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Context: Self-adaptive Systems

Goal: Self-adaptive Systems (SAS)

Robert Laddaga 1997:

"Self Adaptive Software evaluates its own behavior and changes behavior
when the evaluation indicates that it is not accomplishing what the software is
intended to do, or when better functionality or performance is
possible.“ [L97]
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Context
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Which variant of which software should be used?

How good is each variant in comparison to the others?

Which resources should be utilized?

How to achieve the best possible user satisfaction
for the least possible cost?



Motivation

• User objectives relate to qualities: energy, performance, domain-specific

qualities as noise-levels, etc.

• Often multiple, competing qualities are to be considered in combination [ST09]
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Multi-Quality Auto-Tuning (MQuAT)

A novel approach to design & operate self-optimizing systems
covering multiple objectives.



Problems / Related Work

Problem 1: Developers cannot reuse solutions to build self-optimizing

systems although many specific approaches exist.

• Fixed set of considered properties (e.g., bandwidth, response time)

• Fixed architecture (e.g., specific to servers, mobile phones or cars)

• Fixed optimization technique (e.g., integer linear programming)

Goal: A generic approach to self-optimizing systems.

Solution: A model-driven development approach to self-optimization

• A component-based metamodel enabling the developer to specify the

properties of interest and the system‘s architecture.

• Technology bridges to utilize multiple optimization techniques (generation

of optimization problems).
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Optimization Problem Description
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Problems / Related Work

Problem 2: Existing (specific) approaches do not cover dependencies

between qualities.

• Quality-contract-based approaches

• COMQUAD  QoS characteristics (e.g., response_time < 5ms) [RZ03]

• THESEUS  SLAs; QoS intervals (e.g., 2ms < response_time < 5ms) [S10]

• No context-dependent QoS statements (e.g., response_time(size) = f(size))

• Both projects identified the need to cover QoS dependencies [ZM03, S10]

Goal: Explicit coverage of (context-dependent) interaction between qualities.

Solution: 

• An extended notion of quality contracts and

• A process for quality contract refinement.

17.07.2013 Multi-Quality Auto-Tuning by Contract Negotiation Slide 8



Problems / Related Work

Problem 3: Competing qualities demand for multi-objective optimization

having a high computational complexity (NP-hard) [NW99]

• Multi-objective approaches (e.g., OCTOPUS)

• „a priori“: aggregation of objectives prior to optimization

• „a posteriori“: optimization delivers set of multi-dimensional solutions

(Pareto front)

• Optimization at runtime requires feasible, assessable time requirements

Goal: A generic, assessable runtime multi-objective optimization approach.

Solution:

• 4 runtime technology bridges to multi-objective optimization techiques.

• Scalability analysis of supported techniques.
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PART 1: DEVELOPMENT
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Cool Component Model [GWS+10]
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Cool Component Model [GWS+10]

• Example CCM Structure Model for Servers:

• Example Unit Library
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Server

NetCPU RAM DbxCard

clock_rate: GHz

performance : FLOP/s

cpuLoad : Percent

cpu_time : Second

free : GB = total – used

used : GB

total : GB

throughput : GB/s

bandwidth : Mb/s time : Second

threshold : dB

amplification : dB

1..*

1..* 1..* 1..* 1..*

<<container>>

NoiseReduction

<meta> audio_length : Second

response_time : Second

noiseReductionLevel: dB

apply

• Example CCM Structure Model for Sort:

library {

simple unit Watt : Integer

simple unit Second : Integer;

simple unit dB : Real;

complex unit Joule = Watt Second;

factor KW = 1000 Watt;

}



Quality Contract Language [GWC+12a]

Quality Modes

Software Dependencies

Resource Dependencies

Quality Provisions

Contracts characterize implementations
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Quality Modes

1 contract Dbx implements NoiseReduction.apply {

2

3   mode professional {

4     requires component SpecialNoiseReduction {

5       min capability: 100 [percent]

6     }

7

8     requires resource DbxCard {

9       min <time>(audio-length) [ms]

10     }

11 

12     provides min noiseReductionLevel: 25 dB

13 provides min <response_time>(audio_length) [s]

14   }

15

16   mode amateur {

17     /* More requirements and provisions here ... */

18  }

19 }



Contract Refinement [GWC+12b]

• Target systems and user input are unknown to developer.

• Developer creates contract templates:

• Developer creates Benchmark Suite using Profiler Framework [WGR13]
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contract Dbx implements NoiseReduction.apply {

mode professional {

...

provides min response_time: 

<response_time>(audio_length) [s];

}

...

}

for(i = 0; i <= N; i++) {

Profiler.getProfiler(„response_time“).start();

dbx.apply(sample_files[i]);

Profiler.getProfiler(„response_time“).stop();

}

NoiseReduction

<meta> audio_length : Second

response_time : Second

noiseReductionLevel: dB

apply



• Target systems and user input are unknown to developer.

• Developer creates contract templates:

• Benchmarks executed at deployment time on each target machine:
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audio_length response_time

1s

2s

...

120s

945ms

1823ms

...

110215ms

<response_time>(audio_length) [s]

1.147*10^(-6)*audio_length^2-1922 [s];

One contract per machine and implementation.

Contract Refinement [GWC+12b]

contract Dbx implements NoiseReduction.apply {

mode professional {

...

provides min response_time: 

<response_time>(audio_length) [s];

}

...

}

NoiseReduction

<meta> audio_length : Second

response_time : Second

noiseReductionLevel: dB

apply



PART 2: RUNTIME
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Contract Negotiation
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components, which are known and controllable by central
coordinators as known from the self-adaptive system‘s community.
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Contract Negotiation by ILP [GWC+11]

• Base: Integer Linear Programming (ILP)

• Goal: determine the variable assignment, which

• Maximizes objective function and

• Adheres to the constraints.

