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Abstract

Models are essential for defining and developing systems that
support run-time decision-making and reconfiguration, and for
implementing autonomous and adaptive systems for remote,
hazardous, and largely unknown external environments. We
show that they can also be used as the operational code through-
out the development process, including deployment. Our ability
to build systems with this property depends crucially on Com-
putational Reflection, and our implementation thereof, an in-
tegration infrastructure for complex software-intensive systems
called Wrappings.

It is inherent in a Wrapping system that all activity (down to a
specified level of detail) can be recorded as sequences of events
with associated context. The system can consider these event el-
ements as points in a “behavior trajectory” space, and use recent
advanced mathematical analysis methods to discover hidden re-
lationships in the environment and system behaviors. These re-
lationships can be used to improve the system models and there-
fore the corresponding behavior.

In this paper, we show that the Wrapping approach provides a
powerful organizing principle for designing and building self-
modeling systems. We also describe some dvanced mathemati-
cal methods that can be used by the system to construct models
of its own behavior.

Key Phrases: Self-Modeling Systems, Computational Reflec-
tion, Wrapping Integration Infrastructure, Scenario-Based En-
gineering Process, Model Creation and Analysis, Active Con-
trol Loops, Advanced Mathematical Methods, Computational
Semiotics
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1 Introduction

Models are not only useful, but even essential, for defining, de-
veloping, and even operating systems for a complex operational
environment, because they support run-time decision-making
and reconfiguration. In this paper, we show how they can also
be used as the operational code, in which the models are written
early and refined throughout the development process, until they
are deployed and afterwards. The system development process
becomes the construction of a series of models that gradually
conform to the original behavior expectations, and the result
is a “self-modeling” system, in which the deployed code is the
model of the deployed system, and interpreting that model is the
behavior of the deployed system [45]. Similarly, further system
development can occur at run time, with the system proposing
changes or evaluating externally proposed changes.

Our ability to build systems with these properties depends
crucially on Computational Reflection, and specifically on
Wrappings [41] [38], an integration infrastructure for complex
software-intensive systems. It was originally developed to sup-
port run-time decision-making and reconfiguration [42], as a
way of implementing autonomous and adaptive systems for re-
mote, hazardous, and even largely unknown external environ-
ments. This approach was also used to show how self-modeling
systems can be built [45] [46].

This work is to be clearly distinguished from systems that use
parallel code and models [20], since for us the models are the
code, as interpreted to produce the intended behavior. These
systems are, not just use, models at run time. There is also a rea-
sonable expectation that the use of models need not be a perfor-
mance problem, since partial evaluation methods [18] [19] can
reduce all unchanging decisions to simple sequences (the par-
tial evaluation methods have more information in a Wrapping-
based system than in traditional software [41]), and many mod-
ern languages, such as Python and Java, are currently inter-
preted reasonably efficiently.

In this paper, we focus on a development process that we can use
to build these systems, and also consider other ways for them to
adapt themselves (i.e., their models of themselves and their be-
havior) to changing circumstances. We start with the Scenario-
Based Engineering Process [51] [52], in which development be-
gins with a collection of stakeholder expectations, embodied in
a set of scenarios for the external environment and desired re-
sults for the behavior of the system. We write these as basic
models of what happens outside and inside the system. As ex-
ternal constraints and interactions are better understood, these
models are gradually changed from what should happen to how
it should happen, refining functionality into more localized ac-
tivity. We build these models as self-modeling systems using
Wrappings, to provide a deep level of reflection, and we gen-
erally use wrex (our “Wrapping expression” notation [41]) to
write the computational resources. The choice of wrex is a mat-

ter of convenience; other notations could be (and have been)
used (e.g., Common Lisp, Python, C).

It is inherent in a Wrapping system that all activity (down to
a level of granularity chosen via engineering judgment) can be
recorded as sequences (or partially ordered sets in more com-
plex concurrent applications) of events with associated context.
We can have the system consider these event elements as points
in a “behavior trajectory” space, and use recent advanced math-
ematical analysis methods to discover hidden relationships in
and among the environment and system behaviors. These rela-
tionships can be used to improve the system models and there-
fore the corresponding behavior.

The rest of this paper begins, in Section 2, with some back-
ground history and a detailed overview of Wrappings, along
with the Problem Posing Programming Paradigm [42] [41] [49].
These are the methods that allow us to study infrastructure [38]
and build self-modeling systems [45] [46]. For us, a system is
self-aware if it can use models of its own behavior, and it is
self-adaptive if it can use those models to change that behavior.
It is self-modeling if it also interprets these models of its own
behavior to generate that behavior, and self-developing if it can
use the models to further its own development (within general
guidelines provided by developers).

It is clear that self-adaptive systems can make substantive
changes at run-time. In one sense, this is already autonomous
development. We extend this notion to the entire development
cycle, using the Scenario-Based Engineering Process [51] [52]
[36] [37] to build systems from stakeholder expectations in sce-
narios to requirements, and making models as soon as possible
in the process. In Section 3, we describe how models can be
provided or created, expanded and extended. In Section 4, we
describe some of the many mathematical modeling and analysis
methods that we think are applicable. In Section 5, we describe
some of the many difficult challenges that remain. Finally, we
describe our conclusions.

2 Wrappings

We provide a short description of Wrappings in this Section,
since there are many other more detailed descriptions else-
where [41], and especially the tutorials [47] [48], and a sum-
mary description is in the Appendix of this paper. The Wrap-
ping integration infrastructure is our approach to run-time flexi-
bility [38], with run-time context-aware decision processes and
computational resources. It is defined by its two complementary
aspects, the Wrapping Knowledge Bases (WKBs) and the Prob-
lem Managers (PMs). The WKBs contain Wrappings, which
are Knowledge-Based interfaces to the uses of computational
resources in context, and they are interpreted by the PMs, which
are processes that are themselves resources.

