adapter

Figure 1.1: Structure of object-oriented adapters represented as class diagram.
Roles are annotated as rectangles with rounded edges, based on a notation
introduced by Riehle in [22]. To emphasize the togetherness of roles to a pattern
a circle in the middle of the figures connects each role belonging to the same
pattern using lines. The client role is omitted.

1.2 shows another possible class structure for the adapter design pattern. The
difference is, that this time only 2 classes are used. The target and adapter role
are both merged to the same class. Without deep knowledge of the patterns
applied to these two classes it is impossible to identify which code stems from
which role or pattern. This is because on the level of code there is no explicit
hint, that the adapter design pattern has been applied. Hence the information,
which patterns have been applied and which roles are mapped to which classes,
is lost.
|

. (Adaptee)

(Adapter)

Figure 1.2: Another possible class structure of the adapter design pattern

The OOram Software Engineering Method [20] was introduced by Reen-
skaug. He argues the class/object duality, modeling on two abstraction levels,
and investigates a unification of both concepts (classes and objects) - the OOram
role model. This model abstracts from interacting objects to interacting roles.
It abstracts from static types (classes) to dynamic types (role types). Roles are
interconnected in role models. Because an object may play several roles this
leads to separation of concerns, where each concern is encapsulated in a role
model. The system is hence described using a set of role models, which finally
have to be merged. The focus is on collaborations. not on structure, as it is in
common object-oriented design.

As Riehle [21] showed, roles of a design pattern can be expressed in role
models. Hence patterns used in software construction and evolution can be de-
scribed separately and are not intertwined in the implementation. This heavily
improves the maintainability of systems, because the original intend of engineers
is no longer lost. Further improvement originates from programming languages
supporting roles on the level of implementation, because even in case design
documents get lost, the information about collaborations is still present in form

8 CHAPTER 1. INTRODUCTION

Student Report

+printGrades () :void +printReport(d:DataRows):void
+getMatrikel () :String

DBComponent

+retrieve(q:DBQuery):ResultSet

Figure 1.3: Class-based realization of the example scenario. Arrows denote UML
associations. Dotted lines highlight boundaries of components. For clarity, only
classes directly participating in the collaboration are shown.

of code. Thus roles greatly improve maintainability of software systems.

1.2 University Management System

The following example is based on [10]. Imagine a University Management
System (UMS) having a class Student, which has a method printGrades().
This method prints out all grades a student got in each subject he took an
exam in. The data needed is fetched from a comma separated file. The users
of the UMS come up with new requirements. First they want to print not
only to the console, but to a PDF, too. They furthermore do not want to
use comma separated files for persistence anymore. Instead they prefer the
usage of a database. To incorporate these changes the developers of the UMS
decide on buying 2 commercial components. One for database persistence and
another for reporting, which includes functionality for printing to PDF. They
decided against implementing by themselves, because of 3 reasons. First they
estimated that buying the commercial components is much cheaper. Second
the commercial components are written by experts in the corresponding domain,
hence those developers are much deeper in topic than the developers of the UMS.
Finally the commercial components are maintained by a third party, hence the
commercial components do not need to be maintained by the developers of the
UMS.

A closer look at the commercial components shows, that each uses mul-
tiple classes. The reporting component provides class Report, which has a
method printReport, which takes an instance of class DataRows as an ar-
gument. DataRows is a class specific to the reporting component and repre-
sents a single row in the (tabular) report. The database component provides a
class DBComponent, which has a method retrieve, taking an instance of class
DBQuery as an argument and returning an instance of class ResultSet. DBQuery
and ResultSet are among DBComponent classes specific to the database compo-
nent. A DBQuery encapsulates an SQL query, a ResultSet encapsulates a set, of
tuples returned by the database. The whole scenario is depicted in Figure 1.3,

1.2. UNIVERSITY MANAGEMENT SYSTEM 9

Listing 1: intertwined code in Student.printGrades

DBComponent db = ...;
Report report = ...;

public void printGrades() {
//Create Query from Student’s Data
String sql = 'SELECT * FROM StudentGrades WHERE matrikel = '+this .getMatrikel ()7
DBQuery g = new DBQuery(sql)
ResultSet rs = db.retrieve(q);
//Transform ResultSet to DataRows
DataRows data = new DataRows();
while(rs.next()) {
Subject sbj = new Subject (rs.getString(1), rs.getString(2));
data.addString(sbj . toString()),
//...
report.printReport(data);

where the classes’ names and methods are written in different fonts to demar-
cate, that they belong to different areas of concern. Everything, which belongs
to the Report’s concern, is written in italic roman font. The DB concern is
demarcated by sans serif font. Finally the student’s concern is written in big
typewriter font.

A possible implementation of method printGrades in class Student is shown
in Listing 1. The fonts used correspond to the fonts used in Figure 1.3.

As Listing 1 shows, the implementation of printGrades contains heavily
intertwined code. This is because the task of printing a student’s performance
list requires instances of classes belonging to all three components to interact
with each other in a very close manner. To integrate the functionality of a
component one does not only need to call the appropriate methods of classes
of the component, but transform the return values and passed parameters, too.
In a class-based approach this type conversion is specific to each pair of compo-
nents, which talk to each other. In the example three type mappings are defined
and hence intertwined in method printGrades. These are Student — Report,
Student — DBComponent and Report — DBComponent. Beside these type
mappings the integration logic, that is how Report and DBComponent need to
be used, is located in method printGrades. To make a long story short: four
different concerns are tangled in method printGrades.

Adapter code needs maintenance, too. Imagine a new version of the report-
ing component released, which is not compatible with its former version that is
the new version does not compile and/or link against the original adapter code.
As a consequence the adapter code needs to be manually adjusted (adapter
upgrade), whereby bugs may be introduced, which could affect the integration
of other components. For example an adjustment for a new version of the
database component may lead to bugs in the integration code of the reporting
component. Imagine that method retrieve of class DBComponent is renamed
to retrieveData and a new method retrieve is added to class DBComponent,
which returns metadata about the database connection in form of a ResultSet.
The original adapter code compiles and links against the new version of the
database component, but misbehaves, because of the changed semantics of
method retrieve. A maintainer who is not aware of the 2 changes applied
to class DBComponent may try to change the code which makes instances of

10 CHAPTER 1. INTRODUCTION

class Subject. This is because he might think that the content of the instance
of ResultSet returned by method retrieve provides the data in some other
format. This may lead to bugs in the integration code for class Student.

Maintainers of adapter code need to have deep knowledge about each do-
main their adapters address. This leads to high training costs. This problem
aggravates when maintainers leave the company, whereby new maintainers need
to be trained.

1.3 Separation of Adaptation Concerns

The problems identified in Section 1.2 all ascribe to a single problem: code be-
longing to different concerns is intertwined in the implementation if the adapter
design pattern is realized in a class-based environment. Class-based adapters
mix communication and computation. This thesis examines if the ability to
describe patterns using roles combined with novel programming languages sup-
porting roles on the level of implementation helps to overcome the aforemen-
tioned problems in the context of adaptation. Therefore the thesis focuses on
the adapter design pattern as introduced in Section 1.1.

The application of programming languages supporting roles as first order
programming constructs allows to separately realize the roles of the adapter de-
sign pattern. Code responsible for communication with classes providing func-
tionality (providers), i.e. code belonging to the adaptee role, is separated from
code belonging to the adapter role, which specifies providers to be called in
which order and how to handle the results (computation). The target role,
which is responsible for providing an interface expected by the client, is defined
separately, too. The forth and last role of the adapter design pattern, the client
role, does not need to be expressed separately, because the only responsibility of
this role is to invoke methods of the interfaces provided by the target interface.
Finally the type conversion concern is separately expressible.

Figure 1.4 depicts a role-based adapter. Its main parts are called mediator,
In-Roles and Out-Roles. The part called mediator encapsulates the code of the
adapter role. In-Roles encapsulate code of target roles, whereas Out-Roles rep-
resent adaptee roles. Clients call methods provided by the target role. That is
they pass control to the target role, which is why I call such roles "In-Roles" -
they take over control flow into the adapter and pass it to the mediator. The

<<uses>>

[—]
(In-Role)2(Mediator)ZCOu_t—Role)
I :)

Target-Role Adaptér-RoIe Adaptée-RoIe

Figure 1.4: Overall structure of a role-based adapter mapped to a class-based
implementation. The class on the left hand side uses functionality provided by
the class on the right hand side, which however does not provide an interface
the class on the left hand side expects. Adaptation is realized by the role-based
adapter.

