
13th International Workshop on Models@run.time

Towards software architecture runtime models for
continuous adaptive monitoring

Thomas Brand, Holger Giese

14.10.2018

Agenda

▪ Show why it is relevant to investigate and support:

▪ Continuous adaptive monitoring

▪ Modeling languages for long living runtime model instances

▪ Demonstrate the significance of the modeling language

▪ Describe the planned roadmap for proposing an evaluated solution

▪ Derive requirements from illustrative scenarios and indicate how they are
supported by two existing approaches

▪ Questions and discussion

2

Relevancy

3

Why does
monitoring need
to be adaptive?

Why is monitoring
adaptation without

interruption important?

How does the
runtime model

modeling language
relate to this?

Setting the context

“models@run.time is an abstraction of a running system that is
being manipulated at runtime for a specific purpose”

Please imagine a software architecture runtime model thinking of:
▪ graph in a datastore
▪ running system
▪ current monitoring results
▪ analysis and phenomena detection processes

4

[Bencomo.2013]

QueryService

pooledConnectionsCount: Integer
pooledConnectionsMax: Interger

Meta-model level

Runtime model level System representation content

Modeling language definition content

Classical Model-Driven Engineering approach

5

Modeling
language
implementation
with an API to
create models

Monitoring

2
.) u

s
e

Query based on
types e.g.:

QueryService.

pooledConnectionCount > 5

4.) access

qs1:QueryService

<<instanceOf>>

pooledConnectionsCount = 5
pooledConnectionsMax =10

Motivation

▪ Monitored system and information demands change over time

▪ Usage measurement and experimentation in software product development

▪ Highly dynamic architectures based on microservices

▪ Exploration and exploitation with machine learning …

▪ Modeling language determines possible information types

▪ Evolving the modeling language requires a model re-instantiation

▪ Re-instantiations interrupt the monitoring and phenomena detection processes

and endanger continuous system operation

▪ A flexible modeling language regarding the types of information in the runtime model

▪ Makes long living runtime model instances possible and supports continuous

adaptive monitoring and system operation

▪ Increases the feasibility of runtime models for additional fields of application

6

Significance of the modeling language

7

To better understand:
Can you show how the
modeling language is
actually significant?

QueryService

pooledConnectionsCount: Integer
pooledConnectionsMax: Interger

Meta-model level

Runtime model level System representation content

Modeling language definition content

Information demand changes - Filtering

8

Modeling
language
implementation
with an API to
create models

Monitoring

1
.) u

s
e

Query based on
types e.g.:

QueryService.

pooledConnectionCount > 5

3.) access

qs1:QueryService

<<instanceOf>>

pooledConnectionsCount = 5
pooledConnectionsMax =10

Monitoring
adaptation
engine

5.) adapt

[Brand.2018]

QueryService

qs1:QueryService

<<instanceOf>>

pooledConnectionsCount: Integer
pooledConnectionsMax: Interger

pooledConnectionsCount = 5
pooledConnectionsMax =10

Meta-model level

Runtime model level System representation content

Modeling language definition content

qs2:QueryService

pooledConnectionsCount = 5
pooledConnectionsMax =10

<<instanceOf>>

Running system changes - System adaptation

9

Modeling
language
implementation
with an API to
create models

Monitoring

1
.) u

s
eQuery based on

types e.g.:

QueryService.

pooledConnectionCount > 5

QueryService

:RegionItemFilter

<<instanceOf>>

pooledConnectionsCount: Integer
pooledConnectionsMax: Interger

mode = 51

Meta-model level

Runtime model level System representation content

Modeling language definition content

:QueryService

pooledConnectionsCount = 5
pooledConnectionsMax =10

<<instanceOf>>

RegionItemFilter

mode: Integer

Running system changes - System evolution

10

Modeling
language
implementation
with an API to
create models

Monitoring

2
.) u

s
e€

Discontinuity!