We use the “Problem Posing” interpretation of programs [41]
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to change our focus in programming these systems, separat-
ing code that computes something, called a “resource” from its
purpose, called a “posed problem”, and then keeping the prob-
lems available to the code along with the resources. Thus, pro-
grams interpreted in this style do not “call functions”, “issue
commands”, or “send messages”; they “pose problems” (these
are information service requests). Program fragments are not
written as “functions”, “modules”, or “methods” that do things;
they are written as “resources” that can be “applied” to prob-
lems (these are information service providers).

Because we separate the problems from the applicable re-
sources, and make context an essential part of reconnecting
them, we can use very much more flexible mechanisms for con-
necting them than simply using the same name. We have shown
that our choices lead to some interesting flexibilities, when com-
bined with the “meta-reasoning” approach [8] [9] [10] includ-
ing such properties as software reuse without source code mod-
ification, delaying language semantics to run-time, and system
upgrades by incremental resource and infrastructure migration
instead of version based replacement.

The WKBs define the entire set of problems that the system
knows how to treat. The mappings are problem-, problem
parameter-, and context-dependent, and identify the resources
that can address each specific problem in a given context (this
information is provided by the developers; it is not inferred by
the system).

The PMs are the programs that read WKBs and select and apply
resources to problems in context. The PMs are Wrapped in ex-
actly the same way as other resources, and are therefore avail-
able for the same flexible integration as any resources. These
systems have no privileged resource; anything can be replaced.
Default Problem Managers are provided with any Wrapping im-
plementation, but the defaults can be superseded in the same
way as any other resource. These are the processes that replace
the usual kind of implicit invocation [22], allowing arbitrary
processes to be inserted in the middle of the resource invoca-
tion process. This flexibility does come with a cost, but there
are also mechanisms based on partial evaluation [18] [41] [19]
for removing any decisions that will be made the same way ev-
ery time, thus leaving the costs where the variabilities need to
be.

One of the keys to the flexibility of Wrappings is making these
PM processes as important and as explicit as the WKB descrip-
tions. The basic process notion is the interaction of one very
simple loop, called the “Coordination Manager” (CM), and a
very simple planner, called the “Study Manager” (SM). These
are both examples of PMs.

The default CM is responsible for keeping the system going. It
has only three repeated steps, after an initial one.

• FC = Find Context (establish a context for problem study.);

• loop:

– PP = Pose Problem; (get a problem to study from a
problem poser, who could be the user or the system);

– SP = Study Problem (use an SM and the WKBs to
study the posed problem in the current context);

– AR = Assimilate Results (use the result to affect the
current context).

It is therefore an activity loop of a sort that is common in auto-
nomic computing and other self-adaptive system developments
[9] [38]. Activity loops are not the focus of this paper, but they
go a long way towards improving the flexibility of systems that
use them.

We have divided the “Study Problem” process into a sequence
of basic steps that we believe represent a fundamental part of
problem study and resolution. These are implemented in the
default SM:

• INT = Interpret Problem (find a resource to apply to the
posed problem in the current context):

– MAT = Match Resources (find a set of resources
whose Wrappings say they might apply to the current
problem in the current context);

– RES = Resolve Resources (eliminate those that do
not apply, via negotiations between the posed prob-
lem and each Wrapping of the matched resources to
determine whether or not it can be applied, and make
initial bindings of formal resource parameters to ac-
tual problem parameters);

– SEL = Select Resource (choose which of the remain-
ing candidate resources, if any, to use);

– ADA = Adapt Resource (set it up for the current
problem and problem context, by finishing all re-
quired bindings);

– ADV = Advise Poser (tell the problem poser what is
about to happen, that is, what resource was chosen
and how it was set up to be applied);

• APP = Apply Resource (use the resource for its informa-
tion service, to compute or present something, or provide
some other information or service);

• ASR = Assess Results (determine whether the application
succeeded or failed, and to help decide what to do next).

Finally, every step in the above sequences is actually a posed
problem, and is treated in exactly the same way as any other,
which makes these sequences “meta”-recursive [3]. This makes
the system completely Computationally Reflective. That means
that if we have any knowledge at all that a different planner may
be more appropriate for the context and application at hand, we
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can use it (after defining the appropriate context conditions), ei-
ther to replace the default SM when it is applicable, or to replace
individual steps of the SM, according to that context (which can
be selected at run time).

3 Models

In this Section, we start with a discussion of many current ap-
proaches to using models at run time, and show how the Wrap-
ping infrastructure, with its flexible selection and application of
computational resources, supports the building, using, evaluat-
ing, and adapting models at run time. In a way this is cheating,
since the Wrappings approach does not provide new methods of
performing these functions. Rather, since it relegates all of the
actual computational effort to the resources, its strength lies in
the organization and interoperation of those resources, which in
turn provides the flexibility to use any of the many mechanisms
for specific kinds of model building and adapting (even using
different mechanisms at different times in the same program).

We start with the models that are least like running code. It has
long been recognized that a system with an explicit architec-
ture model available at run time has access to more information
about the running system, thus facilitating its management of its
own adaptation [56] [57]. This is most useful when the model
includes explicit representations of software components and
connectors, or when it mimics the behavior of the system imple-
mentation [23] [1] [61] [54], so it can be compared to the run-
time activity [14], using models of inferred behavior [2]. An
interesting parallel set of studies has been ongoing in the busi-
ness process modeling community, regarding workflow models
as process models [71] [2], though they are typically producing
external models of human centric processes.

However, it is also well-known that there are several challenges
in using architectural models at run time (adapted from [56] [57]
[23] [54]):

• Monitoring: how to select and collect necessary informa-
tion from the system;

• Interpretation: how to process the event data;

• Resolution: how to determine changes;

• Adaptation: how to select and effect changes.

Monitoring is about how to select and collect necessary infor-
mation from system internals, system behavior, detectable en-
vironment behavior, and interactions between system and en-
vironment to provide an adequate picture of the current behav-
ior. Wrapping systems have an advantage of having a ready
made language for events (the resource applications and context
descriptions) that encompasses all system activity (to whatever
level of detail has been selected for the designed variabilities in

the system), and a built-in hook for measurements (the “Advise
Poser” resources), already in the form of sequences of events.