1.3. SEPARATION OF ADAPTATION CONCERNS 11

task of a mediator is to connect and intercede between different parties. The
task of the mediator of a role-based adapter is to connect and intercede between
In- and Out-Roles, i.e. specifying which Out-Roles have to be called in which
order. Out-Roles are responsible for communicating with classes providing func-
tionality, i.e. they represent adaptee roles. They are called Out-Roles, because
they pass control flow out of the adapter.

Using this realization of the adapter design pattern, code belonging to dif-
ferent adaptation concerns is separated from each other. Thus the problem
forming the origin of all problems identified in Section 1.2 can be solved using
role-based adapters. The approach described in this thesis is partly published
in [10].

12

CHAPTER 1. INTRODUCTION

Chapter 2

Role-Based Adaptation

Role-based adapters (RBAs) base on a set of concepts, which are described in
this chapter. First the environment to which RBAs are applied is outlined in
Section 2.1. The basic elements of RBAs are introduced in Section 2.2, followed
by an advanced concept in Section 2.3. Finally achieved objectives are examined
in Section 1.3.

2.1 Collaborating Components

Components are units of composition with contractually specified interfaces and
explicit context dependencies only [25]. Class-based components consist at least
of a set of classes, a set of required and a set of provided interfaces. Required
interfaces are used to explicitly model context dependencies. In order to specify
a valid configuration of components each required interface needs to be bound
to a provided interface of another component.! Provided interfaces are used as
entry points to the components, that is methods of these interfaces are designed
to take over control flow and direct it into the component to accomplish a
specified task. Components may have multiple provided interfaces. Each is
designed for a different use case or a different set of use cases.

In an integration scenario components play the role service requester and/or
service provider. A component, which wants to use other components, is a ser-
vice requester and the components used are service providers. This defines a
uses-relation between components. Used components may use further compo-
nents, too. A tree of requesters and providers is the result. A tree is a special
graph. Graphs consist of nodes and edges, which connect nodes. Edges are
either directed or bidirectional. If an edge is pointing to a node it is called
an incoming edge for that node. If an edge points from a node it is called
an outgoing edge. A tree has two special types of nodes: root and leaf. The
root node does only have outgoing edges. Nodes, which are neither root nor
leaf, have a single incoming edge and at least one outgoing edge. Leafs have
no outgoing edges, but a single incoming edge, too. In the tree of requesters
and providers leafs are service providers, nodes are both service providers and
requesters, and the root is a service requester only. Components may be service
providers for multiple service requesters, which leads to multiple request trees

Lor to a provided interface of itself, which leads to recursion

13

14 CHAPTER 2. ROLE-BASED ADAPTATION

which overlap each other and hence form a directed acyclic graph (DAG). DAGs
differ from trees in that nodes are allowed to have multiple incoming edges, thus
no distinction between root, node and leaf is needed. A further requirement of
DAGs is that no cycles between connected nodes are allowed. Because service
providers may use components which directly or indirectly? use themselves, the
uses-configuration forms a directed cyclic graph.

Collaborations between service providers and requesters form contexts, i.e.
delimited environments, for the participating roles. A context always delim-
its one service requester and all its used service providers. If multiple service
requesters use a single service provider, the service provider is part of multi-
ple contexts, because it participates in each context the service requesters form
(one per requester). In case a service provider is using further components it
is at least part of two contexts, namely the context where it is used by other
components and the context where it is using other components. Figure 2.1(a)
shows an example configuration of multiple components using each other and
highlights all contexts, which exist. Figure 2.1(b) depicts three different types
components may have regarding the uses-configuration.

(a) Uses-Configuration. Solid cir- (b) Contexts and different types of
cles depict components. Arrows components. Dashed circles demar-
denote usage. Slashed arrows de- cate contexts, grey circles denote
marcate cyclic usage relations. service requesters, black circles ser-
vice requester and providers and
white circles services provides.

Figure 2.1: Uses-configuration of components.

It is important to note, that components being service provider and re-
quester play only one of these roles per context, except when a component uses
itself. Multiple contexts may coexist simultaneously.

2.2 Basic Elements of Role-Based Adapters

The ability to describe design patterns using roles combined with the usage of
novel programming languages, which support roles on the level of implementa-
tion, enables the realization of the adapter design pattern in a way that avoids
intermixture of adaptation concerns.

Figure 2.2 depicts the basic elements of a role-based adapter. The main parts
are an In-Role, Out-Roles and a mediator. C1, C2 and C3 are components,
where C1 is requesting functionality from C2 and C3.

The different parts of role-based adapters correspond to the different roles of
the adapter design pattern. The target role is realized as In-Role, the adapter

2via other service requesters

2.3. COMPOSITE COLLABORATIONS - THE NECESSITY OF AMBASSADORS15

Service ™, g
Requester ™

(Out-Role-C2) (Out-Role-C2)

Service
Providers

Figure 2.2: Basic elements of a role-based adapter. C1, C2 and C3 are compo-
nents.

role as mediator and the adaptee role as Out-Role. The naming is based on the
direction of control flow. In-Roles direct control flow into the adapter. Out-
Roles direct control flow out of the adapter to service providers. The task of
a mediator is to connect and intercede different parties. The mediator in role-
based adapters connects and intercedes (or simply adapts) In- and Out-Roles.
Thus the collaboration of In- and Out-Roles is described by the mediator?. In-
Roles are connected to required interfaces of service requesting components,
Out-Roles to provided interfaces of service providing components.

Whenever a client calls a service requesting component the control flow is
intercepted by the corresponding In-Role, directed to the corresponding Out-
Roles by the mediator, forwarded to the service providing components by these
Out-Roles and finally returned through the Out-Roles, the mediator and the
In-Roles to the service requesting component.

2.3 Composite Collaborations - The Necessity of
Ambassadors

In case a service requester uses service providers, which themselves are service
requesters, a composite collaboration results. Figure 2.3 depicts such scenario.

Now imagine that C5 shall use CO, thus introducing a cyclic dependency,
which indicates a potential deadlock. Additionally a further context is in-
troduced, because each collaboration between a service requester and service
providers is delimited by its own context. In such scenario four separate me-
diators exist, which only know about "their" collaboration. Hence deadlocks
cannot be detected. To avoid this problem a further context — the supercon-
text, containing all contexts, needs to be introduced.

A further task, besides deadlock detection, of the supercontext is to contain
intermediate types. Components may participate in a lot of contexts, thus
playing multiple In- and/or Out-Roles. The task of type conversion should
not be assigned to In- and Out-Roles, as this would lead to code replication.
Imagine an extension to the running example. The reporting component, which
consists of a class Report and a class DataRows, is using another component

3 Another possible naming scheme as suggested by Stephan Herrmann is Observer instead of
In-Role and Actuator instead of Out-Role, what leads to the abbreviate OMA — Observer,
Mediator, Actuator.

16 CHAPTER 2. ROLE-BASED ADAPTATION

Out-Role-C4) (Out-Role-C4

, (Out-Role-C5) (Out-Role-C6) /

©

(Out-Role-C2) (Out-Role-C2)

Figure 2.3: Composition of role-based adapters.

developed for generation and modification of PDF* files. Figure 2.4 depicts this
scenario. The university management system (UMS) component is connected
to the reporting component, which is connected to the pdf component, and to
the database component.

Because the UMS component is connected to the reporting and database
component, for a single use case only, one role based adapter is used to realize
both connections. A further role based adapter is needed to connect the report-
ing component and the PDF component. Thus two roles based adapters (RBAs)
are used. If In- and Out-Roles are responsible for type conversion, the conver-
sion of class DataRows to an intermediate form is implemented twice. First for
the Out-Role of the RBA between the UMS component and the reporting com-
ponent. Second for the In-Role of the RBA between the reporting component
and the pdf component. The task of the Out-Role is to convert data used inside
the RBA to a type of the integrated component, for example a usual Map® to
class DataRows. The task of the In-Role is to convert data of a type specific
to the requesting component to a type specific for the adapter - an intermedi-
ate type. In the example, class DataRows is converted to a conventional Map.
Using intermediate types in adapters decouples adapters from components they
connect.

The extended running example does not suffer from code replication, yet.
A further extension to the example reveals that In- and Out-Roles should not
contain logic for type conversion. Imagine the reporting component is using
a further component, enabling the generation and modification of ODT® files
and another component for Microsoft Office Documents. The extended sce-
nario is shown in Figure 2.5. The extension leads to further RBAs, connecting
the reporting component to the ODT component and DOC component, respec-
tively. The In-Roles of these newly introduced RBAs contain logic to convert
class DataRow to a usual Map, too. If further formats (e.g. PostScript) shall be

4portable document format
5java.util.Map - part of the Java Runtime Library
60pen Document Text, part of the OASIS Open Document Format for Office Applications

2.3. COMPOSITE COLLABORATIONS - THE NECESSITY OF AMBASSADORS17

University management

system component Reporting component

Student Report DataRows

A

LG

Database component

v PDF component
ResultSet DBQuery DBComponent |

PDFGen

Figure 2.4: Extended running example. The reporting component uses a PDF
component. Dotted rectangles denote component boundaries. Arrows represent
the playedBy relation, i.e. some role is played by some class. Dashed rectangles
denote the boundaries of a role based adapter. Solid lines emphasize how the
parts of an RBA are interconnected.

supported by the reporting component each further integrated component ag-
gravates the replication of type conversion code. Please note, that introducing
further RBAs, instead of further Out-Roles to the RBA connecting reporting
and PDF component, decreases coupling between the components. Improved
reusability of RBAs is a direct consequence of constructing small RBAs, even
though multiple small RBAs could be realized as a big one.

