
Sebastian Götz and Thomas Kühn

Models@run.time for
Object-Relational Mapping
Supporting Schema Evolution

10th International Workshop on Models@run.time.

29th September 2015, Ottawa, Canada

Motivation

• Context: Enterprise Software following the three-tier architecture
(Presentation, Business Logic, Data)

• In 2013, the worldwide ERP software market was $25.4B [1]

• A key time-consuming task in developing ERP software is the mapping
between business logic and data management.

• To partially automate this translation, object-relational mappers (ORM)
have been introduced (e.g., Hibernate)

• ORMs translate between the object-oriented and the relational
paradigm, which are the most common paradigms in use for Enterprise
Software.

[1] Forbes: Gartner's ERP Market Share Update Shows The Future Of Cloud ERP Is Now. 12th May 2014.

Problems

• The problems of current ORM solutions are:

 High configuration effort (time intensive, prone to error)

 Either in XML files

 Or as annotations in code

 Typically demands for manual tuning

 Lacking support for continuous development

 Data of previous versions easily gets lost or inaccessible due to
schema changes

 But, current software engineering processes (e.g., agile or lean SE)
demand for small increments

Solution: Models@run.time for ORMs

Prolog

Persistence
Manager

Bytecode
Transformer

DB
Prolog

fact bases

Runtime

Running
Application

Startup

Original Application

Sublimated Application

1

2
3

4
5

Runtime and
Meta-Model

Models@run.time for ORMs

ORM

Original
Application

startup utilities runtime utilities

Schema
fact base

Runtime
fact base

Sublimated
Application

DB

Models@run.time for ORMs

isClass (’Student’).

hasAttribute (’Student’,’studentid’,’int’,0).

hasAttribute (’Student’,’name’,’java.lang.String’,1).

hasAttribute (’Student’,’__oid’,’int’,2).

Schema Fact Base

instanceof(’Student’,[- , - ,1]).

instanceof(’Student’,[300 , - ,1]).

instanceof(’Student’,[300 , ’John’ ,1])

Runtime Fact Base

Example:

The Runtime and Metamodel

Schema fact base (alias Metamodel):

• isClass/1,

• hasAttribute/4, hasStaticAttribute/4

• subclasses/2, references/4

• Remaining fact types related to changes
(e.g., addedAttribute/4)

Runtime fact base (alias Runtime Model):

• instanceof/2

• sameInstance/4

Results #1

Low Configuration Effort due to Runtime Model:
• Types of Relationships can be inferred

• Best inheritance mapping can be inferred (and changed at runtime)

• Imagine in the beginning only/mostly citycars are requested by customers

• Then the DB only has to keep
one table in memory

storageVolume
maxLoad

numDoors

distanceDriven
currentPosition

RentalCar

Van Citycar

id dist curPos doors
Citycar

dist curPos storage
Van

loadid

dist curPos storage
RentalCar

loadid doors

VS.

Results #2

Support for Continuous Development

• At each application startup, the approach
compares the new application schema with the old
and derives the changes

• These changes are applied to the runtime fact
base, which keeps the data across restarts by
default (can be deactivated for productive use)

• The old database will be replaced by a new one,
generated from the new runtime and schema fact
base

Conclusion and Future Work

• Models@run.time help to reduce software
development time for Enterprise Software
demanding object-relational mapping by:

• Reducing the configuration effort

• Supporting continuous development

• Future Work

• The approach is to be evaluated using a real-world
case study

• Results from model co-evolution and database co-
evolution should be integrated (to avoid
regenerating the database)

Contact

http://st.inf.tu-dresden.de/~sgoetz

sebastian.goetz@acm.org

Thank You.