Interpretation is about how to process the event data to make
it usable. First, to convert event data into forms that support
model building or analysis (this is complex event processing,
with a priori event patterns or pattern discovery rules); then to
build models from the event traces (this is called the seman-
tic gap between low-level event traces and higher-level system
concepts [61]), and finally, to evaluate model consistency. Here
is where some of the advanced mathematical methods, such as
Grammatical Inference and its generalizations, are used to build
syntactic descriptions of the sequences, and either dimension re-
duction or manifold discovery to find behavioral manifolds that
simplify the expressions. These mathematical subjects are gen-
erally beyond the scope of this paper [39], but there is a short
summary in Section 4 below.

Resolution is about how to determine appropriate changes: how
to specify and identify adaptation triggers, how to identify and
resolve discrepancies between model and specification, how to
specify resolution goals and policies, and how to decide what
other data is needed to resolve a discrepancy. These are hard
questions not always solvable a priori, but a Wrapping-based
approach allows a system to contain many alternative analysis
methods and compare their effects.

Adaptation is about how to select and effect changes: how to
invent or select potential improvements, how to decide whether
they are improvements, how to cause system changes, how to
avoid thrashing (oscillations in adaptation usually due to fluc-
tuations in environmental behavior). Once the replacement (or
retuned) resources are available, changes in the Wrappings au-
tomatically make them selectable in the system.

One of the reasons that using architectural models is so difficult
is that they are just scaffolding, not part of the system operation;
they only define its structure that enables that operation. De-
vising the processes that can convert architecture changes into
system changes at run time is the heart of making these systems
effective. Here the Wrapping integration infrastructure allows
any of the many methods currently in use to be applied and eval-
uated.

Our issue with many of these approaches is that they add adapta-
tion to the system as an external feature, so only the combined
system is partially self-adapting, and even then the adaptation
mechanism itself is not usually subject to its own analysis and
improvement [16] [61] [24] [17]. These approaches consider
architectural models of the system as a control layer that has
access to the components and connectors that define the sys-
tem, and use effective control theory strategies for them. Some
approaches [67] add another control layer to manage adapting
the adaptation layer. Of course, this kind of add-on style is nec-
essary when you start with an existing system, but it does leave
a large part of the system non-adaptable.
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Another approach is to organize the modeling using meta-
models [11] [54] [50]. All of these approaches also seem to
take the object system as a separate part, at the lowest level of
abstraction, and include a varying number of distinct levels or
layers of control:

• Original system, including source code, configuration
files, reconfiguration policies (via automatic code and con-
figuration file generation);

• Prescriptive part of the model (specifying how the system
should behave);

• Descriptive part of the model (specifying how the system
actually is by inferring models of its behavior).

Then the process infers a descriptive model of system behavior,
using any of a number of methods, and compares the model to
the prescription. Most of the approaches also have a separate
layer for managing configuration variants, along with compat-
ibility and transition rules. These are often written as a state
machine for configurations (but only for systems with a small
number of variations), with models of components and frame-
works or configurations, a planner to construct configurations
from conditions, and models of acceptable modifications. This
is the layer that compares the description to the prescription. Fi-
nally, some of the approaches have a separate decision layer for
mapping environmental behavior into configuration choices or
conditions. For our purposes, the most important part of these
descriptions is the causal connection [50], in the form of infor-
mation flows between the system and its models. This looks like
the closest to our self-modeling systems, though we make the
causal connection the central feature (the model is the system).

In all of these approaches, there is the fundamental difficulty
that the inferred models of behavior are not the way that be-
havior is generated, so they are always somewhat external to
the system operation, and the interpretation step above is essen-
tial and difficult. Similarly, architectural models are not usually
used to put the architectures together in the first place. They
are more like structure or scaffolding, used until the system is
ready to run and then discarded, or put in abeyance until some-
thing needs to be changed.

Some of the applications (mainly autonomic and self-adaptive
systems [33] [67] [68], but also others) explicitly use activity
loops (such as the MAPE loop of autonomic computing, the
OODA loop in military strategic planning [66], the ELF = El-
ementary Loop of Functioning in intelligent system design [7]
[53], and others) to organize their operation. For an activity
loop based system, monitoring is automatically available in the
step descriptions, and when the activity loop is recursive, as in
Wrappings, the events are already expressed in system-relevant
terms (resource application, relevant context). There are still the
challenges of unravelling temporal overlaps (many higher-level
events are interleaved), and the multiple differences in run time

patterns [61], but using an activity loop greatly simplifies the
interpretation process.

The control loop defined by the CM/SM in Wrappings is inter-
nally directed, looking only at internal problems and resources,
unlike essentially every other loop, which seems to be directed
externally. These other activity loops seem to be designed to
perform the specified actions, not decide on the actions to be
performed by other resources. If they were to be treated recur-
sively, and separated from the performing resources, they could
have the same flexibility as Wrappings.

Our conclusion from this discussion is that many of these ap-
proaches would likely benefit from using an explicit activity
loop for their control process, separating their methods of adap-
tation and evaluation from the control thereof, and adding many
more methods for construction, comparison and evaluation of
models (of course, some of these approaches already do some
of these things).

4 Mathematical Methods

There are several advanced mathematical analysis methods that
are mentioned in this paper. In this Section, we describe them
very briefly.

1. Robust Statistics;

2. Grammatical Inference and Event Pattern Correlation;

3. Fractal Dimension;

4. Dimension Reduction and Manifold Discovery;

5. Topological Data Analysis.

Some are old and have been revitalized, and some are very new.
Other mathods can also be sued, but this is a representative set.

4.1 Robust Statistics

These are methods for analyzing non-traditional distributions
(i.e., not Gaussian). The reason this matters is that most sta-
tistical or statistically based techniques assume that a random
distribution is Gaussian (also called normal distributions), and
those methods have been widely successful. However, for rea-
sons we think follow from the complexity of modern applica-
tions, those assumptions are no longer adequate.