For each component a further role, responsible for type conversion and de-
fined in the supercontext is introduced, to avoid code replication. Such roles
are called ambassadors, because they act like representatives for "their" compo-
nent and are able to explain classes of "their" component to foreigners. Figure
2.6 depicts the scenario shown in Figure 2.5 enriched by ambassador roles. If
ambassadors are realized as roles, they need a player. In the example classes
Student, Report, DBComponent, PDFGen, 0DTGen and DOCGen are used as play-
ers. In general ambassadors do not need to be realized as roles. They could also
be realized as classes, but then the component needs to assure that at any time
a single instance of its ambassador is available. The additional class does not
break the requirement that components shall be independently deployable, but
the additional class does not contribute to the components functionality and
thus should not be part of the component. Hence ambassadors need to be part
of the supercontext specific for the system.

Ambassadors are developed for a set of role based adapters. Each RBA is
developed for another use case. Different tasks are solved using different data
structures, i.e. types. Therefore role based adapters may use different interme-
diate types for the same component specific type. Ambassadors need to know
about all intermediate types, which belong to types specific to their component.
The ambassador is reusable, if a component is reused in another system config-

18 CHAPTER 2. ROLE-BASED ADAPTATION

University management

system component Reporting component

Student Report DataRows

Medi-

S COR G RCN

Database component

ResultSet DBQuery DBComponent N
Medi-

L
Medi-

In Out —|

DOC component ODT component PDF component

DOCGen ODTGen PDFGen

Figure 2.5: Further extended running example. The reporting component now
uses multiple component for different output formats. For each component an
additional Out-Role is introduced.

uration. In case a new intermediate type is needed, the ambassador, however,
needs to be extended.

2.4 Achievement of Objectives

Comparing the class-based solution of the original example to the role-based
solution reveals that the application of RBAs to simple systems leads to much
more code that is to be written by developers. The advantage of this big initial
effort is less effort regarding maintenance of the system. If, for example,
method printReport of class Report of the reporting component is renamed,
only the respective Out-Role needs to be changed. In case multiple components
use the reporting component it is thus easy to localize the places in the code,
which need to be changed - the Out-Roles connected to class Report. Because
the only task of Out-Roles is to pass on control flow to their player, i.e. the class
of the component the respective RBA integrates, Out-Roles are not complex
and hence easy to maintain. Class-based adapters on the contrary contain all
concerns of adaptation. The complexity of methods like printGrades shown in
Listing 1 explodes when systems get bigger. The localization of places in the
code, which need to be changed due to the aforementioned method rename in
class Report, is thus much more complicated. Because of this the adjustment
of such methods is demanding and highly error-prone.

Another advantage of role-based adapters in comparison to classical class-
based adapters is improved flexibility in assigning tasks to developers. If a
system is constructed using class-based adapters, developers who are respon-

2.4. ACHIEVEMENT OF OBJECTIVES 19

sible for maintenance of that system need to have deep knowledge about each
component the system consists of. This is because class-based adapters use and
transform types specific to the components they connect. Imagine a company,
which developed the running example using class-based adapters and employed
developers, who are specialized on reporting, other developers who are special-
ized on databases with only one of these developers knowing well both domains.
Only the developer with knowledge about both domains is able to accomplish
the task of maintenance in an efficient way, because all other developers first
need to invest time to understand the types of the database component. If the
systems were developed using RBAs each developer is able to accomplish the
task of maintenance, because no special knowledge about the connected com-
ponents is needed. Thus developers can be allocated in a much more flexible
way.

In the original running example introduced in Section 1.2 the implementation
of method Student.printGrades needs to be realized separately, to contain a
mediator and to be split into three distinct roles defined in one context, which
is depicted in Figure 2.7. One for class Student, one for class Report and one
for class DBComponent. Instances of these classes are the players of the roles.
Instances of class Student are played by an In-Role called StudentIn, instances
of class Report and DBComponent are played by Out-Roles called ReportOut and

University management Reporting component
system component

Student

Report DataRows

Jopessequiy

Medi-
LG ou

ResultSet DBQuery DBComponent Vedin

1 o ator Out

Medi-
o eh

Database component

DOC component ODT component PDF component

PDFGen PDFGen PDFGen

Figure 2.6: Figure 2.5 enriched with ambassadors. To ensure clarity the relation
of In- and Out-Roles to ambassadors is only depicted for the RBA between the
university management system component and the reporting component. Bold
grey lines denote a usage relationship. In- and Out-Roles of an RBA use the
ambassador of the component their player belongs to.

20 CHAPTER 2. ROLE-BASED ADAPTATION

+printReport(d:DataRows):void

Student Report
[DBComponent

(oeou)

Fretrieve(q:DBQuery):ResultSet

()

Figure 2.7: Role-based realization of example scenario. Roles are drawn as
rectangles with rounded edges, based on Riehle’s notation [22]. Arrows denote
control flow.

+printGrades () :void
+getMatrikel () :String

DBOut. The mediator defines that first the database component needs to be used
to fetch the data and then the reporting component is to be used to print the
data. Furthermore a supercontext needs to be defined, which contains three
ambassadors, one for each component, for type conversion. The data returned
by the database component is transformed into an intermediate type by the
role responsible for this component in the supercontext. Before this data is
passed to the reporting component it is transformed from the intermediate type
to the data type specific for the reporting component, i.e. DataRows, by the
ambassador of the reporting component, defined in the supercontext.

The application of roles on the level of implementation to realize adapters
leads to separation of adaptation concerns, which allows for separate construc-
tion and maintenance of different concerns. Multiple concerns in adaptation
code have been examined:

1. code responsible to communicate with components, i.e. their interfaces
2. collaboration code to bind requesting and providing components
3. type conversion between components

Please remind that the divide-and-conquer principle says, that complex
problems are easier to solve, if they are divided into subproblems. Each sub-
problem is solvable on its own. To derive an overall solution all subsolutions
need to be merged. Separation of concerns is a divide-and-conquer strategy.
Each concern is solvable on its own. Development of separate concerns is easier
than developing all concerns at once, because the responsible developer needs
to focus on a single concern at each step and does not need to care about other
concerns at this point in time. Programming languages supporting roles on the
level of implementation provide an infrastructure that accomplishes the merger
of subsolutions, i.e. concerns. Because of this, developers using RBAs really
only need to focus on a single concern at a time. The third advantage of
RBAs is hence easier development of adapters, albeit it is most likely that
experienced developers will not sense simplification. This is because experienced

2.4. ACHIEVEMENT OF OBJECTIVES 21

developers are used to construct complex adapters and thus do not sense them
as complex.

In- and Out-Roles encapsulate and hence separate code responsible for com-
munication with each component. Thus the responsibility to maintain the com-
munication code for each component-adapter pair can be assigned to developers
responsible for that component. The communication code differs between differ-
ent pairs of components and adapters, because the communication is specific for
each adapter. The benefit is, because the communication code is separate from
each other and the code belonging to other concerns, the developer responsible
for this code does not need to know about the other concerns. Maintenance
of class-based adapters requires the maintainer to have deep knowledge in all
concerns intertwined in the adapter. Mediators encapsulate collaboration code.
Type conversion between components is separated by ambassadors defined in
a supercontext, whereby code replication is overcome. Due to separate type
conversion the mediators rely on intermediate types only. Hence maintainers
responsible for this code only need to know about a single domain, too — the
intermediate domain, which is based exclusively on intermediate types.

In summary the advantages of role-based adapters are:

1. less effort for maintenance,
2. more flexible allocation of developers and
3. easier development of adapters.

The disadvantages of role-based adapters are:

1. the need to write more code and

2. initial training costs, in order to teach the developers a new programming
language, supporting roles on the level of implementation.

Role-based adapters conceptually overcome all problems mentioned in Sec-
tion 1.2. Chapter 3 shows the realization of these concepts.