• Avoids pruning of whole search space (worst case)
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Contract Negotiation by ILP [GWC+11]
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• Integer Linear Programming (ILP)

Usage Variables



ILP by Example
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/* objective function: minimize energy consumption (based on cpu_time) */

min: 5700.0 b#Quicksort#delayed#R1 + 495.0 b#UnsortedFilter#slow#R1 

+ 10285.0 b#Quicksort#immediate#R1 + 6160.0 b#Javasort#immediate#R1 

+ 385.0 b#UnsortedFilter#fast#R1 + 2250.0 b#Random#slow#R1 

+ 5940.0 b#Javasort#delayed#R1 + 2695.0 b#Random#fast#R1;

/* architectural constraints */

b#Random#fast#R1 + b#Random#slow#R1 = b#Quicksort#delayed#R1 + b#Quicksort#immediate#R1 

+ b#Javasort#immediate#R1 + b#Javasort#delayed#R1;

b#UnsortedFilter#fast#R1 + b#UnsortedFilter#slow#R1 = 1;

b#Quicksort#immediate#R1 + b#Quicksort#delayed#R1

+ b#Javasort#immediate#R1 + b#Javasort#delayed#R1 = b#UnsortedFilter#slow#R1 

+ b#UnsortedFilter#fast#R1;

/* resource negotiation */

usage#R1#Core[TM]_i7_CPU_Q_720_@_1.60GHz#frequency <= 1596.0;

usage#R1#Core[TM]_i7_CPU_Q_720_@_1.60GHz#frequency >= 0;

usage#R1#Core[TM]_i7_CPU_Q_720_@_1.60GHz#frequency = 

100 b#Javasort#delayed#R1 + 100 b#UnsortedFilter#slow#R1 + 100 b#Quicksort#delayed#R1 

+ 300 b#Random#fast#R1 + 300 b#Quicksort#immediate#R1 + 100 b#Random#slow#R1 

+ 300 b#Javasort#immediate#R1 + 300 b#UnsortedFilter#fast#R1;

...



ILP by Example
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...

/* software NFP negotiation */

Sort#response_time = 382.05714282441 b#Quicksort#delayed#R1 

+ 377.31428570997804 b#Quicksort#immediate#R1 

+ 399.771428570494 b#Javasort#immediate#R1 

+ 416.34285718949195 b#Javasort#delayed#R1;

Filter#response_time = 23.921216866850248 b#UnsortedFilter#slow#R1 

+ 28.407017552658598 b#UnsortedFilter#fast#R1;

ListGen#response_time = 107.6078431285458 b#Random#slow#R1 

+ 106.7843137012918 b#Random#fast#R1;

Sort#response_time >= 50 b#UnsortedFilter#fast#R1;

ListGen#response_time >= 50 b#Quicksort#delayed#R1 + 50 b#Javasort#immediate#R1 

+ 50 b#Javasort#delayed#R1;

/* user request */

Filter#response_time <= 200.0;

/* boolean restriction */

binary b#Quicksort#delayed#R1, b#UnsortedFilter#slow#R1, b#Quicksort#immediate#R1, 

b#Javasort#immediate#R1, b#UnsortedFilter#fast#R1, b#Random#slow#R1, 

b#Javasort#delayed#R1, b#Random#fast#R1;



Contract Negotiation by MOILP
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Contract Negotiation by MOILP
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Quadradic Growth until Termination



Scalability Analysis [GWR+13]

• Performed on data-flow graphs (pipe-and-filter style)

• Measurements taken for C x S systems from C = [2..100] and S = [2..100]

• All measurements made on Alienware X51 (Win7 64bit, SSD HDD, 8GB 
DDR1600 RAM, Intel Core i7-2600 with 4 physical cores at 3.4GHz)

• Concrete numbers will differ on other machines, solvers, etc.

• Focus on principle findings.

C components

S servers
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Scalability Analysis: ILP [GWR+13]
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Predictable up to 25 Components

Reason: Worst-case situations

Solving Time [ms]

Timeout: 2min

3rd Quartile: 26,58s

Feasible up to 100x100



Scalability Analysis: MOILP
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Solving Time for 2 Objective Functions
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3rd Quantile: 62,92 s

The jump is due to heuristics in solver.



Scalability Analysis: MOILP

17.07.2013 Multi-Quality Auto-Tuning by Contract Negotiation Slide 29

Size of Pareto Front for 2 Objective Functions

Large Pareto-fronts even for small systems



Scalability Analysis: MOILP
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Solving Time for 3 Objective Functions

Infeasible due to
quadratic explosion.



Part 2: 

Runtime System

Developer

Part 1: Development
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Developers are not restricted to prescribed non-

functional properties and architectural elements.

Context-dependent interdependencies of multiple 

qualities are supported.

Realized and analyzed four runtime MOO techniques as

technology bridges.



Future Work

• Bootstrapping: MQuAT for Monitoring, Optimization and Reconfiguration

• Both are components with different implementations, too.

• Scalability analysis is a first step for the optimization component

• Collaboration planned with Prof. Fischer (Numerical Optimization Group)

• Green Software Engineering (CRC 912: HAEC, NFG ZESSY) 

[WGR+11, WRP+12, WRP+13, WGR13, GMT+13, WRG+13a, WRG+13b]

• Open Challenges: Sustainability, Negotiation of Energy-Sources (Solar, 

Battery, Provider, etc.)

• Software Engineering for Robotic and Cyber-Physical Systems 

[GLR+11, GLP+12, PRG+12]

• Open Challenge: Optimization across discrete and continuous system 

parts
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