Data can vary widely in its quality: its noisiness, its errors, its
missing values, etc.. A new movement within data analytics
is combining decades-old robust statistical methods (from the
1970’s and 80’s [69] [29]) with new data mining and analysis
methods [4]. Robust statistics have good performance for data
drawn from a wide range of probability distributions, especially
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for distributions that are not normally distributed or other depar-
tures from the model assumptions underlying classical statisti-
cal analyses. Especially, robust statistics provide methods that
are less impacted by statistical outliers, and measures for how
much a given statistic is impacted by outliers or other unusual
characteristics of the data set distribution.

4.2 Grammatical Inference and Event Pattern
Correlation

This is a collection of event pattern detection and identifica-
tion methods for learning internal hierarchical structure of se-
quences and sequential patterns of events. Grammatical Infer-
ence usually concerns itself only with sequences, but we know
that in more compex concurrent environments, activities will
overlap and the right event set model is partially ordered sets.
Event pattern correlation methods are for comparing different
event patterns (temporally ordered sequences are a particularly
simple form of event pattern). The move to partially ordered
sets makes the identification processes much harder.

Grammatical Inference methods are currently used to automati-
cally detect recurring patterns in data sequences, which includes
mathematical methods for the discovery of sets of rules that de-
fine the internal structure of recurring patterns. These analyses
can be used to find repetitive activities, recurring patterns of ac-
tivity, and overlapped sequences of activities, whether or not the
time intervals are the same.

It is relatively straightforward to imagine detecting repeated in-
stances of the same action, and even repeated sequences of re-
lated actions. It is harder to allow both sequences and alterna-
tives (e.g., these two sequences are the same, except that the
fourth step is one of these two possibilities), and a little harder
yet to identify iterations (e.g., these sequences are the same ex-
cept that step two is repeated a variable number of times).

More complicated structures have another phenomenon called
recursion, which is much harder to recognize, but still possible.
The recognition of recursion depends on effective noticing of
repeated structures that may not be easily seen as sequences or
alternations. Algorithms for this process are still under devel-
opment [28].

When the event sets are less definite, or are known to potentially
contain errors, then probabilistic grammatical inference can be
used [27], with corresponding increases in the time required to
identify regularities.

Any example we have of a contingent set of dependent events
can be modeled as a partially ordered set. These complex sets of
events cannot be generated by grammars for string languages,
so new methods are needed. There have been some excellent
beginning approaches to this problem [5] [6], but no definitive
results as yet.

4.3 Fractal Dimension

These are methods for measuring intrinsic complexity in com-
plex phenomena, particularly dynamic sets (sequences of val-
ues presumed to be generated by some dynamic process, either
discrete, with some potentially varying time interval, or contin-
uous and therefore sampled, also with some potentially varying
sample interval).

The fractal dimension of a set is an unusual characteristic that
is hard to spoof, used for detecting some kinds of obfuscation
and unnecessary associated data. It is an intrinsic property of
the set. It is not dependent on the set’s embedding into Eu-
clidean space, provided the space has enough (ordinary) dimen-
sions.

The tuple map takes any sequence of points and produces a new
sequence, whose elements are consecutive m-tuples from the
original sequence for some (usually fairly small) integer m.
What is illustrated in [58], discussed also in the Theiler pa-
pers [64] [65], is that if the original sequence defines the dy-
namics of a chaotic system for which an attractor has fractal
dimension d, then if m > 2 ∗ d+ 1, the tuple sequence almost
always has the same dynamics, and if m > d, then it almost
always has the same fractal dimension. This property is why
we use the method.

4.4 Dimension Reduction and Manifold Discov-
ery

These are methods from computational data analysis for reduc-
ing difficult computations from thousands of dimensions to a
few. The techniques reduce the number of dimensions while
preserving essential structures. There are different computa-
tional methods that differ primarily on what aspect of the struc-
ture is deemed to be essential. The hard part in any application
is to pick the most effective essential structure for the applica-
tion question at hand. In addition, all of these methods are iter-
ative, with weak stopping rules (there is no simple way to tell if
another iteration will improve the result enough to be worth the
time and effort). These are among several performance issues
here that still need research.

A good survey of this entire field can be found in [12].

Another intriguing and surprising possibility is called random
projection, in which the points in a very high dimensional space
are mapped to a medium dimensional space (e.g., millions to
hundreds), using random linear projections [13]. This work
stems from a result of [31], who showed that up to N points
in an N -dimensional space can almost always be projected into
a space of dimension C × logN for some constant C, when N
is large, with control on the ratio of distances and the error (also
called distortion). For large N , this can be a great reduction
(and fewer points can often be mapped with even less distor-
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tion).

Manifold Discovery is a particular class of dimension reduction
methods, also called “Manifold Learning”, that applies compu-
tational differential geometry to discover structure in high di-
mensional data.

Knowing that a set of points is in a manifold (or is nearly in
a manifold because of noise) allows us to perform many op-
erations not available for general point sets. We can compute
boundaries and curvatures, which allows us to imagine trajec-
tories within the set of points and also allows us to “unroll” the
manifold into a simpler space for further analysis. In this con-
text, a trajectory is any sequence of points that may represent a
path or a motion. It is a useful generalization of the usual no-
tion of a vehicle trajectory. This is an intuitive description of
straightening out the trajectories, and bending the space to ac-
commodate. For example, if we take a circle on a sphere and
straighten it out, we get a straight line with a common point at
both ends, called the point at infinity, and if we unroll the sphere
to match, we get a plane with a common point in each direction,
also called the point at infinity, since it is the same point. This
map does not preserve distances (the Mercator map projection
is a similar example, mapping a sphere to a cylinder), but it does
preserve some other properties.

There are many methods in common use, including ISOMAP
[63] and LLE [59] [60].

