
Department of Computer Science, Software Technology Group

Multi-Quality Auto-Tuning
by Contract Negotiation

Verteidigung der Dissertation
von Dipl.-Inf. Sebastian Götz

17.07.2013

Betreuer: Prof. Dr. rer. nat. habil. Uwe Aßmann
Zweitgutachter: Prof. Dr. rer. nat. habil. Heinrich Hußmann
Fachreferent: Prof. Dr. rer. nat. habil. Dr. h. c. Alexander Schill

Noise
Reduction

Leveler

Loudness
Adjustment

Motivation

Example: Audio-Processing (https://auphonic.com/)

17.07.2013 Multi-Quality Auto-Tuning by Contract Negotiation Slide 2

params

audio file

Generate
Sound
Effects

Change
Change

Change

? ?

? ?

? ?

? ?

Configuration

Qualities, Quality of Service (QoS), Non-functional Properties (NFPs)

Context: Self-adaptive Systems

Goal: Self-adaptive Systems (SAS)

Robert Laddaga 1997:

"Self Adaptive Software evaluates its own behavior and changes behavior
when the evaluation indicates that it is not accomplishing what the software is
intended to do, or when better functionality or performance is
possible.“ [L97]

17.07.2013 Multi-Quality Auto-Tuning by Contract Negotiation Slide 3

Autonomic Manager

KnowledgeMonitor

Analyze Plan

Execute

MAPE-K Loop [KC03]

Context

17.07.2013 Multi-Quality Auto-Tuning by Contract Negotiation

Internet

UMTS/LTE

W-LAN LAN

QoS Demands
Objectives

Slide 4

Which variant of which software should be used?

How good is each variant in comparison to the others?

Which resources should be utilized?

How to achieve the best possible user satisfaction
for the least possible cost?

Motivation

• User objectives relate to qualities: energy, performance, domain-specific

qualities as noise-levels, etc.

• Often multiple, competing qualities are to be considered in combination [ST09]

17.07.2013 Multi-Quality Auto-Tuning by Contract Negotiation Slide 5

Multi-Quality Auto-Tuning (MQuAT)

A novel approach to design & operate self-optimizing systems
covering multiple objectives.

Problems / Related Work

Problem 1: Developers cannot reuse solutions to build self-optimizing

systems although many specific approaches exist.

• Fixed set of considered properties (e.g., bandwidth, response time)

• Fixed architecture (e.g., specific to servers, mobile phones or cars)

• Fixed optimization technique (e.g., integer linear programming)

Goal: A generic approach to self-optimizing systems.

Solution: A model-driven development approach to self-optimization

• A component-based metamodel enabling the developer to specify the

properties of interest and the system‘s architecture.

• Technology bridges to utilize multiple optimization techniques (generation

of optimization problems).

17.07.2013 Multi-Quality Auto-Tuning by Contract Negotiation Slide 6

Optimization Problem Description

17.07.2013 Multi-Quality Auto-Tuning by Contract Negotiation Slide 7

Noise
Reduction

Generate
Sound
Effects

Leveler

Synchronization

? ? ?

? ? ?
? ? ?

? ?

Machine #1 Machine #2 Machine #3 …

CPU

RAM

Net CPU RAMNet

CPU

RAM

Net

?

Arm

Leg

Board #1 …

Data-flow Graph

Tree

Problems / Related Work

Problem 2: Existing (specific) approaches do not cover dependencies

between qualities.

• Quality-contract-based approaches

• COMQUAD  QoS characteristics (e.g., response_time < 5ms) [RZ03]

• THESEUS  SLAs; QoS intervals (e.g., 2ms < response_time < 5ms) [S10]

• No context-dependent QoS statements (e.g., response_time(size) = f(size))

• Both projects identified the need to cover QoS dependencies [ZM03, S10]

Goal: Explicit coverage of (context-dependent) interaction between qualities.

Solution:

• An extended notion of quality contracts and

• A process for quality contract refinement.

17.07.2013 Multi-Quality Auto-Tuning by Contract Negotiation Slide 8

Problems / Related Work

Problem 3: Competing qualities demand for multi-objective optimization

having a high computational complexity (NP-hard) [NW99]

• Multi-objective approaches (e.g., OCTOPUS)

• „a priori“: aggregation of objectives prior to optimization

• „a posteriori“: optimization delivers set of multi-dimensional solutions

(Pareto front)

• Optimization at runtime requires feasible, assessable time requirements

Goal: A generic, assessable runtime multi-objective optimization approach.