22

CHAPTER 2. ROLE-BASED ADAPTATION

Chapter 3

Realization

In order to realize the concepts introduced in Chapter 2 an appropriate language
has to be found. The approach was implemented for the example (and a couple
of other examples) introduced in Section 1.2. This chapter first presents the
process of language selection in Section 3.1, introduces the main concepts of the
chosen language in Section 3.2 and finally presents the implementation of the
approach in Section 3.3.

3.1 Language Selection

The selection of language is based on 5 requirements:
The language needs to

1.
2.

3
4

5.

support roles on the level of implementation as first order constructs,

be mature!,

. support an explicit notion of contexts,

. support nesting of contexts and

provide mechanisms for redirection of control flow.

A language can only be chosen, if it fulfills each of these requirements. Tool
support was a further requirement, which is usually given implicitly by require-
ment (2).

The following 6 candidates have been examined for selection, focusing on
the above mentioned requirements:

1.
2.

3
4

5.

AspectJ

Scala

. Lava

. EpsilonJ

McJava

1

more than 3 years of development, at least version 1.0

23

24 CHAPTER 3. REALIZATION

6. ObjectTeams/Java

AspectJ [1] only fulfills the requirements (2) and (5), that is of being mature
and providing mechanisms for redirection of control flow. It does not support
roles on the level of implementation, because aspects as defined in AspectJ
are not roles. Apel et. al. [3] provides a distinction between aspects and
roles?>. Though Apel and colleagues focused on roles on the level of design,
time variation (and more) distinguishes roles from aspects. Contexts and their
nesting are not supported, too.

Scala [7] does not support roles in the level of implementation directly. An
approach introducing the concept of roles for Scala was introduced in [19]. This
approach is in an early phase of research and hence requirement (2) is not
fulfilled. Traits are used to group roles in contexts, while roles themselves are
described as inner traits. Hence requirement (3) is fulfilled, but as trait nesting
is used to define roles (on nesting-level 2) nesting of contexts (requirement (4))
is not possible. Finally redirection of control flow is achieved via proxies, which
intercept calls to objects potentially having some active roles. Thus requirement
(5) is fulfilled, too.

Lava [15] is an extension for the Java language [4] which aims among other
goals at providing explicit support for consultation and delegation fields, as
well as anticipated parent types. Anticipated parent types can be used to re-
alize roles. Possible roles of a player are modeled as potential superclasses of
the player. Lava provides support to change these anticipated superclasses at
runtime. Unfortunately Lava lacks support for multiple inheritance®, although
inheritance is modeled as specific form of (dynamic) delegation, due to 3 reasons.
First Kniesel claims that using multiple delegation breaks binary compatibility.
The second reason is the potential loss of simplicity. Finally the semantics of a
class having multiple anticipated parent types active at the same time may lead
to semantic errors. Thus in order to realize roles using anticipated parent types
stacking of roles is needed. That is if multiple roles are to be active for the same
player the player only points to one of these roles, where this role points to the
next role and so on. In case these roles are defined using an own inheritance
hierarchy no solution exists, yet. Hence requirement (1) is not fulfilled. An
explicit notion of contexts is not supported, but can be derived by following
the anticipated parent type relations. This does not lead to separate contexts,
but to a boundary around all contexts the role is involved. Nesting of contexts
is thus not supported, too. Redirection of control flow is one of the strengths
of Lava, as multiple types of delegation exist (consultation, delegation, antici-
pated parent types). Lava is currently available in version 0.21, whereas many
features, like e.g. the change of anticipated parent types at runtime, are not
supported, yet. Hence Lava is not mature.

EpsilonJ [17] was designed to support roles on the level of implementation.
A new keyword for roles (role) is used to explicitly define roles. Furthermore
contexts are specified using a new keyword, too (context). EpsilonJ is a lan-
guage extension to Java, where code written in the EpsilonJ language is to
be transformed into usual Java code. Technically roles are translated to inner
classes, while their outer class forms their context. Requirements (1) and (3)

2and features
3Lava conceptually supports multiple unanticipated parents, which is, however, not real-
ized, yet.

3.2. OBJECTTEAMS/JAVA: A SHORT INTRODUCTION 25

are thus fulfilled. Nesting of contexts is not yet supported, though it’s likely
that in future versions this support will be integrated. Players are usual Java
classes, which are marked with the keyword player. They thereby gain meth-
ods to bind roles to them. This binding leads to multiple objects representing
the same conceptional object. Currently the language lacks a mechanism to
ensure, that in case a role is active and needs to be called, clients cannot use
the player directly without involving the active role. That is the problem of
object schizophrenia [12] is not solved, yet. In order to redirect control flow to
active roles the developer needs to explicitly cast the player to the role. Thus
redirection of control flow is not supported as it needs to be manually specified.
Requirement (5) is hence not fulfilled. Beside the problem of object schizophre-
nia a set of further problems are still to be solved in EpsilonJ. It is e.g. not
possible to add multiple instances of the same role type to a single player. This
is because the binding of a role to its player is saved as a hashmap in the player,
whereas the name of the role type is used to address the role instances. Adding a
further instance of the same role type simply overrides the pointer to the former
role instance. Because there are still a set of problems to be solved requirement
(2), maturity, is not fulfilled.

McJava [14] is a language extension for Java, developed by the same devel-
opers who developed EpsilonJ. McJava enriches Java with mixin types. Real-
izing roles as mixins instead of inner classes eliminates the problem of object
schizophrenia. Redirection of control flow is supported by McJava. McJava
does provide roles as first class citizens, namely as mixins, but no explicit no-
tion of contexts. Nesting of contexts is thus not supported, too. A combination
of EpsilonJ and McJava would improve EpsilonJ in that it additionally fulfills
requirement (5). McJava is still in research (since 2004) and no compiler or
translator is publicly available. Hence McJava has not reached maturity, yet.
Only requirements (1) and (5) are fulfilled.

ObjectTeams/Java supports roles on the level of implementation as first
order programming constructs. Furthermore contexts can be specified explicitly.
Nesting of contexts is supported, too. Though ObjectTeams/Java does realize
roles as inner classes, too, it has solved the problem of object schizophrenia
by modifying the byte code of the players (by redirecting each call to a player
to its active roles). Extensive tool support is provided by the ObjectTeams
Development Tooling for Eclipse including debugger, syntax highlighting, code
completion, quick fix hints and a lot more. ObjectTeams/Java is developed
since seven years and its language definition is currently of version 1.2. Due
to the fact, that ObjectTeams/Java fulfills all requirements, including extensive
tool support, is under development since seven years and its currently available
version is 1.2, it can be seen as mature.

Table 3.1 lists all languages examined and points out which languages fulfill
which requirements. ObjectTeams|[13] fulfills all 5 requirements. Because of
this I choose ObjectTeams/Java for the realization of the concepts introduced
in Chapter 2.

3.2 ObjectTeams/Java: A Short Introduction

ObjectTeams/Java[13] (OT/J) is a realization for Java of the language model
called ObjectTeams. OT/J is realized as an extension to the Java language,

26 CHAPTER 3. REALIZATION

Language / Requirement | (1) | (2) | (3) | (4) | (5)
AspectJ no | yes | no | no | yes
Scala yes | no | yes | no | yes
Lava no | no | no | no | yes
EpsilonJ yes | no | yes | no | no
McJava yes | no | no | no | yes
ObjectTeams/Java yes | yes | yes | yes | yes

Table 3.1: Candidate languages for realization and which requirements they
fulfill.

which does not need a modified Java Virtual Machine. Instead OT/J-code is
compiled into JVM-conform bytecode.

The most important concepts of ObjectTeams with regard to this thesis are
teams, roles, the played-by relation, callins, callouts and base classes.

Roles are defined in contexts. E.g. the role Student is defined for the context
University. In other contexts this role would lack semantics. Contexts may have
fields and methods. E.g. the context University could own a field for its name
and methods to matriculate and exmatriculate students. In OT/J contexts are
described using teams. Teams are modeled like classes and are denoted by the
additional keyword team.

Inner classes of teams are roles, as long as they are not marked as teams.
Hence nesting of teams is supported. As roles are always played by a player, they
need to be bound to their player. This is done using the playedBy relation.
Inner classes of teams, which are roles, define their player in a way similar to
inheritance. Instead of extends the new keyword playedBy is used. The player
is called base in ObjectTeams.

The semantics of roles is to change structure and behavior of their player
as long as they are active. Roles can be activated in OT/J over their team.
Either directly by invoking the method activate() or indirectly by specifying
constraints under which the team shall be active. Roles may have fields and
methods, too. E.g. role Student may have a field for its matriculation number
and a method learn(). In case a role gets active these fields and methods are
"added” to the player, thus changing the structure of the player. In order to
change the behavior of the player 2 mechanisms are provided by OT/J: callins
and callouts.