4.5 Topological Data Analysis

These methods can be used to detect persistent structure in com-
plex phenomena. These are the newest methods we have stud-
ied. Topological methods [25] [26] have some promise for a
completely different way to view the multi-scale behavior, that
is, the behavior at many time- and space-scales, of complex phe-
nomena, and perhaps even efficient computational methods to
do so. They seem to compute a kind of “topological signature”
that is invariant under many kinds of changes, and reflects the
structure at all scales simultaneously. The algorithms have re-
cently been greatly improved [72] [73], but they are still time-
consuming and use difficult data structures.

5 Challenges

Many difficult challenges remain, especially in the basic event
identification and processing (the interpretation step above).

We have described a development methodology to build self-
adaptation into systems from the beginning, but of course, that
is the easy case, since we have control over the entire process.
The more interesting and difficult case is to add new adapta-
tion capabilities to an existing system. There are difficulties in
choosing instrumentation points, and in usefully inserting them

without disrupting their operation, as mentioned above in Sec-
tion 3. The existing methods seem to be most effective when
they add a control layer or two onto an existing program or sys-
tem.

However, one can also use our approach to this issue, which
we describe as “reuse without modification”. [47] [48] Using
Wrappings, and at the cost of writing a compiler for the source
code language(s) (which is far less now than it used to be), we
can use the old code without changing at at all, inserting func-
tion call diversions into the generated code using Wrappings.
Then we can add whatever adaptations are useful, so the pro-
gram has them available at run time.

There are also some mathematical challenges in applying the
advanced techniques to and in these systems. We need better
algorithms for event pattern correlations for partially ordered
sets, since the ones that exist are too weak or too time consum-
ing. These will be used to create structural models of actual be-
havior. Other mathematical methods from geometry and topol-
ogy also need to be examined, such as homological algebra and
persistence methods.

As a practical matter, we also need to investigate some sim-
plifications of advanced mathematical methods, especially the
manifold discovery and other geometric methods, to determine
how much we can do in a useful amount of time. We also need
better methods for handling non-stationary environments, and
measurements of how effectively different algorithms can keep
up with changes.

This isn’t nearly the full list of difficulties we have in imple-
menting and improving these systems, and especially their abil-
ity to improve themselves, but it will do for a starting point.

However, perhaps the most difficult is in the realm of Com-
putational Semiotics. The “Get Stuck” Theorems [40] provide
fundamental limits on the capabilities of a system with a fixed
set of representational mechanisms. We must therefore consider
three difficult questions:

• What are symbols? [15]

• What are objects? [62]

• What are events?

There are non-trivial processes involved in symbol identifica-
tion, symbol system assessment, and even symbol system re-
vision (which is the analog of “refactoring” in object-oriented
systems [21] [34] [55]).

These Semiotic issues have been addressed in other work [43]
[44], but are not yet solved.
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6 Conclusions

We have described some important issues for systems that will
undergo (at least) some part of their system development at run
time, primarily because the run-time environment is not well
enough known at design time to decide certain optimization or
implementation questions.

We have also described an approach (Wrappings) that is known
to support defining and building such systems with adequate
flexibility and available information at run time. We have ex-
plained how the Wrapping integration infrastructure provides
the required flexibility, through its separation of control pro-
cesses from computational resources, and the Computational
Reflection that ties them back together. In this development
approach, system models exist from very early in development
time, and together with the environment and scenario models,
system behavior can be examined and improved by the develop-
ers until it is deployed, and to some extent by the system itself
afterward.

Self-modeling (and especially self-developing) systems must
have many mechanisms for modeling, model comparison, and
model adjustment, that allow the systems to manage their own
behavior, behavioral evaluations and changes, and the suite of
varyingly detailed models that are necessary.

The point of this paper is not so much to describe specific mod-
eling techniques (inference for observation models, optimiza-
tion adjustments, consistency and discrepancy analyses, simu-
lation and hypothesis testing, and other applications of the ad-
vanced mathematical methods) that can be used to build and
evaluate models of behavior as it is to show that using Wrap-
pings helps a system organize its modeling processes and coor-
dinate its experimentation and evaluation of multiple methods
and models in an extremely flexible way.
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7 Appendix: Wrapping Description Details

We provide a combined description of Wrappings in this Ap-
pendix Section, as derived from many other more detailed de-
scriptions elsewhere [41], and especially the tutorials [47] [48].
The Wrapping integration infrastructure is our approach to run-
time flexibility [38], with its run-time context-aware decision
processes and computational resources. The basic idea is that
Wrappings are Knowledge-Based interfaces to the uses of com-
putational resources in context, and they are interpreted by pro-
cesses that are themselves resources.

Systems built with Wrappings can be very flexible in their inter-
connections [42], since different contexts can produce different
connection networks (both components and interactions), with
different sets of resources selected and applied, and these deci-
sions can all be made at run-time.

7.1 Problem Posing Interpretation

The “Problem Posing” interpretation of programs [41] is based
on an important change of attitude in system design and imple-
mentation. It extends the “what from how” separation of inter-
face from implementation to a “why from what” separation of
interfaces from intended purposes.

It is a declarative interpretation that can be applied to any pro-
gramming or design language, and we believe that it affords a
clearer way to interpret the expressions of all programs. The
basic idea is to consider the code that usually gets written as
defining a “resource” that provides some kind of “information
service” in response to a “posed problem”, and then keep the
problems available in the code along with the solutions. This
separation of clients from servers has become interesting and
useful in larger units (clients and servers are typically entire pro-
grams), but we believe that it is important also for smaller units,
as far down as one wants to gain the associated flexibilities.

Thus, programs interpreted in this style do not “call functions”,
“issue commands”, or “send messages”; they “pose problems”
(these are information service requests). Program fragments
are not written as “functions”, “modules”, or “methods” that
do things; they are written as “resources” that can be “applied”
to problems (these are information service providers).

Because we separate the problems from the applicable re-
sources, and make context an essential part of connecting them,
we can use very much more flexible mechanisms for connecting
them than simply using the same name.
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7.2 Wrapping Overview

Many styles of mapping from problems to resources exist, often
using a mechanism called implicit invocation [22]. Our reason
for not using that process is exactly the implicity of the map-
ping process. We want to be able to replace the mapping pro-
cess at any time, to intercept the invocation with user-defined
processes.