Solution:

• 4 runtime technology bridges to multi-objective optimization techiques.

• Scalability analysis of supported techniques.

17.07.2013 Multi-Quality Auto-Tuning by Contract Negotiation Slide 9

Problems / Related Work

Problem 3: Competing qualities demand for multi-objective optimization

having a high computational complexity (NP-hard) [NW99]

• Multi-objective approaches (e.g., OCTOPUS)

• „a priori“: aggregation of objectives prior to optimization

• „a posteriori“: optimization delivers set of multi-dimensional solutions

(Pareto front)

• Optimization at runtime requires feasible, assessable time requirements

Goal: A generic, assessable runtime multi-objective optimization approach.

Solution:

• 4 runtime technology bridges to multi-objective optimization techiques.

• Scalability analysis of supported techniques.

17.07.2013 Multi-Quality Auto-Tuning by Contract Negotiation Slide 10

Part 2:

Runtime System

Hardware

Infrastructure

Developer

Part 1: Development

Overview

17.07.2013 Multi-Quality Auto-Tuning by Contract Negotiation Slide 11

Users

Request

Multiple

Objectives

Runtime Model

Running

Components

Multiple Objective

Function Computation

Runtime Optimization
(Contract Negotiation)

Models

CCM

QoS

Contracts

Code

Bench-

marks

QCL
Refine-

ment

Genericity /

Reuse

QoS

Dependencies
Runtime MOO

PART 1: DEVELOPMENT

17.07.2013 Multi-Quality Auto-Tuning by Contract Negotiation Slide 12

Cool Component Model [GWS+10]

17.07.2013 Multi-Quality Auto-Tuning by Contract Negotiation Slide 13

Cool

Component

Model

Structure Models

(i.e., types)

Variant Models

(i.e., instances)

 runtime

<<instance of>>

Quality

Contract

Language

<<refined by>>

Behavior Models

<<enrich>>

Expressions Units DataTypes

Requests Reconfigurations Workloads

Base Layer

Core Layer

SAS Layer

Cool Component Model [GWS+10]

• Example CCM Structure Model for Servers:

• Example Unit Library

17.07.2013 Multi-Quality Auto-Tuning by Contract Negotiation Slide 14

Server

NetCPU RAM DbxCard

clock_rate: GHz

performance : FLOP/s

cpuLoad : Percent

cpu_time : Second

free : GB = total – used

used : GB

total : GB

throughput : GB/s

bandwidth : Mb/s time : Second

threshold : dB

amplification : dB

1..*

1..* 1..* 1..* 1..*

<<container>>

NoiseReduction

<meta> audio_length : Second

response_time : Second

noiseReductionLevel: dB

apply

• Example CCM Structure Model for Sort:

library {

simple unit Watt : Integer

simple unit Second : Integer;

simple unit dB : Real;

complex unit Joule = Watt Second;

factor KW = 1000 Watt;

}

Quality Contract Language [GWC+12a]

Quality Modes

Software Dependencies

Resource Dependencies

Quality Provisions

Contracts characterize implementations

17.07.2013 Multi-Quality Auto-Tuning by Contract Negotiation Slide 15

Quality Modes

1 contract Dbx implements NoiseReduction.apply {

2

3 mode professional {

4 requires component SpecialNoiseReduction {

5 min capability: 100 [percent]

6 }

7

8 requires resource DbxCard {

9 min <time>(audio-length) [ms]

10 }

11

12 provides min noiseReductionLevel: 25 dB

13 provides min <response_time>(audio_length) [s]

14 }

15

16 mode amateur {

17 /* More requirements and provisions here ... */

18 }

19 }

Contract Refinement [GWC+12b]

• Target systems and user input are unknown to developer.

• Developer creates contract templates:

• Developer creates Benchmark Suite using Profiler Framework [WGR13]

17.07.2013 Multi-Quality Auto-Tuning by Contract Negotiation Slide 16

contract Dbx implements NoiseReduction.apply {

mode professional {

...

provides min response_time:

<response_time>(audio_length) [s];

}

...

}

for(i = 0; i <= N; i++) {

Profiler.getProfiler(„response_time“).start();

dbx.apply(sample_files[i]);

Profiler.getProfiler(„response_time“).stop();

}

NoiseReduction

<meta> audio_length : Second

response_time : Second

noiseReductionLevel: dB

apply

• Target systems and user input are unknown to developer.