A callin is defined in a role and specifies which methods of the player are
to be intercepted and redirected to methods of the role. Hence callins take over
control flow from the player to the role. Callouts are defined exactly the other
way around that is they specify which methods of the role shall forward the
control flow to which method of the player. Both mechanisms strongly rely on
method names. The adjustment of behavior currently only works for method
executions. An improvement of the language, to react on thrown exceptions or
on any event fired, is not planned, yet.

Problems like object schizophrenia are addressed using byte code manipula-
tion on the player/base side. That is calls to a base, which has active roles are
always redirected to the active role first. As ObjectTeams is under active devel-
opment since more than 6 years many problems have already been addressed.
Hence OT/J is the most mature language currently available for the purpose of

3.3. IMPLEMENTATION USING OBJECTTEAMS/JAVA 27

using roles on the level of implementation.

3.3 Implementation Using ObjectTeams/Java

The implementation of the concepts introduced in Chapter 2 using ObjectTeam-
s/Java is straightforward. In- and Out-Roles are implemented as roles. These
are defined inside a team, which represents the Mediator. All roles are bound
to their players using the playedBy relation. In-Roles use callins to inter-
cept the control flow, whereas Out-Roles use callouts to forward the control
flow. Whenever an In-Role intercepted a method call of its player it calls the
mediator. The mediator further delegates control flow to the corresponding
Out-Roles, which forward the control flow to their players.

The data flow depends on whether independent functionality is to be in-
tegrated or functionality, which delivers some result to the service requesting
component. In case of independent functionality there are two data flows—
one in the service requesting component and one between the service providing
components. If the functionality is meant to deliver some result to the re-
quester, there is only one data flow between all components. This data flow
is bidirectional, that is, it starts from the requesting component, goes into the
components and finally goes back to the requester.

3.3.1 Realization of the Motivating Example

Figure 3.1 shows a class diagram in ObjectTeams-notation of the running ex-
ample introduced in Section 1.2.

Teams are represented as packages annotated with a yellow circle with a
white T, whereas the package consists of 3 parts — the upper part lists fields,
the middle part lists methods and the lower part lists roles. Roles are depicted
as classes annotated with green circles and a white R. Like classes roles have
fields and methods, but callin and callout definitions, too, which are listed in
the lower part of the roles. Roles are bound to their base classes using an arrow
annotated with "playedBy". Callins are expressed as yellow circles with "«",
callouts with "»".

Callin expressions may take 2 forms. If the base method, which is to be
intercepted, has the same signature as the role method the shorter form can be
used, which consists of the role method name, followed by a "«", one of three
possible modifiers (before, after, replace) and the base method name. Depending
on the type of method, which is to be intercepted, a different modifier is to be
used. If the base method is a hook method, that is it is meant to be filled by
some third party, usually replace is used. If the base method is not a hook
method, either before or after are used, though replace may be used, too.
In Figure 3.1 the modifiers are omitted, for readability.

The second form of a callin expression is to be used, if the base methods
signature differs from the role method. In this case the full signature of the role
method, followed by "«", one of the three modifiers and the full signature of
the base method need to be written. Furthermore the with-clause needs to be
expressed, which specifies how the signature of the role method and the base
method are to be transformed to each other. In Figure 3.1 this case is depicted
like the short form, but followed by with {...}.

28 CHAPTER 3. REALIZATION

C SuperTeam

+ convertDataRowsToList(data: DataRows) : List
+ convertListToDataRows(list: List) : DataRows
+ convertDBQueryToString(q: DBQuery) : String
+ convertStringToDBQuery(str: String) : DBQuery

C Mediator

distribute()
_®Student|n piyed®t 5 Student
+ printGrades() : void + printGrades() : void

printGrades « printGrades

_®Report0ut

IdyedBy

o

» Report
+ printReport(data: List) : void + printReport(data: DataRows) : void
printReport » printReport (with {...})
'@ IgyedB;
DBOut e DBComponent
+ retrieve(q : String) : HashMap + retrieve(q : DBQuery) : ResultSet

retrieve » retrieve (with {...})

Figure 3.1: Implementation of role-based adapter for the running example

It is important to note, that all types, which are specific to a component (i.e.
DBQuery) always are transformed into an intermediate type, which is specific to
the mediator/team. This way each role of the team only depends on the team
itself and the component it is meant to integrate. For clarity ambassadors
introduced in Section 2.3 are omitted. Instead all methods of them are realized
as team methods.

Figure 3.2 depicts the control flow between the components. The control
flow is demarcated as a sequence of red arrows, where each is annotated with a
number in a red circle, used to order the arrows.

Steps 7 and 11 are depicted with a dotted arrow, because they are no ex-
plicit method invocations, but method call returns. Furthermore 4 steps have
been omitted in Figure 3.2 for readability. Before steps 5, 6, 9 and 10 are ex-
ecuted additional calls to the super team’s methods are necessary. E.g. before
step 5, the invocation of method retrieve of class DBComponent, first the ar-
gument q needs to be translated. Thus first method convertStringToDBQuery
of the super team is called. For step 6 the return value, which is an in-
stance of class ResultSet, needs to be translated to a HashMap. Thus method
convertResultSetToHashMap of the super team is called in advance to step 6.
Similar type conversion calls are executed in advance to steps 9 and 10.

Listing 2 shows an extended version of the implementation of role StudentIn.

3.3. IMPLEMENTATION USING OBJECTTEAMS/JAVA 29

C SuperTeam

+ convertDataRowsToList(data: DataRows) : List
+ convertListToDataRows(list: List) : DataRows
+ convertDBQueryToString(q: DBQuery) : String
+ convertStringToDBQuery(str: String) : DBQuery

C Mediator
,d‘istribute() N
O]
7@;85 Qsmdentm\

pldyedBy

» Student
+ printGrades() : void @ + printGrades() : void*
printGrades « printGrades
'@ IgyedB: -
\ ReportOut > Report
M+ printReport(data: List) : void @_ | s+ printReport(data: DataRows) : void
printReport » printReport (with {...})
'@ plgyedBy »
DBOut » DBComponent
(]
t+ retrieve(q : String) : HashMap <— @—;H retrieve(q : DBQuery) : ResultSet
retrieve » retrieve (with {...})

Figure 3.2: Control flow (numbered arrows) among the components

This role additionally defines a callout to method getMatrikel of class Student,
in order to fetch the matriculation id of the student. This id is e.g. used to
construct the SQL query, send to the database component and hence is passed
to method distribute as an argument.

Listing 3 shows method distribute, which encapsulates the whole com-
munication and integration logic. It first passes control flow to the database
component and uses the return value of this call to call the reporting compo-
nent. It only communicates with roles.

Listing 4 denotes the implementation of the DBOut role along with method
transformResultSetToHashMap, which is used by this role. The type conver-
sion between String and DBQuery is not realized as a separate method call to
the super team, but using the constructor of class DBQuery.

Finally Listing 5 shows the role ReportOut along with the method, which
transforms the intermediate HashMap to the type DataRows, specific for the
reporting component — transformHashMapToDataRows.

3.3.2 Challenges on the Level of Implementation

A set of problems on the level of implementation were identified. These differ
from problems on the conceptual level, because they are based on the imple-

30 CHAPTER 3. REALIZATION

Listing 2: Implementation of role Studentin

public class StudentIn playedBy Student {
void printGrades() -> replace void printGrades();
Integer getMatrikel() <- Integer getMatrikel();

callin void printGrades() {
distribute(getMatrikel()); //notify mediator
}
}

Listing 3: Implementation of method distribute

public void distribute(Integer matnr) {
Map<String, Double> grades =

dbOut.retrieve("SELECT * FROM grades WHERE matrikel = "+matnr);
reportOut.printReport(grades);

}

Listing 4: Implementation of DBOut role and method transformResultSet-
ToHashMap

public class DBOut playedBy DBComponent {
Map<String, Double> retrieve(String query) -> ResultSet retrieve(DBQuery query)

with { mnew DBQuery(query) =-> query, result <- transformResultSetTo-
HashMap(result) }

}

public Map<String, Double> transformResultSet ToHashMap(ResultSet rs) {
Map<String, Double> ret = new HashMap<String, Double>();
try
while(rs.next()) {
ret.put(rs.getString(2), rs.getDouble(3));

return ret;
} catch(Exception e) {
e.printStackTrace();

return null;

}

Listing 5: Implementation of ReportOut role and method trans-
formHashMapToDataRows

public class ReportOut playedBy Report {
void printReport(Map<String,Double> data) -> void printReport(DataRows data)
with { transformHashMapToDataRows(data) ->> data };

public DataRows transformHashMapToDataRows(Map<String,Double> data) {
DataRows dr = new DataRows(2);
for(String key : data.keySet()) {
dr.addString(key—+";"+data.get(key));

return dr;

}

3.3. IMPLEMENTATION USING OBJECTTEAMS/JAVA 31

mentation language used. The following problems hence are a consequence of
choosing ObjectTeams/Java.