We have chosen in Wrappings to use a knowledge base that de-
fines maps from problems in context to resource applications,
and shown that this choice leads to some interesting flexibilities,
when combined with the “meta-reasoning” approach of Wrap-
pings [8] [9] [10] including such properties as software reuse
without source code modification, delaying language semantics
to run-time, and system upgrades by incremental migration in-
stead of version based replacement.

The Wrapping integration infrastructure is defined by its two
complementary aspects, the Wrapping Knowledge Bases and
the Problem Managers.

The Wrapping Knowledge Bases (WKBs) contain the Wrap-
pings that map problems to resources in context. They define
the entire set of problems that the system knows how to treat
(there are usually also default problems that catch the ones oth-
erwise not recognized). The mappings are problem-, problem
parameter-, and context-dependent.

The Problem Managers (PMs) are the programs that read WKBs
and select and apply resources to problems in context. We get
Computational Reflection because they are also resources, and
are Wrapped in exactly the same way as other resources, and
are therefore available for the same flexible integration as any
resources. These systems have no privileged resource; anything
can be replaced. Default Problem Managers are provided with
any Wrapping implementation, but the defaults can be super-
seded in the same way as any other resource. These are the pro-
cesses that replace the usual kind of implicit invocation [22],
allowing arbitrary processes to be inserted in the middle of the
resource invocation process. This choice leads to very flexible
systems; more details can be found in our references previously
cited, especially the tutorials.

Five essential properties underlie the simplicity and power of
Wrappings. They are related as shown in Figure 1.

1. ALL parts of a system, at all levels of detail, are resources
that provide some kind of information service or computa-
tion service. Everything that does anything is a resource.

2. ALL activities in the system are problem study, that is, all
activities apply a resource to a posed problem in a problem
context). Posed problems are computation or information
service requests.

3. ALL maintenance of relevant system state is done with
context. The invocation environment provides the initial

problems

map

affects

context

PMs

read

WKB

resources

Figure 1: Wrapping Aspects

context, and system operation updates the dynamic con-
text from internal and external sources (as part of various
resource applications).

4. Wrapping Knowledge Bases (or WKBs) contain Wrap-
pings, which are explicit machine-interpretable descrip-
tions of all of the ways resources can be applied to prob-
lems in contexts that are relevant to the system. ALL
information connecting posed problems to applicable re-
sources is maintained in WKBs, which define the mapping
in a context- and problem-parameter-dependent way. The
Wrappings are generally defined by developers and pro-
vided with the resources. The Wrappings provide what
we have called the Intelligent User Support (IUS) func-
tions [46]:

• Discovery (which new resources can be inserted into
the system for this problem),

• Selection (which resources to apply to a problem),

• Assembly (how to let them work together),

• Integration (when and why they should work to-
gether),

• Adaptation (how to adjust them to work on the prob-
lem),

• Explanation (why certain resources were or will be
used), and

• Evaluation (what is the impact or effect of this use of
this resource).

Wrappings therefore contain much more than “how” to use
a resource, as many computing libraries do. They also
provide information to help decide “when” it is appropri-
ate, “why” it might be the right one for the problem, and
“whether” it can be used in this current problem and con-
text.

5. Problem Managers (PMs), including the Study Managers
(SMs) and the Coordination Managers (CMs), are algo-
rithms that interpret the Wrapping descriptions to collect
and select resources and apply them to problems. ALL
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interpretation and performance activities are managed by
PMs, which are themselves also resources, and are there-
fore also Wrapped and selectable, just like any other re-
source.

Thus, a system built with Wrappings uses what we have called
Knowledge-Based Polymorphism to connect each problems in
context to appropriate resources. It is therefore an example of
the Problem Posing Paradigm.

A Wrapping is not simply a coded interface “to” a resource,
the way the usual “wrappers” are; it is a conceptual interface to
the “use” of a resource, for a particular problem in a particular
context (the selection of the appropriate resource to apply for a
given problem in a given context is a kind of case-based reason-
ing [35]). This information is used to generate the appropriate
invocation wrapper interfaces on the fly. We Wrap “uses” of
resources instead of resources in and of themselves, since many
analysis tools have grown by accretion over the years, and com-
mon ways to use them have developed their own style.

This non-correspondence between problems and resources is
one of the important normalizing features of the Wrapping ap-
proach, since it allows the uses of resources to be much more
simply described than trying to describe the entire resource at
once.

This allows us, for example, to map a series of posed problems
representing a prospective analysis into a form suitable for exe-
cution on some computer in the actual system, and into a form
suitable for use in a simulation. The different contexts mean we
can take the same code (expressed as “problem”s in a nested
structure) and map to different resources.

7.3 Wrapping Processes

One of the keys to the flexibility of Wrappings is making the
processes as important and as explicit as the descriptions. The
basic notion is the interaction of one very simple loop, called
the “Coordination Manager”, and a very simple planner, called
the “Study Manager”.

The default Coordination Manager (CM) is responsible for
keeping the system going. It has only three repeated steps, after
an initial FC = Find Context step:

• PP = Pose Problem,

• SP = Study Problem,

• AR = Assimilate Results

To “Find Context” means to establish a context for problem
study, possibly by requesting a selection from a user, but more
often getting it explicitly or implicitly from the system invoca-
tion. It is our placeholder for conversions from that part of the

system’s invocation environment that is necessary for the sys-
tem to represent to whatever internal context structures are used
by the system. To “Pose Problem” means to get a problem to
study from the problem poser (a user or the system), which in-
cludes a problem name and some problem data, and to convert
it into whatever kind of problem structure is used by the system
(we expect this is mainly by parsing of some kind). To “Study
Problem” means to use an SM and the wrappings to study the
given problem in the given context, and to “Assimilate Results”
means to use the result to affect the current context, which may
mean to tell the poser what happened. Each step is a problem
posed to the system by the CM, which then uses the default SM
to manage the system’s response to the problem. The first prob-
lem, “Find Context”, is posed by the CM in the initial context
of “no context yet”, or in some default context determined by
the invocation style of the program.