• Developer creates contract templates:

• Benchmarks executed at deployment time on each target machine:

17.07.2013 Multi-Quality Auto-Tuning by Contract Negotiation Slide 17

audio_length response_time

1s

2s

...

120s

945ms

1823ms

...

110215ms

<response_time>(audio_length) [s]

1.147*10^(-6)*audio_length^2-1922 [s];

One contract per machine and implementation.

Contract Refinement [GWC+12b]

contract Dbx implements NoiseReduction.apply {

mode professional {

...

provides min response_time:

<response_time>(audio_length) [s];

}

...

}

NoiseReduction

<meta> audio_length : Second

response_time : Second

noiseReductionLevel: dB

apply

PART 2: RUNTIME

17.07.2013 Multi-Quality Auto-Tuning by Contract Negotiation Slide 18

Contract Negotiation

17.07.2013 Slide 19

… denotes a global optimization problem of a system of
components, which are known and controllable by central
coordinators as known from the self-adaptive system‘s community.

Optimal System

Configuration

Running

System

Optimization

Problem

Formulation

Trans-

formation

Standard

Solver

Rekonf-

iguration

System

Models

Monitor
ILP

PBO

ACO

MOILP

A
c
c
u

ra
c
y Exact

Approx.

Objectives

Single Multiple

[AGJ+13]

Multi-Quality Auto-Tuning by Contract Negotiation

Contract Negotiation by ILP [GWC+11]

• Base: Integer Linear Programming (ILP)

• Goal: determine the variable assignment, which

• Maximizes objective function and

• Adheres to the constraints.

• Avoids pruning of whole search space (worst case)

17.07.2013 Multi-Quality Auto-Tuning by Contract Negotiation Slide 20

V
a
r
ia

b
le

s

Objective

Constraints

Contract Negotiation by ILP [GWC+11]

Decision Variables

Select Impl.Map to HW

NFP Provisions

NFP Requirements

K
n
a
p
s
a
c
k

Resource Provisions

Resource Requirements

fixed

Knapsack
Architectural
Constraints

Objective Function

ILP

Constraints

30.01.2013

CCM Variant Model
Runtime Description of
Hard- & Software
Infrastructure

CCM Structure Model
Architecture of
Hard- & Software
System

QCL Contracts
Characterizing Non-functional Behavior of
Implementations

CCM Behavior Models

17.07.2013 Slide 21Multi-Quality Auto-Tuning by Contract Negotiation

• Integer Linear Programming (ILP)

Usage Variables

ILP by Example

17.07.2013 Multi-Quality Auto-Tuning by Contract Negotiation Slide 22

/* objective function: minimize energy consumption (based on cpu_time) */

min: 5700.0 b#Quicksort#delayed#R1 + 495.0 b#UnsortedFilter#slow#R1

+ 10285.0 b#Quicksort#immediate#R1 + 6160.0 b#Javasort#immediate#R1

+ 385.0 b#UnsortedFilter#fast#R1 + 2250.0 b#Random#slow#R1

+ 5940.0 b#Javasort#delayed#R1 + 2695.0 b#Random#fast#R1;

/* architectural constraints */

b#Random#fast#R1 + b#Random#slow#R1 = b#Quicksort#delayed#R1 + b#Quicksort#immediate#R1

+ b#Javasort#immediate#R1 + b#Javasort#delayed#R1;

b#UnsortedFilter#fast#R1 + b#UnsortedFilter#slow#R1 = 1;

b#Quicksort#immediate#R1 + b#Quicksort#delayed#R1

+ b#Javasort#immediate#R1 + b#Javasort#delayed#R1 = b#UnsortedFilter#slow#R1

+ b#UnsortedFilter#fast#R1;

/* resource negotiation */

usage#R1#Core[TM]_i7_CPU_Q_720_@_1.60GHz#frequency <= 1596.0;

usage#R1#Core[TM]_i7_CPU_Q_720_@_1.60GHz#frequency >= 0;

usage#R1#Core[TM]_i7_CPU_Q_720_@_1.60GHz#frequency =

100 b#Javasort#delayed#R1 + 100 b#UnsortedFilter#slow#R1 + 100 b#Quicksort#delayed#R1

+ 300 b#Random#fast#R1 + 300 b#Quicksort#immediate#R1 + 100 b#Random#slow#R1

+ 300 b#Javasort#immediate#R1 + 300 b#UnsortedFilter#fast#R1;

...

