
29 September 2015

Scenarios@run.time – Distributed Scenarios@run.time – Distributed
Execution of Specifications onExecution of Specifications on

IoT-Connected RobotsIoT-Connected Robots
10th International Workshop on Models@run.time

at MODELS 2015, Ottawa, Canada

Joel Greenyer, Daniel Gritzner, Timo Gutjahr, Tim Duente, Stefan Dulle, Falk-David
Deppe, Nils Glade, Marius Hilbich, Florian Koenig, Jannis Luennemann, Nils Prenner,

Kevin Raetz, Thilo Schnelle, Martin Singer, Nicolas Tempelmeier, Raphael Voges

2

Student Project UbiBots 2015

Student Project Website: http://ubibots2015.scenariotools.org/
Youtube Video: http://youtu.be/g0hcGSYC2Wk

ScenarioTools Website: http://scenariotools.org

http://ubibots2015.scenariotools.org/
http://youtu.be/g0hcGSYC2Wk
http://scenariotools.org/

3

Motivation

• Examples: CarToX, Intelligent Factories, Smart Cities, …
– reactive: software continuously reacts to environment events
– cyber-physical: multiple software components communicate to

control processes in the physical world
– ubiquitous: software interacts with users in diverse ways
– safety-critical: failures can cause damage or cost lives
– dynamic structures:

• relationships between objects change (real and virtual)
• relationships affect the communication behavior and vice versa

4

Example: An Advanced CarToX Driver-
Assistance System

• Car-to-Car / Car-to-Infrastructure (Car-to-X) communication
– provides advanced driver-assistance features
– controls traffic more efficiently

• Examples:

BMW Car-to-X Communication https://www.car-2-car.org/

5

approaching
obstacle on
blocked lane

Example CarToX Use Case:
coordinated passage of a road work site

• One lane of a two-lane street is blocked by road works
• cars communicate with a control station for a safe passage

– instead of using traffic lights
– an on-board display shows drivers whether they are allowed to

enter the narrow passage or not

approaching
obstacle on narrow

passage lane obstacle
ahead

road work control

6

Example CarToX Use Case:
coordinated passage of a road work site

• What kinds of dynamism do we see here?
– Message-based communication of cars and control station

approaching
obstacle on
blocked lane

approaching
obstacle on narrow

passage lane obstacle
ahead

road work control

approaching
obstacle on
blocked lane

approaching
obstacle on narrow

passage lane obstacle
ahead

7

Example CarToX Use Case:
coordinated passage of a road work site

• What kinds of dynamism do we see here?
– Message-based communication of cars and control station
– Structural dynamism:

• Physical: cars move along different sections of the road
• Physical: cars change their relative position relationships
• Virtual: the control station registers approaching cars

road work control

cars approaching
on blocked lane

cars approaching
on narrow passage

 lane

8

Example CarToX Use Case:
coordinated passage of a road work site

• What kinds of dynamism do we see here?
– Message-based communication of cars and control station
– Structural dynamism:

• Physical: cars move along different sections of the road
• Physical: cars change their relative position relationships
• Virtual: the control station registers approaching cars
• Physical: even road works may appear and disappear

9

CarToX-System

• Question: How would you approach the design of the
software for such a system?

10

Collaboration: “approaching
obstacle on blocked lane”

• Identify the different situations in which system and
environment objects interact to fulfill a certain functionality
– We call them Use Cases or Collaborations

• Describe what the objects may, must, and must not do in
the form of scenarios

approaching
obstacle on
blocked lane

road work control

Collaboration

11

Collaboration: “approaching
obstacle on blocked lane”

• Scenario “Dashboard Of Car Approaching On Blocked Lane
Shows Stop Or Go”:

road work control

12

Collaboration: “approaching
obstacle on blocked lane”

• Scenario “Dashboard Of Car Approaching On Blocked Lane
Shows Stop Or Go”:
1) When approaching an obstacle on the blocked lane

road work control

1
approaching an obstacle

on the blocked lane

13

Collaboration: “approaching
obstacle on blocked lane”

• Scenario “Dashboard Of Car Approaching On Blocked Lane
Shows Stop Or Go”:
1) When approaching an obstacle on the blocked lane
2)Then the dashboard must indicate to STOP or to GO

road work control

1

2

approaching an obstacle
on the blocked lane

showStop or
showGo

14

Collaboration: “approaching
obstacle on blocked lane”