The main purpose of the default CM is cycling through the other
three problems, which are posed by the CM in the context found
by the first step. This way of providing context and tasking for
the SM is familiar from many interactive programming envi-
ronments: the “Find context” part is usually left implicit, and
the rest is exactly analogous to LISP’s “read-eval-print” loop,
though with very different processing at each step, mediated by
one of the SMs. In this sense, this CM is a kind of “heartbeat”
that keeps the system moving. It is therefore an activity loop of
a sort that is common in autonomic computing and other self-
adaptive system developments [38].

If the Coordination Manager is the basic cyclic program heart-
beat, then the Study Manager is a planner that organizes the
resource applications.

We have divided the “Study Problem” process into three main
steps: “Interpret Problem”, which means to find a resource to
apply to the problem; “Apply Resource”, which means to apply
the resource to the problem in the current context; and “Assess
Results”, which means to evaluate the result of applying the
resource, and possibly posing new problems. We further sub-
divide problem interpretation into five steps, which organize it
into a sequence of basic steps that we believe represent a fun-
damental part of problem study and solution. These are imple-
mented in the default Study Manager (SM):

• INT = Interpret Problem:

– MAT = Match Resources,

– RES = Resolve Resources,

– SEL = Select Resource,

– ADA = Adapt Resource,

– ADV = Advise Poser,

• APP = Apply Resource, and

• ASR = Assess Results.
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To “Match Resources” is to find a set of resources that might ap-
ply to the current problem in the current context. It is intended
to allow a superficial first pass through a possibly large collec-
tion of Wrapping Knowledge Bases. To “Resolve Resources”
is to eliminate those that do not apply. It is intended to allow
negotiations between the posed problem and each wrapping of
the resource to determine whether or not it can be applied, and
make some initial bindings of formal parameters of resources
that still apply. To “Select Resource” is simply to make a choice
of which of the remaining candidate resources (if any) to use.
To “Adapt Resource” is to set it up for the current problem and
problem context, including finishing all required bindings. To
“Advise Poser” is to tell the problem poser (who could be a
user or another part of the system) what is about to happen,
i.e., what resource was chosen and how it was set up to be ap-
plied. To “Apply Resource” is to use the resource for its in-
formation service, which either does something, presents some-
thing, or makes some information or service available. To “As-
sess Results” is to determine whether the application succeeded
or failed, and to help decide what to do next.

The CM and SM interact as shown schematically in Figure 2.

Match Resources

Study Problem

Assimilate Results

Resolve Resources

Select Resource

Adapt Resource

Advise Poser

Apply Resource

Assess Results

SM

Pose Problem

Find Context

the resource to do
whatever it does

This step invokes

CM

Figure 2: CM and SM Steps

Finally, we insist that every step in the above sequences is actu-
ally a posed problem, and is treated in exactly the same way as
any other, which makes these sequences “meta”-recursive [3].
This makes the system completely Computationally Reflective.
That means that if we have any knowledge at all that a different
planner may be more appropriate for the context and applica-
tion at hand, we can use it (after defining the appropriate context
conditions), either to replace the default SM when it is applica-
ble, or to replace individual steps of the SM, according to that
context (which can be selected at run time).

This meta-recursive choice shows how Wrappings satisfies our
claim above that there is “no privileged choice”; any part of the
system may be replaced or superseded.

Of course, we also have to have something to replace or super-
sede. We have also provided default resources for each of the
CM and SM steps, to be used when no other is selected to super-
sede it (as the above SM is the default resource for the problem
“Study Problem”). A simple complication occurs with the de-
fault among many possible resources for the “Select Resource”
problem: we want to allow other resources to be used, so we
insist that the default resource (which otherwise might just pick
the first resource on the list) not pick itself if there is another
choice when it is addressing the “Select Resource” problem.

We have used these algorithms many times to explain and im-
plement autonomous and reflective agents and systems [45]
[46], and shown that they provide the appropriate level of man-
ageable flexibility and auditable integration. The advantage in
flexibility this approach provides over other activity loops that
have been proposed is that the SM and CM steps are “meta”-
steps, with posed problems for the activities, allowing one fur-
ther level of abstraction and indirection when it is useful. There
are a number of other activity loops that we have seen described
in various places [9], but we think our CM / SM meta-recursive
interaction subsumes all of them. The meta-interpretation style
[3] can of course be applied to any of them to make them much
more flexible.

We have implemented several different kinds of CMs in addi-
tion to the simple default CM defined above. There are CMs
that short cut the reflection by calling the default step resources
directly, and fully recursive versions that have extra levels of
problem posing. Some of them are described in other papers in
the references.

We have also used different SMs, beyond the default one that
tries only one resource: one SM tries all applicable resources
and returns with the first success, another tries them all and
evaluates them to return the best success, and one collects all
successes and summarizes. There are also different kinds of
SM steps. The Match and Resolve resources that read XML
WKBs are different from the ones that read te text only form. A
different Match or Resolve might invoke a more sophisticated
planner if there are no matches. A different Select might choose
all compatible resources, then negotiate among them. Different
versions of apply, beyond the default function call, might send
a request message, or invoke an interpreter or other process.
Another one might simply add the resource to a configuration,
instead of invoking it.

Finally, for studying the timing characteristics of an infrastruc-
ture, we want to use a simulation style of analysis, but we want
to use the same Wrapping infrastructure. In this case, we want
to use a CM and SM that includes a simulation engine. This can
be done easily, with exactly the same default CM and SM, with
different CM and SM steps (this is one of the results of our em-
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phasis on Computational Reflection). Essentially, the new Find
Context resource initializes the future events set using a pro-
vided scenario. The new Pose Problem resource determines the
next relevant event as a posed problem, using whatever dynamic
knowledge there is about the system. The new Study Problem
resource runs that event element as a posed problem, possibly
scheduling new event elements. Running the event element in-
cludes keeping track of time requirements. Then the new As-
similate Results resource displays the recent movements. Then
running the CM is running the simulation.