ILP by Example

17.07.2013 Multi-Quality Auto-Tuning by Contract Negotiation Slide 23

...

/* software NFP negotiation */

Sort#response_time = 382.05714282441 b#Quicksort#delayed#R1

+ 377.31428570997804 b#Quicksort#immediate#R1

+ 399.771428570494 b#Javasort#immediate#R1

+ 416.34285718949195 b#Javasort#delayed#R1;

Filter#response_time = 23.921216866850248 b#UnsortedFilter#slow#R1

+ 28.407017552658598 b#UnsortedFilter#fast#R1;

ListGen#response_time = 107.6078431285458 b#Random#slow#R1

+ 106.7843137012918 b#Random#fast#R1;

Sort#response_time >= 50 b#UnsortedFilter#fast#R1;

ListGen#response_time >= 50 b#Quicksort#delayed#R1 + 50 b#Javasort#immediate#R1

+ 50 b#Javasort#delayed#R1;

/* user request */

Filter#response_time <= 200.0;

/* boolean restriction */

binary b#Quicksort#delayed#R1, b#UnsortedFilter#slow#R1, b#Quicksort#immediate#R1,

b#Javasort#immediate#R1, b#UnsortedFilter#fast#R1, b#Random#slow#R1,

b#Javasort#delayed#R1, b#Random#fast#R1;

Contract Negotiation by MOILP

17.07.2013 Slide 24

V
a
r
ia

b
le

s

Objective 1

Objective 2

Objective 3

Constraints

V
a
r
ia

b
le

s

Objective 1

Objective 2

Objective 3

Constraints

Solution

Pareto Front

Derived
Constraints

V
a
r
ia

b
le

s

Objective 1

Objective 2

Objective 3

Constraints

Derived
Constraints

SolutionSolution

Klein und Hannan ´82

Multi-Quality Auto-Tuning by Contract Negotiation

Contract Negotiation by MOILP

17.07.2013 Slide 25

Pareto Front

.
.
.

Multi-Quality Auto-Tuning by Contract Negotiation

Quadradic Growth until Termination

Scalability Analysis [GWR+13]

• Performed on data-flow graphs (pipe-and-filter style)

• Measurements taken for C x S systems from C = [2..100] and S = [2..100]

• All measurements made on Alienware X51 (Win7 64bit, SSD HDD, 8GB
DDR1600 RAM, Intel Core i7-2600 with 4 physical cores at 3.4GHz)

• Concrete numbers will differ on other machines, solvers, etc.

• Focus on principle findings.

C components

S servers

Slide 2617.07.2013 Multi-Quality Auto-Tuning by Contract Negotiation

Scalability Analysis: ILP [GWR+13]

Slide 2717.07.2013 Multi-Quality Auto-Tuning by Contract Negotiation

Predictable up to 25 Components

Reason: Worst-case situations

Solving Time [ms]

Timeout: 2min

3rd Quartile: 26,58s

Feasible up to 100x100

Scalability Analysis: MOILP

Slide 28

Solving Time for 2 Objective Functions

17.07.2013 Multi-Quality Auto-Tuning by Contract Negotiation

3rd Quantile: 62,92 s

The jump is due to heuristics in solver.

Scalability Analysis: MOILP

17.07.2013 Multi-Quality Auto-Tuning by Contract Negotiation Slide 29

Size of Pareto Front for 2 Objective Functions

Large Pareto-fronts even for small systems

Scalability Analysis: MOILP

17.07.2013 Multi-Quality Auto-Tuning by Contract Negotiation Slide 30

Solving Time for 3 Objective Functions

Infeasible due to
quadratic explosion.