Team Activation

The first problem is role or team activation. In order for roles to get effective,
they need to be activated. It somehow needs to be expressed, that an actor
starts or stops playing a given role. ObjectTeams/Java calls this activation and
provides different mechanisms to activate roles.

The most common mechanism is unconditional team activation. To activate
a team the method activate() needs to be called on an instance of that team.
All roles in a team are bound to a player using the keyword playedBy. The con-
sequence of calling activate() is, that all instances of base-classes referenced
by roles in that team now start playing the respective role. As counterpart to
activate() the method deactivate() is provided. If this method is called,
all instances of base-classes referenced by roles of that team stop playing the
respective roles.

Additionally guard predicates can be used. Guard predicates can be used
on four different levels. They can be applied to team classes, role classes, role
methods or callin method bindings. The effect of these predicates is, that if they
evaluate to true the players referenced start playing the respective roles until the
predicates evaluate to false. If these predicates are used on the level of a team
class this effects all roles encapsulated in that team. To specify the activation of
roles in more detail the predicates may additionally be attached to role classes.
As role classes consist of attributes, a set of constructors, a set of methods and
a set of callin (as well as callout) bindings, an even more detailed specification is
possible. Single methods and even single method bindings can be (de)activated
using guard predicates on the appropriate level. The expressiveness of guard
predicates forces up even more, because they can be combined on different levels
at the same time. It is thus possible to provide a general condition for the whole
team to be active and more special conditions for single methods to be active.
If a role method binding is active or not depends on all guard predicates defined
for this binding and all predicates defined in the hierarchy above this binding.
Unfortunately the usage of guard predicates still needs the team to be explicitly
activated using the method activate().

The problem for role based adapters is, when and where to activate the team.
If the role-based adapter is deployed as a separate component the activation can
be done during component startup. E.g. in OSGi [2] the team can be activated
in class Activator of the bundle containing the adapter. This means that code
of the original application needs to be enhanced.

Fortunately in ObjectTeams/Java version 1.2 config files have been intro-
duced with the possibility to specify which teams shall be activated at program
startup time. These config files are simple text files containing the fully quali-
fied names of the teams, which shall be activated. To start the application an
additional argument needs to be passed to the VM: -Dot.teamconfig=<config-
file-name>’. This way the source code of the application does not need to be
changed, which is an important property, because there are scenarios where de-
velopers do not have these sources. E.g. a team of developers, who want to
write an extension for an application provided by a third party.

Team activation via config files poses another problem. If a team is acti-

32 CHAPTER 3. REALIZATION

vated this way, no reference to this team exists. Such teams hence cannot be
deactivated. If guard predicates are used a complete team deactivation may be
unnecessary. But if not, a so called manager team can be used. This manager
team encapsulates the original team and needs to be activated via config file, too
- instead of the original team. The manager team provides methods and callin
bindings for activation and deactivation of the encapsulated team. Though this
way the manager team can never be deactivated, the nested team, i.e. the team
we want to automatically activate at startup time, can.

Method Calls from Team to Role and Between Roles

Teams encapsulate a set of roles. Teams and roles may have methods. Because
each role is implicitly connected to its encapsulating team instance, a call from
a role to a method of its team does not pose a problem. But how can a team
call a method on one of its roles? And how may a role call a method of another
role?

In order to call a method on a role a reference to this role is needed. Team
methods usually instantiate roles and hence have a reference to the role. But
sometimes the role shall not be instantiated, because it already exists. In this
case the team method needs to get either directly the role as an argument or
the respective base instance. To get an active role of a base instance Object-
Teams/Java provides a mechanism called lifting. Non-static team methods are
allowed to use the keyword as to express a declared lifting of its parame-
ters. The parameter is not expressed only by Type name, but by BaseClass as
RoleClass name. Inside of the method the parameter name can now be used
as it would be of type RoleClass.

Besides declared lifting ObjectTeams/Java provides lifting constructors.
Lifting constructors are declared in roles and take an instance of the base class
as argument. They are generated by the compiler, but it is possible to provide
custom lifting constructors, too. The main task of these constructors is to check,
whether the given base object, the given team object and the statically given
role type are identical to an existing role object which then is returned. If no
appropriate role object is found a new role object is implicitly created. Role
based adapters make heavy usage of default lifting constructors.

In case roles and base-classes are part of an inheritance hierarchy a set of
rules are evaluated to lift the given base object to the correct role object. These
rules are necessary, because a developer may want to lift a base object to a
specific role object, which is bound to a base class which is a superclass of
the base objects class. The movement upwards the inheritance tree, to check
whether there is an appropriate superclass, is called smart lifting.

Hence to call methods of a role from a team or from another role an instance
of that role or its base class is needed. To get an active role of a base object
lifting can be used.

As counterpart to lifting, Object Teams/Java provides lowering. This mech-
anism allows to derive the base object from a role object. This can even be done
implicitly during an assignment. E.g. BaseClass b = roleObject;.

Whether a role and a base conform to each other and hence are substi-
tutable is expressed by translation polymorphism. This special form of
polymorphism is the result of merging inheritance-based polymorphism with
the additional conformance between role and base objects.

Chapter 4

Related Work

Two approaches strongly relate to role-based adapters and are examined in the
following. Programming languages supporting roles on the level of implementa-
tion have already been examined in Section 3.1.

4.1 Compositional Filters

In [6] Lodewijk Bergmans and Mehmet Aksit describe one of the first aspect-
oriented approaches for composition of program elements. The approach is
based on the object-oriented paradigm. Objects interact with each other by
sending messages to one another. Such a message could be an event or a method
call. To change the behavior of an object it hence suffices to change the incoming
and outgoing messages of that object. This is in essence what compositional
filters (CFs) do.

The main goals of the CF model are composability, evolvability, robustness,
implementation-independence and dynamics. The composition capabilities shall
be hierarchically, that is modules of behavior shall be composable into new
modules. Existing systems shall be extensible in a modular way. The application
of the CF model shall not impair the creation of correct systems. It shall
be possible to provide multiple implementations with different characteristics.
Finally dynamic adaptation of structure and behavior shall be supported.

The compositional filter model distinguishes two kinds of abstractions: con-
cerns and filters. Concerns are primary program elements - classes as known
from the object-oriented paradigm. The purpose of filters is to encapsulate
extensions to concerns. An important difference to other aspect-oriented and
role-based approaches is, that compositional filters focus only on behavior, not
on structure.

Filters are grouped into filter modules, which provide an execution context
for them - like roles, which need a context to exist, too. Filter modules are
elements of reuse and are used to instantiate filter behavior. A concern instance
as depicted in Figure 4.1 denotes an object, composed with a set of filter models.
It is important to note, that concern instances are single entities with their own
identity!. Because of this they do not suffer from object schizophrenia [12]. The
different parts of concern instances can be identified on the conceptual level, but

Ithat is the object and its filters do not have separate identities, but a single one

33

34 CHAPTER 4. RELATED WORK
not on the physical level. The object enclosed by a concern instance is called

the tmplementation object.

received send
messages messages
A

[~ 1 & ==
filter-
filter-
input filters module output filters

Implementation

Figure 4.1: a concern instance and its parts, redrawn from [6]

Bergmans and Aksit distinct input and output filters. Messages sent to
an object need to pass all input filters of that object. Messages sent from an
object need to pass through all outgoing filters. The task of filters is to reject
messages, change them or just pass them by. Thus each filter inspects and
possibly manipulates the messages it receives.

An important requirement on implementation objects is, that they need to
provide an interface, which consists of reqular methods and condition methods.
The functional behavior of the object needs to be accessible by regular meth-
ods. The current state of the object needs to be accessible by condition methods,
which need to be side-effect free. The usage of condition methods to express the
state of the object leads to implementation-independence and improve reuse-
ability, because condition methods can be used by other filter modules, too.

Filters consist of two parts. A filter type and filter elements. Filter elements
are composed to filter patterns. The filter pattern is used to declaratively express
whether an inspected message matches or not. Depending on the composition
operator used to construct a filter pattern the respective filter elements are
evaluated. In general filter patterns and filter elements evaluate to a boolean
value. If the pattern evaluates to false the message is rejected by this filter and
will be passed to the next filter, unless the filter type does not impose an action
to take place in this case. If there is no following filter an exception ‘message not
understood’ is raised. One of the predefined filter types is Error. Its semantics
are, that if the message is rejected an exception is raised, else the message is
passed to the next filter. If the pattern evaluates to true an action depending
on the filter type is invoked and the message passes to the next filter or, if there
is no following filter, to its target.