• Scenario “Dashboard Of Car Approaching On Blocked Lane
Shows Stop Or Go”:
1) When approaching an obstacle on the blocked lane
2)Then the dashboard must indicate to STOP or to GO
3)Before the car finally reaches the obstacle

road work control

1

2

approaching an obstacle
on the blocked lane

showStop or
showGo3

obstacle
reached

15

Collaboration: “approaching
obstacle on blocked lane”

• Scenario “Dashboard Of Car Approaching On Blocked Lane
Shows Stop Or Go”:
1) When approaching an obstacle on the blocked lane
2)Then the dashboard must indicate to STOP or to GO
3)Before the car finally reaches the obstacle

road work control

1

2

approaching an obstacle
on the blocked lane

showStop or
showGo3

obstacle
reached

How do we know
whether to show

STOP or GO?

16

Collaboration: “approaching
obstacle on blocked lane”

• Scenario “Control Station Checks for Car Approaching On
Blocked Lane Entering Allowed Or Not”:

road work control

17

Collaboration: “approaching
obstacle on blocked lane”

• Scenario “Control Station Checks for Car Approaching On
Blocked Lane Entering Allowed Or Not”:
1) When approaching an obstacle on the blocked lane

road work control

1
approaching an obstacle

on the blocked lane

18

Collaboration: “approaching
obstacle on blocked lane”

• Scenario “Control Station Checks for Car Approaching On
Blocked Lane Entering Allowed Or Not”:
1) When approaching an obstacle on the blocked lane
2)The car must register at the obstacle's control station

road work control

1

2

approaching an obstacle
on the blocked lane

register

19

Collaboration: “approaching
obstacle on blocked lane”

• Scenario “Control Station Checks for Car Approaching On
Blocked Lane Entering Allowed Or Not”:
1) When approaching an obstacle on the blocked lane
2)The car must register at the obstacle's control station
3)If there is an approaching car in or before the narrow

passage area: disallow the car entering the narrow passage
● otherwise allow it

road work control

1
approaching an obstacle

on the blocked lane

entering
(Dis)Allowed2

register 3

cars approaching
on narrow passage

 lane

?

20

Collaboration: “approaching
obstacle on blocked lane”

• Scenario “Control Station Checks for Car Approaching On
Blocked Lane Entering Allowed Or Not”:
1) When approaching an obstacle on the blocked lane
2)The car must register at the obstacle's control station
3)If there is an approaching car in or before the narrow

passage area: disallow the car entering the narrow passage
● otherwise allow it
4)Then show STOP/GO accordingly on the driver's dashboard

road work control

1
approaching an obstacle

on the blocked lane

entering
(Dis)Allowed2

register 3 4 showStop or
showGo

21

A typical Software/Systems Development
Process...

public void run(){
 ...;
}

✓
×

✓×

informal
requirements

informal or
“semi-formal”
specification

implementation

unit tests

integration/
system

tests

use and
maintenance =

?

design

22

A typical Software/Systems Development
Process...

public void run(){
 ...;
}

✓
×

✓×

informal
requirements

informal or
“semi-formal”
specification

implementation

unit tests

integration/
system

tests

use and
maintenance =

?

design

informal
specification:
unambiguous?
consistent?

23

A typical Software/Systems Development
Process...

public void run(){
 ...;
}

✓
×

✓×

informal
requirements

informal or
“semi-formal”
specification

implementation

unit tests

integration/
system

tests

use and
maintenance =

?

design

informal
specification:
unambiguous?
consistent?

All requirements
considered?
Design correct?

24

A typical Software/Systems Development
Process...

public void run(){
 ...;
}

✓
×

✓×

informal
requirements

informal or
“semi-formal”
specification

implementation

unit tests

integration/
system

tests

use and
maintenance =

?

design

informal
specification:
unambiguous?
consistent?

All requirements
considered?
Design correct?

Testing?
Based on informal
specification.

25

A typical Software/Systems Development
Process...

public void run(){
 ...;
}

✓
×

✓×

informal
requirements

informal or
“semi-formal”
specification

implementation

unit tests

integration/
system

tests

use and
maintenance =

?

design

informal
specification:
unambiguous?
consistent?

All requirements
considered?
Design correct?

Testing?
Based on informal
specification.