Query based on
types e.g.:

QueryService.

pooledConnectionCount > 5

QueryService

:QueryService

<<instanceOf>>

pooledConnectionsCount: Integer
pooledConnectionsMax: Interger
cachedStatementsCount : Integer
cachedStatementsMax: Integer

pooledConnectionsCount = 5
pooledConnectionsMax =10
cachedStatementsCount = 27
cachedStatementsMax = 50

Meta-model level

Runtime model level System representation content

Modeling language definition content

Running system changes - Software evolution

11

Modeling
language
implementation
with an API to
create models

Monitoring

2
.) u

s
e

4.) access

€

Query based on
types e.g.:

QueryService.

pooledConnectionCount > 5

Discontinuity!

The CompArch approach

12

There is a way to
improve the situation

compared to the
classical approach!?

Dynamic Object Model pattern

13

[Riehle.2005]

Model level

Model contentClassifier definition content

ComponentType Component

type instance

*1

type instance

*1

propertyType *

*

PropertyType

property*

1

Property Value
11

The CompArch approach

14

[Vogel.2018]

Meta-model level

Runtime model
level

System representation contentClassifier definition content

Modeling language definition content

ComponentType Component
1 *

ParameterType Parameter

name : String

name : String
type : String

value : String

MonitoredProperty

name : String
type : String
value : String

1 *

*

1

*

1

*

1

ComponentType

<<instanceOf>>

ParameterType

name = "QueryService"

name = "pooledConnectionsMax"
type = "Integer"

<<instanceOf>> :Component
 classifies 4

<<instanceOf>>

:Parameter

value = "10"

:MonitoredProperty

name = "pooledConnectionsCount"
type = "Integer"
value = "5"

<<instanceOf>>

<<instanceOf>>

 classifies 4

Planned roadmap towards a prospective solution

15

Does this
approach fulfill the

requirements?

What actually
are the important

requirements?

How shall the
proposed solution

be evaluated?

Discover a coherent
set of requirements

Planned roadmap towards a prospective solution

16

Validate

Survey existing
languages

Describe illustrative
scenarios

Elaborate and
evaluate a solution

Information

demand

changes

Running

system

changes

Illustrative scenarios and requirements

17

Can you give us some
examples of scenarios

and requirements?

Scenarios and requirements overview

Requirements

R1 - Updating system representation structure and values

R2 - Indicating the actual information demand

R3 - Introducing new classifiers including classifier versions

R4 - Withdrawing obsolete classifiers

R5 - Establishing new kinds of relationships

R6 - Assigning multiple classifiers progressively

R7 - Integrating multiple classifier systems

R8 - Introducing new logical elements and relationships

18

Illustrative scenarios

S1 - System adaptation

S2 - System evolution

S3 - Software evolution

S4 - Systems integration and division

S5 - Filtering

S6 - Aggregation

S7 - Itemization

S8 - Generalization and specialization

Information

demand

changes

Running

system

changes

Example
system

19

Simplified mRUBiS runtime model
[Vogel.2018]

Multiple
tenants

ComponentType :Component
 classifies 4

version = "2.0.0"
name = "QueryService"

ParameterType
 classifies 4

name = "pooledConnectionsMax"

Runtime model level

System representation contentClassifier definition content

ParameterType

name = "cachedStatementsMax"

:Parameter

value = 10

:Parameter

value = 50

 classifies 4

Running system changes

S3 - Software evolution

▪ Conduct an experiment with new
software product version

▪ Deploy a new version of the
QueryService component to early
adopter tenants

▪ Represent new component version
with additional properties besides
the old

20

Requirements Classic ComArch

R3 - Introducing new classifiers including classifier versions -- (✓)

S3 - Software evolution -- (✓)

Running system

Monitoring
instrument

Monitoring
instrument

Monitoring
instrument

Runtime model

Aggregation not visible in the runtime model
(on the monitoring instrument level)

Information demand changes

S6 - Aggregation - Case 1: Invisible

21

Information demand changes

S6 - Aggregation - Case 2: Visible

22

ComponentType :Component
 classifies 4

name = "QueryService"

PropertyType

name = "pooledConnectionsCount"

Runtime model level

System representation contentClassifier definition content

:Property

value = 12

ComponentType

:Component

name = "QueryComponent"