Concern instances encapsulate filter modules and the implementation object.
This enables intra-object crosscuts, because the filters in the filter modules are
only involved if a message is sent to this object. To enable inter-object crosscuts
a mechanism called superimposition is provided by the CF model. Concerns are
enriched with a superimposition specification, which describes which modules

4.2. EXOGENOUS CONNECTORS 35

are to be superimposed where. To describe the positions where to superimpose,
selectors are used. Their task is to select objects from the instance space,
that is all objects of the current application. The Object Constraint Language
[18] is used to express selectors. Figure 4.2 depicts 3 concerns whereof 2 are
superimposed on the third.

| | fiter- [|
[inputfiters | module | _inputfilters

filter-
| input filters | module | _inputfilters |

super-
imposition!
Implementation
(e.g. Java class)

Figure 4.2: Superimposition using 3 concerns, redrawn from [6]

N

|— filtermodule —

filter-
input filters | module | input filters |

super-
imposition

| filtermodule ——

inner
object

The closest relation between the CF model and RBAs is the adaptation
of incoming and outgoing messages. RBAs use In- and Out-Roles to connect
components. In-Roles intercept method calls and redirect them to the mediator.
Thus conceptually In-Roles of RBAs can be seen as a special form of input
filters. Out-Roles delegate method calls, whereby the arguments being send
are potentially modified by the mediator. Thus conceptually Out-Roles are a
special form of output filters.

The CF model is an extension to the object-oriented paradigm, having com-
posability as focus. RBAs base on the role paradigm, but do not extend it.
Compositional filters are more general than RBAs, because it is possible to ex-
press RBAs using the CF model. A role-based adapter is realized as a concern.
In-Roles are realized as input filters of type Meta and Out-Roles as output fil-
ters of type Detach. The implementation object of the concern is the mediator,
whose method distribute needs to be enhanced with an argument for the rei-
fied message, generated by the Meta-Filtertype. Every method call will thus
be intercepted, reified and send to the mediator. Using the Detach-Filtertype
outgoing method calls will be delegated to the correct target objects. Using
superimposition nesting of these adapters is possible, too.

Thus compositional filters and RBAs have adaptation of incoming and out-
going messages in common, but compositional filters are more general.

4.2 Exogenous Connectors

Component based systems consists of a component model and a composition
technique [5]. Components encapsulate computation. The composition of com-
ponents is based on either direct or indirect message passing. Method calls are
messages, specifying the method and the arguments, passed from a sender to
a receiver directly. Control flow originates in components. Information about
connections between components is thus hard-wired in components, which leads
to bad flexibility.

36 CHAPTER 4. RELATED WORK

An alternative is indirect message passing, which is realized using the me-
diator pattern. To compose two components A and B, A notifies the mediator,
which in turn calls B. This introduces a level of indirection, but decreases cou-
pling between components, because now A only depends on the mediator, but
not on B. The mediator is called connector, because of his task. Besides the me-
diator pattern other patterns, like decorator or observer can be used to realize
connectors.

Indirect message passing separates computation from communication, which
is encapsulated in the connectors. But control flow is still mixed in components
and connectors, as components need to notify the connectors, which call meth-
ods of other components in turn. Control flow thus originates in components
and is passed to connectors. The aim of ezogenous connectors is to minimize
coupling between components. Moreover reasoning about systems build using
exogenous connectors becomes more practicable.

The idea of exogenous connectors is to completely encapsulate control flow in
connectors. Thus components do not call each other or notify some connector.
Instead the connectors call components. Imagine component A having a method
myq, calling method ms of component B. Using exogenous connectors the method
call from my to mo is removed from the component. Instead the connector first
calls method my and than calls method ms.

To compose systems consisting of more than 2 components a hierarchy of
connectors is to be used. The simplest form of connector are L1 connectors. L1
connectors connect to a single method and hence are called method invocation
connectors. Connectors on level 2 connect two L1 connectors. Connectors on
higher levels connect n connectors of lower levels. Figure 4.3 depicts an example
hierarchy. Interestingly connectors on levels higher than 2 are polymorphic?,
whereas connectors on level 1 and 2 are not. This is because level 2 connectors
are tight to level 1 connectors, which are tight to components. One of the major
drawbacks of exogenous connectors is, that big systems lead to very complex
hierarchies of connectors, which hence are hard to handle.

Level 3

Level 2

Level 1 Lr) Lr) Qr)
== [A] [B] [€] [D] [E] [F] [C

Figure 4.3: example of a connector hierarchy, redrawn from [16]

Role-based adapters can be seen as a special form of exogenous connectors
if they are used exhaustively. The RBA approach does not require developers
to remove "control flow related" code from components. But RBAs can be used

2L1 connectors connect to classes, L2 connectors connect L1 connectors, L, connectors
connect each type of exogenous connector

4.2. EXOGENOUS CONNECTORS 37

to realize exogenous connectors in an even better way, than described in [16],
because of the ability to intercept method calls. The only violation is, that at
one point the control flow needs to be initiated, which is usually not in a RBA.
As soon as one method is called the In-Roles are able to intercept and pass
the control flow to the mediator. Out-Roles are method invocation connectors
(L1 connectors). The mediator contains the composition receipt for the L1
connectors, i.e. Out-Roles. As shown in 2.2 RBAs are composed hierarchically.
Thus each RBA may connect multiple RBAs, whereas the mediator of this
"super"-RBA contains the composition receipt. Thus RBAs are L2 and L,
connectors, too. RBAs are able to connect classes and themselves.

The usage of the mediator to describe compositional programs is powerful.
It is up to the developer to decide how big such a single mediator shall be.
It is on the one hand side possible to put a large amount of logic into the
mediators and hence lower the amount of RBAs. On the other hand side it may
be smarter to use more RBAs with smaller mediators. This can be seen as an
advantage, due to the gained flexibility, or as disadvantage, due to the loss of
developer-guidance.

Exhaustive usage of RBAs, i.e. all connections between components of a
system are established using RBAs, leads to exogenous connectors and offers
all benefits provided by them: minimized coupling between components (high
flexibility), the ability to reason about composed systems and predictable as-
sembly.

38

CHAPTER 4. RELATED WORK

Chapter 5

Conclusion

This thesis introduces a novel mechanism to merge components using adapters.
The idea of using roles on the level of implementation to realize adapters is
motivated and conceptually described. A running example, highlighting the
problems of class-based adapters (based on [10]) is introduced. For implemen-
tation the language ObjectTeams/Java (OT/J) has been chosen following a set
of five criteria and the main concepts of OT/J are described. The realization of
the running example using role based adapters, written in OT/J, is shown. In
doing so problems identified for class-based adapters are shown to be solved. As
any programming language, OT/J has its very own model. Section 3.1 shows,
that all alternative languages are either not mature or do not support roles as
first order programming constructs. Because of this, problems, specific to OT/J,
examined during realization of the running example are described in more de-
tail. Compositional filters and exogenous connectors are examined as related
work. Finally the main contributions of the thesis at hand and future work are
outlined.

5.1 Contributions

The first achievement is the identification of problems of class-based adapters
in Section 1.2. If a set of components, where each has its own domain, are to
be integrated, code belonging to these domains is heavily intertwined. Because
of this a developer needs to have in-depth knowledge about all components.
High training costs, which even get higher in case such trained employees leave
the company, are a direct consequence. Tangling code of different concerns is
identified as the root problem.

Using roles on the level of implementation solves the root problem. Code,
which formerly was tangled, is now separated. Each participant in an integration
scenario is integrated using a separately maintainable role. Chapter 2 describes
in detail, how this separation of adaptation concerns is achieved. Adaptee code,
i.e. code to communicate with components providing functionality to be used
by others, is encapsulated in Qut-Roles. Target code, i.e. code responsible
for communication with components requesting functionality, is encapsulated
in In-Roles. Adapter code consists of two parts. Which components are to be
called in which order is the first part. How results and parameters are to be

39

40 CHAPTER 5. CONCLUSION

transformed is the second. The order of calling components is encapsulated in
the mediator. Transformation of results and parameters is realized by reusable
ambassadors, specific for each component.

A set of challenges specific to OT/J have been examined during the real-
ization of the running example. The first problem - activation - is described in
Subsection 3.3.2. Using OT/J it is necessary to explicitly activate roles. Role-
based adapters shall be active all the time, but code responsible for activating
them shall not be put into client code. Fortunately since version 1.2 of OT/J
config files enable activation without touching client code. The second problem
is due to the complex calling and substitution mechanisms of OT/J - lifting,
lowering and translation polymorphism. Thus they are described in more detail
in Subsection 3.3.2.