Part 2:

Runtime System

Developer

Part 1: Development

Contributions

17.07.2013 Multi-Quality Auto-Tuning by Contract Negotiation Slide 31

Users

Request

Multiple

Objectives

Runtime Model

Running

Components

Multiple Objective

Function Computation

Runtime Optimization
(Contract Negotiation)

Genericity /

Reuse

QoS

Dependencies
Runtime MOO

Models

CCM

[GWS+10]

QoS

Contracts

Code

Bench-

marks

QCL
Refine-

ment

[GWC+12a] [GWC+12b]

ILP

PBO

ACO

MOILP

[GWC+11]

[GWR+13]

Part 2:

Runtime System

Developer

Part 1: Development

Contributions

17.07.2013 Multi-Quality Auto-Tuning by Contract Negotiation Slide 32

Users

Request

Multiple

Objectives

Runtime Model

Running

Components

Multiple Objective

Function Computation

Runtime Optimization
(Contract Negotiation)

Genericity /

Reuse

QoS

Dependencies
Runtime MOO

Models

CCM

[GWS+10]

QoS

Contracts

Code

Bench-

marks

QCL
Refine-

ment

[GWC+12a] [GWC+12b]

ILP

PBO

ACO

MOILP

[GWC+11]

[GWR+13]

Developers are not restricted to prescribed non-

functional properties and architectural elements.

Context-dependent interdependencies of multiple

qualities are supported.

Realized and analyzed four runtime MOO techniques as

technology bridges.

Future Work

• Bootstrapping: MQuAT for Monitoring, Optimization and Reconfiguration

• Both are components with different implementations, too.

• Scalability analysis is a first step for the optimization component

• Collaboration planned with Prof. Fischer (Numerical Optimization Group)

• Green Software Engineering (CRC 912: HAEC, NFG ZESSY)

[WGR+11, WRP+12, WRP+13, WGR13, GMT+13, WRG+13a, WRG+13b]

• Open Challenges: Sustainability, Negotiation of Energy-Sources (Solar,

Battery, Provider, etc.)

• Software Engineering for Robotic and Cyber-Physical Systems

[GLR+11, GLP+12, PRG+12]

• Open Challenge: Optimization across discrete and continuous system

parts

17.07.2013 Multi-Quality Auto-Tuning by Contract Negotiation Slide 33

Own Related Publications

[GWS+10] S. Götz, C. Wilke, M. Schmidt, S. Cech and U. Assmann. Towards Energy Auto
Tuning. In: Proceedings of First Annual International Conference on Green Information
Technology, GREEN IT 2010, GSTF (2010) p. 122-129.

[GWC+11] S. Götz, C. Wilke, S. Cech and U. Assmann. Runtime Variability Management for
Energy-efficient Software by Contract Negotiation. In Proceedings of the 6th International
Workshop on Models@run.time, ACM/IEEE (2011) p. 61-72.

[GWC+12a] S. Götz, C. Wilke, S. Cech and U. Assmann. Architecture and Mechanisms of
Energy Auto Tuning. In Sustainable ICTs and Management Systems for Green Computing.
IGI Global (2012) p. 45-73.

[GWC+12b] S. Götz, C. Wilke, S. Richly and U. Assmann. Approximating Quality Contracts for
Energy Auto-Tuning Software. In Proceedings of First International Workshop on Green
and Sustainable Software (GREENS'12), IEEE (2012) p. 8-14.

[GWR+13] S. Götz, C. Wilke, S. Richly and U. Aßmann. Model-driven Self-Optimization using
Integer Linear Programming and Pseudo-Boolean Optimization. In Proceedings of the Fifth
International Conference on Adaptive and Self-Adaptive Systems and Applications
(ADAPTIVE), XPS Press (2013) p. 55-64.

[AGJ+13] U. Assmann, S. Götz, J.-M. Jezequel, B. Morin and M. Trapp. Uses and Purposes of
M@RT Systems. To appear in State-of-the-Art Survey Volume on Models@run.time.
Springer LNCS, 2013.

17.07.2013 Multi-Quality Auto-Tuning by Contract Negotiation Slide 34

Own Future Work Publications

[WRG+13b] C. Wilke, S. Richly, S. Götz, C. Piechnick and U. Aßmann. Energy Consumption
and Efficiency in Mobile Applications: A User Feedback Study. To appear in Proceedings of
the IEEE International Conference on Green Computing and Communications (GreenCom),
2013.

[WRG+13a] C. Wilke, S. Richly, S. Götz, and U. Aßmann. Energy Profiling as a Service. To
appear in GI Proceedings of Workshop "Umweltinformatik zwischen Nachhaltigkeit und
Wandel" (UINW), 2013.

[GMT+13] S. Götz, J. Mendez, V. Thost and A.-Y. Turhan. OWL 2 Reasoning To Detect Energy-
Efficient Software Variants From Context. To appear in Proceedings of the 10th OWL:
Experiences and Directions Workshop (OWLED), 2013.