We have also developed a few mitigations for run-time decision
time issues. A system that does not change its resources quickly
can save processing time by using what are called memo func-
tions (as defined for the Haskell Memo library and other places
[30]), which are essentially collections of already computed val-
ues of a function. This memory can be extremely useful when
the computation is time consuming. In our case, the resources
used for the “Match Resources” problem could keep a record
(which we presume would be a reverse index mapping prob-
lems to Wrappings. Even more useful might be a memo func-
tion for the “Study Problem” resources, which would keep the
entire problem to resource in context values, and only compute
them once. For our embedded system applications, however, we
expect the context to be changing more rapidly, so this memo
function may not be as useful.

In this case, we recommend using partial evaluation [18] [41]
[19] to eliminate the SM altogether for some problems. If the
set of resource Wrappings implies that there is only one re-
source that can apply to a problem, then we can sidestep the
SM processing almost entirely, and replace the problem posing
step with a test of the applicability conditions and an invocation
of the resource.

7.4 Wrapping Knowledge Bases

The Wrappings in the WKBs are used by PMs to map prob-
lems to resources. The first implementations used a very simple
keyword value format, intended for use by the default CM and
SM.

Now, however, we usually write our Wrappings in XML for
generality and simplicity, since XML parsers exist for many im-
plementation languages. It should also be remembered that the
format of the WKBs can differ for different SMs and other PMs,
so it need not be the same throughout a system. Wrapping ap-
plications can use different knowledge representations (any of
the popular Knowledge Representation Languages can be used,
but we usually avoid them because they place too much power
in processes not subject to change, and therefore not subject to
study). The only real constraint is to support the CM/SM or
whatever PMs are being used.

Also, for some applications, qualitative information and qualita-

tive distinctions are important, considerations such as best prac-
tices, preference indications, and performance expectations.
For example, two optimization methods might be distinguished
by such information as “slow optimization method that requires
a mathematician to interpret” versus “fast, inexact so only use it
as a preliminary indicator”.

With this in mind, we present a sample Wrapping Knowledge
Base format used in a recent application [9], which was imple-
mented in a keyword value style::

RS resource name as a sequence of symbols.
PB problem name as a sequence of symbols, with list of prob-

lem parameter names.
NF problem parameter conditions: Each of these is a boolean

parameter conditions, assumed to apply conjunctively. A
condition can test for existence or not, or for specific value
range.

XC context conditions: Each of these is a boolean parameter
condition, assumed to apply conjunctively. A condition
can test for an attribute’s existence or not, or for specific
value range.

PM map from problem parameters to resource parameters, as-
sumed to be in resource parameter order. Fancier versions
might allow arithmetic expressions in the map.

XH context condition changes: Each of these is a context vari-
able assignment. Fancier versions might allow arithmetic
expressions in the assignment.

SY symbol (symbolic name of resource in object file)
FL source file (path name of object file that contains the sym-

bol)
ND

Most of these entries are optional, and several may occur more
than once. There must be exactly one RS, PB, and ND entry
to define the map, exactly one SY and FL entry to define the
compiled resource code (in our unix/linux implementation), and
there may be zero or more of any of the others.

The WKB entries support information needed by the default SM
steps. Match expects to find resources that claim to address the
posed problem in the current context, by filtering on the param-
eter and context conditions. Resolve expects to find conditions
that guarantee that a resource can address the posed problem in
the current context, also by filtering on the parameter and con-
text conditions (we usually expect the match conditions to be
more superficial, as a preliminary filter, and the resolve condi-
tions to be a negotiation between the specific Wrapping and the
problem in context. Select expects to find resource preference
information, qualitative or otherwise. Adapt expects to find spe-
cialized methods for adapting the selected resource, which can
range from nothing to complex resource setup programs. Ad-
vise expects to find methods for presenting these decisions to
the problem poser. Apply expects to find methods for apply-
ing a selected and adapted resource, from simple resource func-
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tion invocation to the invocation of an interpreter for a domain-
specific notation or other source code. Assess expects to find
specialized methods for assessing the results (these are resource
dependent). Match, Resolve, and Apply are the only necessary
ones in the simplest cases. The others are optional, and sensible
defaults exist, as described above.

7.5 Wrapping Summary

Wrapping-based systems support run-time decisions about
which resources to apply in the current context, both at the ap-
plication level (the resources that perform the task at hand) and
at the meta-level (the resources that are used to select and orga-
nize the application level resources). This flexibility does come
with a cost, but there are also mechanisms based on partial eval-
uation [18] [41] [19] for removing any decisions that will be
made the same way every time, thus leaving the costs where the
variabilities need to be.

The Wrapping approach makes infrastructure experimentation
simpler and more effective because of its separation of prob-
lems and resource uses from resources. Such a system can have
“macro-resources” that are combinations of resources applied
together, and also “micro-resources” that are particular usage
styles of resources packaged and treated separately for different
contexts. The Wrapping infrastructure does not restrict mixing
and matching these styles.

In summary, there are several advantages of using Wrappings
that are also conducive to good system design practice:

• using Wrappings allows (requires) careful definition of the
modeling spaces, especially the problem spaces that drive
the whole process (a problem can be considered to be a
generic activity within a model or modeling space);

• using Wrappings encourages (requires) good abstractions
to facilitate experimentation with various strategies, to de-
cide which ones can be done in real-time in the application
at hand, and which ones can only be done in simulation;

• using Wrappings allows (requires) generic integration
strategies that are explicit and therefore sharable and
reusable;

• using Wrappings allows (requires) careful definition and
decomposition of the expectations for the system, since the
system design is done entirely in terms of posed problems
and responsibilities, instead of components and require-
ments.

We believe that this up front modeling is essential for effective
system design, whether or not Wrappings are used.
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