Finally role-based adapters are compared to compositional filters in Section
4.1 and exogenous connectors in Section 4.2.

5.2 Future Work

The recent appearance of mature programming languages, supporting roles on
the level of implementation, opens a new field of research. The thesis at hand
introduces role-based adapters, the realization of the adapter design pattern
using roles on the level of implementation. In the remainder of this section
three starting points for future work are explained.

5.2.1 Collection of Empirical Data Using an Experiment

The thesis at hand claims, that separation of adaptation concerns leads to
lower maintenance costs. An experiment for verification should be done in
the future, to show empirical data on the improvement due to using role-based
adapters in spite of class-based adapters. Two teams of 5 students each shall
develop an extended version of the university management system (UMS), as
introduced in Section 1.2. Reporting shall support PDF, DOC and XLS as
output formats. At least two different database vendors shall be supported.
Furthermore students in the UMS attend courses, which take place at given
points in time. A further component for scheduling is to be developed. The fi-
nal application should allow the user to manage' students, their grades, courses
and enrollments of students to courses. Besides printing support of a student’s
grades, the system shall be able to schedule courses of students. The first team
shall use class-based adapters, the second team role-based adapters. The ex-
periment consists of two phases. First both teams develop the base system,
as described in Section 1.2. In the second phase both teams incorporate the
changes listed in this paragraph. Besides time measurement and software met-
rics, a survey, which is to be answered by each student, shall be used to collect
empirical data.

Lsupport CRUD - create, read, update, delete

5.2. FUTURE WORK 41

5.2.2 Using Role-Based Adapters for Change Encapsula-
tion

Adaptation covers integration and evolution. Integration of new components
into the overall system has been covered in the thesis at hand. Evolution has not
been covered, though the adapter design pattern is usable for the evolutionary
part of adaptation, too, as approaches like [23, 24] show.

Remind the example introduced in Section 1.2. As components are devel-
oped by different teams of developers, they may evolve independently from each
other. Imagine a new version of the reporting component. Class Report is
changed in that its method printReport is renamed to generateReport and
class DataRows is refined to a class hierarchy having a class Data as root of the
hierarchy and classes RowSet and Table as leafs. Class RowSet represents tuples
of data, as class DataRows did in the first version of the reporting component.
Class Table represents matrices of data.

To incorporate the new version of the reporting component each role-based
adapter connected to class Report needs to be changed. The more adapters are
connected to that class, the more effort is required to compensate the changes,
even though using role-based adapters it is easy to find the appropriate locations
in the code.

To reduce the effort for integrating a new version of a component, adapters
can be used. In front of the new version of a component an adapter is to be put,
which acts as the old version of the component. Adapters provide functionality
to clients in a form clients expect. If a client expects the old version of a
component an adapter is usable to provide the functionality of the new version
in form of the old version. In [24] such adapters are realized using classes. The
realization using role-based adapters should be examined in the future.

5.2.3 Parameterizable Role-Based Adapters

Role-based adapters connect components. The core of each RBA is the me-
diator, which specifies which functionality is to be called in which order and
how to pass on the data. The thesis at hand does not pose any restrictions on
mediators. However, special mediators and thus special kinds of RBAs can be
identified.

For example a sequence RBA, which calls each component to be integrated
and passes the result as argument to the next component. Such a role-based
adapter is usable as a parameterizable template. The parameters are the com-
ponents in the desired order.

Another example is a pick RBA, which is parameterized by multiple compo-
nents?, too. The difference to a sequence mediator is, that this kind of mediator
asks the component specified by the first parameter, which of the other compo-
nents, specified by the following parameters, to use.

Using such parameterizable RBAs compositions can be described like work-
flows. Thus parameterizable RBAs should be identified and examined in the
future.

2i.e. methods of classes of the components

42

CHAPTER 5. CONCLUSION

Bibliography

[1] AspectJ homepage. http://www.eclipse.org/aspectj/, 2008.

[2] The OSGi Alliance. OSGi Service Platform Specification.
http://www.osgi.org, April 2007.

[3] Sven Apel, Don Batory, and Marko Rosenmiiller. On the structure of
crosscutting concerns: Using aspects or collaborations? In Proceedings
of 1st Workshop on Aspect-Oriented Product Line Engineering, AOPLE’
2006, pages 20—24, 2006.

[4] Ken Arnold and James Gosling. The Java programming language. The
Java Series, Reading, MA: Addison-Wesley, 1996.

[5] Uwe Assmann. Invasive Software Composition. Springer, Berlin, 2003.

[6] Lodewijk Bergmans and Mehmet Aksit. Principles and design rationale
of composition filters. In R. Filman, T. Elrad, S. Clarke, and M. Aksit,
editors, Aspect-Oriented Software Development. Addison-Wesley, 2004.

[7] Martin Odersky et. al. Scala language specification. http://scala.epfl.ch,
2004.

[8] Martin Fowler. UML Distilled: Applying the Standard Object Modelling
Language. Addison-Wesley, 1997.

[9] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
patterns: elements of reusable object-oriented software. Addison-Wesley
Professional, 1995.

[10] Sebastian Gotz and Ilie Savga. Exploring role-based adaptation. In Proceed-
ings of the 5th ECOOP’2008 Workshop on Reflection, AOP and Meta-Data
for Software Evolution, RAM-SE 08, 2008.

[11] Giancarlo Guizzardi. Ontological Foundations for Structural Conceptual
Models. PhD thesis, University of Twente, The Netherlands, 2005.

[12] William Harrison and Harold Ossher. Subject-oriented programming: a
critique of pure objects. In Proceedings of the 8th ACM SIGPLAN con-
ference on Object-oriented programming, systems, languages, and applica-
tions, OOPSLA ’93. ACM, 1993.

[13] Stephan Herrmann, Christine Hundt, and Marco Mosconi. ObjectTeams/-
Java language definition - version 1.0. Technical report, TU Berlin, Fakultit
IV - Elektrotechnik und Informatik, 2007.

43

44

[14]

[15]

[16]

[17]

[18]

[19]

[20]

21]

[22]

23]

[24]

[25]

BIBLIOGRAPHY

Tetsuo Kamina and Tetsuo Tamai. McJava - a design and implementation
of java with mixin-types. In Proceedings of Programming Languages and
Systems: Second Asian Symposium, APLAS 2004, pages 398414, 2004.

Giinther Kniesel. Type-safe delegation for run-time component adaptation.
Lecture Notes in Computer Science, 1628:351-368, 1999.

K.-K. Lau, P. Velasco Elizondo, and Z. Wang. Exogenous connectors for
software components. In Proceedings of the 8th International SIGSOFT
Symposium on Component-based Software Engineering, LNCS 3489, pages
90-106, 2005.

Supasit Monpratarnchai and Tamai Tetsuo. The design and implementa-
tion of a role model based language, EpsilonJ. In Proceedings of the Fifth
International Conference in Electrical Engineering/Electronics, Computer,
Telecommunications, and Information Technology, ECTICON’ 2008, 2008.

OMG. Object Constraint Language, OMG Available Specification, Version
2.0. http://www.omg.org/docs/formal/06-05-01.pdf, 2006.

Michael Pradel and Martin Odersky. Scala Roles - A lightweight approach
towards reusable collaborations. In Proceedings of the International Con-
ference on Software and Data Technologies (ICSOFT ’08), 2008.

Trygve Reenskaug. Working with objects - The OOram Software Engineer-
ing Method. Taskon, Gaustadalléen 21, N-0371 Oslo 3 Norway, 1995.

Dirk Riehle. A role-based design pattern catalog of atomic and composite
patterns structured by pattern purpose. Technical report, Ubilab Technical
Report 97-1-1. Ziirich, Switzerland: Union Bank of Switzerland, 1997.

Dirk Riehle and Thomas Gross. Role model based framework design and in-
tegration. In Proceedings of the 13th ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications, OOPSLA ’98,
pages 117-133. ACM Press, 1998.

Ilie Savga, Michael Rudolf, and Sebastian G&tz. Comeback!: a refactoring-
based tool for binary-compatible framework upgrade. In Companion of
Proceedings of the 30th International Conference on Software Engineering,
ICSE’08, 2008.

Tlie Savga, Michael Rudolf, Sebastian Go6tz, and Uwe Assmann. Practical
refactoring-based framework upgrade. In Proceedings of the 7th Interna-
tional Conference on Generative Programming and Component Engineer-
ing, GPCE’08, 2008.

Clemens Szyperski and Cuno Pfister. Summary of the first workshop on
component oriented programming. In Proceedings of the 1st workshop on
component oriented programming, WCOP’96, 1996.

Confirmation

I confirm that I independently prepared the thesis and that I used only the
references and auxiliary means indicated in the thesis.

Dresden, November 14, 2008