[PRG+13] G. Püschel, S. Götz, C. Wilke and U. Aßmann. Towards Systematic Model-based
Testing of Self-adaptive Systems. In Proceedings of The Fifth International Conference on
Adaptive and Self-Adaptive Systems and Applications (ADAPTIVE), XPS Press (2013), p.
65-70.

[WGR13] C. Wilke, S. Götz and S. Richly. JouleUnit – A Generic Framework for Software
Energy Profiling and Testing. In Proceedings of the 1st Workshop "Green In Software
Engineering Green By Software Engineering" (GIBSE), ACM/IEEE (2013) p. 9-13.

[WRP+13] C. Wilke, S. Richly, C. Piechnick, S. Götz, G. Püschel and U. Aßmann. Comparing
Mobile Applications’ Energy Consumption. In Proceedings of The 28th Annual ACM
Symposium on Applied Computing (SAC 2013), ACM (2013) p. 1177-1179.

17.07.2013 Multi-Quality Auto-Tuning by Contract Negotiation Slide 35

Own Future Work Publications

[WRP+12] C. Wilke, S. Richly, G. Püschel, C. Piechnick, S. Götz and Uwe Assmann. Energy
Labels for Mobile Applications. To appear in Proceedings of 1. Workshop zur Entwicklung
energiebewusster Software / First Workshop for the Development of Energy-aware
Software (EEbS 2012), 2012.

[WGR+11] C. Wilke, S. Götz, J. Reimann and U. Assmann. Vision Paper: Towards Model-Based
Energy Testing. In Proceedings of 14th International Conference on Model Driven
Engineering Languages and Systems (MODELS 2011), Springer (2011) p. 480-489

[PRG+12] C. Piechnick, S. Richly, S. Götz, C. Wilke and U. Aßmann. Using Role-Based
Composition to Support Unanticipated, Dynamic Adaptation - Smart Application Grids.
(Best Paper Award) In Proceedings of The Fourth International Conference on Adaptive
and Self-Adaptive Systems and Applications (ADAPTIVE), XPS Press (2012) pp. 93-102

[GLP+12] S. Götz, M. Leuthäuser, C. Piechnick, J. Reimann, S. Richly, J. Schroeter, C. Wilke
und U. Aßmann. Entwicklung cyber-physikalischer Systeme am Beispiel des NAO Roboters.
In Proceedings of Chemnitz Linux-Days, Universitätsverlag Chemnitz (2012) p. 42-52

[GLR+11] S. Götz, M. Leuthäuser, J. Reimann, J. Schroeter, C. Wende, C. Wilke and U.
Assmann. A Role-based Language for Collaborative Robot Applications. In Proceedings of
1st International ISoLA Workshop on Software Aspects of Robotic Systems (ISOLA SARS
2011), Springer (2011) p. 1-15

17.07.2013 Multi-Quality Auto-Tuning by Contract Negotiation Slide 36

Literature

[KC03] J. O. Kephart and D. M. Chess. The vision of autonomic computing. In: IEEE Computer,
36:41-50, January 2003.

[L97] R. Laddaga. DARPA self adaptive software broad agency announcement (baa) 98-12
proposer information pamphlet - excerpt. http://people.csail.mit.edu/rladdaga/BAA98-
12excerpt.html, December 1998.

[NW99] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. Wiley
Interscience, 1999.

[RZ03] S. Röttger and S. Zschaler. CQML+: Enhancements to CQML. In Proceedings of the 1st
International Workshop on Quality of Service in Component-Based Software Engineering,
pages 43-56. Cepadues-Editions, 2003.

[ST09] M. Salehie and L. Tahvildari. Self-adaptive software: Landscape and research
challenges. ACM Trans. Auton. Adapt. Syst., 4:14:1-14:42, May 2009.

[S10] Josef Spillner: Methodik und Referenzarchitektur zur inkrementellen Verbesserung der
Metaqualität einer vertragsgebundenen, heterogenen und verteilten Dienstausführung.
Dissertation. TU Dresden. 2010.

[ZM03] S. Zschaler and M. Meyerhöfer. Explicit Modelling of QoS-Dependencies. In Proceedings
of the 1st International Workshop on Quality of Service in Component-Based Software
Engineering, p. 57-66. Cepadues-Editions, 2003.

17.07.2013 Multi-Quality Auto-Tuning by Contract Negotiation Slide 37