:Property

value = 4

:Component

:Property

value = 8

aggregates

ComponentType :Component
 classifies 4

name = "QueryComponent"

Runtime model level

System representation contentClassifier definition content

ComponentType :Component

name = "QueryOptimizer"

:Component

aggregates

ComponentType

name = "Indexer"

Aggregation visible in the runtime model

Case 2.a: Functional aggregation Case 2.b: Structural aggregation

Information demand changes

S6 - Aggregation

▪ Represent the service which all query component instances provide together

▪ Aggregate on the monitoring instrument level

▪ Provide the sum of exceptions for all early adaptors of query service v2.0.0

▪ Aggregate on the runtime model level

23

Requirements Classic ComArch

R3 - Introducing new classifiers including classifier versions -- (✓)

R4 - Withdrawing obsolete classifiers -- ✓

R5 - Establishing new kinds of relationships -- --

R8 - Introducing new logical elements and relationships -- (✓)

S6 - Aggregation -- --

Information demand changes

S8 - Generalization and specialization

▪ Indicate potential for configuration
optimization by reporting two filters

▪ Query the number-of-filtered-items
property which is common for all
filter types

▪ Consider ten filters of different types
in a general way for the query

▪ Have a specific and a more general
classifier assigned to each filter

24

Requirements Classic ComArch

R6 - Assigning multiple classifiers progressively -- --

S8 - Generalization and specialization -- --

ComponentType :Component
 classifies 4

name = "CategoryItemFilter"

Runtime model level

System representation contentClassifier definition content

ComponentType

name = "Filter"

:ComponentComponentType

name = "RegionItemFilter"

Illustrative scenarios and requirements

25

What are the
remaining scenarios

and identified
requirements?

How far are the
requirements covered
by the two approaches

you looked at?

Scenarios and requirements coverage overview

Requirements

C
la

ss
ic

al

C
om

A
rc

h

R1 - Updating system representation structure and values ✓ ✓

R2 - Indicating the actual information demand (✓) (✓)

R3 - Introducing new classifiers including classifier versions -- (✓)

R4 - Withdrawing obsolete classifiers -- ✓

R5 - Establishing new kinds of relationships -- --

R6 - Assigning multiple classifiers progressively -- --

R7 - Integrating multiple classifier systems -- --

R8 - Introducing new logical elements and relationships -- (✓)

26

Scenarios

S1 - System adaptation

S2 - System evolution

S3 - Software evolution

S4 - Systems integration and division

S5 - Filtering

S6 - Aggregation

S7 - Itemization

S8 - Generalization and specialization

Summary

▪ Saw that runtime model modeling languages for flexibility are
worth investigating

▪ Discussed plans on how to elaborate and evaluate a prospective solution

▪ Discussed the identified requirements

27

▪ Complete the definition of a coherent set of scenarios and requirements also
based on analyzing existing modeling languages

▪ Elaborate a proposal

▪ Evaluate regarding cost-effectiveness and support for the requirements

▪ Consider co-evolution of queries and the runtime model modeling language

Outlook

References

[Bencomo.2013] N. Bencomo, G. Blair, et al., “Report on the 7th
International Workshop on Models@run.time,” in SIGSOFT Software
Engineering Notes, ACM, New York, 2013.

[Brand.2018] T. Brand, H. Giese, “Towards Generic Adaptive Monitoring”
in 2018 IEEE 12th International Conference on Self-Adaptive and
Self-Organizing Systems (SASO), to appear, 2018.

[Riehle.2005] D. Riehle, M. Tilman, et al., “Dynamic Object Model,” in
Pattern Languages of Program Design 5, Addison-Wesley, Upper
Saddle River, 2005.

[Vogel.2018] T. Vogel, “An Exemplar for Model-Based Architectural Self-
Healing and Self-Optimization,” in International Symposium on
Software Engineering for Adaptive and Self-Managing Systems, 2018.

28

Thomas Brand and Holger Giese

Hasso Plattner Institute at the University of Potsdam, Germany

{firstname.lastname}@hpi.uni-potsdam.de