Not what stakeholder
wanted. Violates
critical requirements,
→ costly iterations

26

Software Development Process

public void run(){
 ...;
}

✓
×

✓×

informal
requirements

informal or
“semi-formal”
specification

implementation

unit tests

integration/
system

tests

use and
maintenance =

?

design

rc:RailCab

curr:TSC

e:Env

rc:RailCabe:ENV next:TSC

realizability
checking

& controller
synthesis

formal, but
intuitive
specification

communicate,
simulate

rc:RailCabe:ENV next:TSC

27

Software Development Process

public void run(){
 ...;
}

✓
×

✓×

informal
requirements

informal or
“semi-formal”
specification

implementation

unit tests

integration/
system

tests

use and
maintenance =

?

design

rc:RailCab

curr:TSC

e:Env

rc:RailCabe:ENV next:TSC

realizability
checking

formal, but
intuitive
specification

communicate,
simulate

rc:RailCabe:ENV next:TSC

rc:RailCab
curr:TSC

e:Env

rc:RailCabe:ENV next:TSC

scenarios@run.time

28

Scenario Design Language (SDL)

• Textual language based on Live Sequence Charts (LSCs)

• Collaborations describe, by a set of roles, a structure of
objects that collaborate to fulfill a certain functionality

• Scenarios describe properties that must be satisfied by all
message-based interactions of objects

collaboration ApproachingObstacleOnBlockedLane{
dynamic role Environment env
dynamic role Car car
dynamic role Dashboard dashboard
...

specification scenario DashboardOfCarApproachingOn
-BlockedLaneShowsStopOrGo{

message env->car.approachingObstacleOnBlockedLane()
...

}

29

The Object System

• SDL specifications refer to systems
of objects (instances of a class model)

env

[...]

<<instanceof>>

30

The Object System

• SDL specifications refer to systems
of objects (instances of a class model)

• Objects can exchange messages

env

[...]

approaching an obstacle
on the blocked lane

approachingObstacle-
 OnBlockedLane

<<instanceof>>

31

Scenario Design Language

• Formalizing our first scenario:

• With the modalities strict and requested, we can express
what may, must, and must not happen

specification scenario DashboardOfCarApproachingOn
-BlockedLaneShowsStopOrGo

with dynamic bindings [
 bind dashboard to car.dashboard
]{
 message env->car.approachingObstacleOnBlockedLane()
 alternative{
 message strict requested car->dashboard.showGo()
 } or {
 message strict requested car->dashboard.showStop()
 }
 message env->car.obstacleReached()
}

32

Scenario Design Language

• Formalizing our second scenario:

specification scenario ControlStationChecksForCarOnBlockedLane
with dynamic bindings [...]{
 message env->car.approachingObstacleOnBlockedLane()
 message strict requested car->obstacleControl.register()
 alternative if [
 obstacleControl.carsOnNarrowPassageLaneApproaching.isEmpty()
] {
 message strict requested obstacleControl->car.enteringAllowed()
 message strict requested car->dashboard.showGo()
 } or if[
 !obstacleControl.carsOnNarrowPassageLaneApproaching.isEmpty()
] {
 message strict requested obstacleControl->car.enteringDisallowed()
 message strict requested car->dashboard.showStop()
 }
}

33

Simulation via Play-Out

• An SDL specification can be executed via play-out
– an executable interpretation of the scenarios

• This can be used for simulation
– to analyze and understand the interplay of the scenarios

• The play-out algorithm In a nutshell:
1)environment events occur and activate scenarios

2) the scenarios prescribe events that the system must execute

3)play-out executes these events while trying to avoid violations

4)when all system reactions are executed, wait for the next
environment event (goto Step 1)

34

Simulation via Play-Out
in ScenarioTools

35

Scenarios@Run.time

36

Steps in the Scenarios@Run.time Framework

other clients

MQTT boker

sensors actuators

client (e.g. robot)

MQTT clientexecutor

ScenarioTools
play-out engine 1

3

publish sensor event

publish
event

broadcast
event

5

6
execute
step

enabled requested
system events

7
if event is
actuator event
of client then
execute

4

8
select and send event
sendable by client

3
2...

37

Summary & Perspective

• Execute scenario specifications on distributed systems
• New:

– dynamic structures: interpretation of dynamic role bindings
– also execute environment assumptions

• run-time monitoring if environment behaves as assumed

• Relies on full synchronization of all components on all events
– this overhead must be reduced:

• only synchronize objects in certain parts of the system
• analyze at run-time minimal set of components to synchronize

• Future work:
– safe run-time updates of specification changes
– dependability: how to recover from run-time failures

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

