
Model Synchronization with the Role-oriented Single

Underlying Model

Model Synchronization with the Role-oriented Single Underlying Model

Software Technology Group / Werner, Christopher

MRT 2018 // 14.10.2018

Folie 2

Model Synchronization

• Multiple models express different concerns of interrelated

concepts

• Interrelated concepts lead to much related models

• Related models:

• Contain redundant information

• Independently editing leads to inconsistencies

• Solution: Defining model synchronizations between

interrelated models

• Unidirectional synchronization

• Bidirectional synchronization

S T
trans

S T

S T

Model Synchronization with the Role-oriented Single Underlying Model

Software Technology Group / Werner, Christopher

MRT 2018 // 14.10.2018

Folie 3

Model Synchronization at Runtime

Currently often used:

• Manually triggering of the synchronization process

• Batch updates of the whole model

• Specification of Synchronization rules at design time

• Synchronization of two models

Runtime model synchronization:

• Automatically triggering of the synchronization process

(immediate and continuous updates at runtime)

• Incremental updates of small changes

• Specification of models/views from the single underlying

model (SUM) at runtime (add and remove models/views at

runtime)

• Multiple models are views of underlying model

S T

U

S T

U

RSUM

Model Synchronization with the Role-oriented Single Underlying Model

Software Technology Group / Werner, Christopher

MRT 2018 // 14.10.2018

Folie 4

Why Model Synchronization at Runtime?

• Multiple related models in a self-

adaptive software system

• This models must be hold

consistent over time

• Needs an efficient runtime

synchronization mechanism

Knowledge

Monitor

Analyze Plan

Execute

Managed Systems

Evaluation

Models

Change

Models

Analysis

Models

Monitoring

Models
Systems

Models
Execution

Models

Model Synchronization with the Role-oriented Single Underlying Model

Software Technology Group / Werner, Christopher

MRT 2018 // 14.10.2018

Folie 5

Roles in a Nutshell

Library Example [Kühn2014]

Library

name: String

Employee

Person

name: String

salary: Double

Manager

Children (1..1)

0..11..*

0..*

Compartment TypeNatural Type

Role Type

Fills-Relation

Association

RoleGroup (n..m)

Context-

Dependent

Behavioral

Relational

SLUB:Library

name=SLUB

Alice:Person

name=Alice

salary=50000

man:Manager

Bob:Person

name=Bob

salary=30000

emp:Employee

Model Synchronization with the Role-oriented Single Underlying Model

Software Technology Group / Werner, Christopher

MRT 2018 // 14.10.2018

Folie 6

Research Questions

Goals:

• Simplify model synchronization between multiple runtime models with a

single underlying model

• Flexible and extensible single underlying model approach with runtime view

creation mechanisms

Requirements:

1. Incremental model synchronization

2. Runtime model synchronization

3. Runtime creation of views

4. Synchronization of multiple models

5. Integration of runtime models as views and elements in the single underlying

model

Library

name: String

Employee

Person

name: String

salary: Double

Manager

Children (1..1)

0..11..*

0..*

Model Synchronization with the Role-oriented Single Underlying Model

Software Technology Group / Werner, Christopher

MRT 2018 // 14.10.2018

Folie 7

Running Example

• Two related models in the library and employee

context

• Combination to one single underlying models

• Related models are now only views and are

automatically synchronized with the underlying

model

Combination:

ModelA.Person = ModelB.Person

ModelA.Employee = ModelB.Employee

ModelA ModelB

Model Synchronization with the Role-oriented Single Underlying Model

Software Technology Group / Werner, Christopher

MRT 2018 // 14.10.2018

Folie 8

Overall Concept

• RSUM contains naturals, relational

compartments and management

compartment

• RSUMManagement manages the

instances in the RSUM and the

extensions

• RSUMManager coordinates the role

bindings

• Runtime integration of new naturals,

relational compartments and

extensions possible

• Traceability information over the play

relations

RSUM

OtherViewsOtherViews EmployeeAndManagerView

Library

name

Employee

salary

Person

name

LibraryHasEmployee

TargetSource

LibraryAndEmployeeView

Employee HasManagerLibrary EmployeeHas

OtherViews

View

ManagerOfEmployee

Target

RoleGroup (1..1)

Source

manageremployees
0..1

0..*

1 1

1

1

11 0..*0..*

0..*

0..1

RsumManagement

+createView(query)

RsumManager

+manage()

Extensions

…

Extensions
Extensions

Extension

…

Natural

Compartment

Role

Plays Relation

RoleGroup (n..m)

Role . . .

Relation

Role

1 1

n..m n..m

Role

n..m

Role cardinality
n..m

Model Synchronization with the Role-oriented Single Underlying Model

Software Technology Group / Werner, Christopher

MRT 2018 // 14.10.2018

Folie 9

RSUM

Concept of Relational Compartments

Relational compartments represent relations in the underlying model

Advantages:

1. Loading relations at runtime (using class loader functionality from

programming languages like Scala and Java)

2. Extending naturals with new relations at runtime (playing of roles in

relational compartments)

3. Add behavior and states to relations (methods and attributes in relational

compartments)

4. n-ary relations (more role types in the relational compartment)

Limitations:

1. One relational compartment for each instance pair

2. Management of play relations of instances

Library

name

Employee

salary

LibraryHasEmployee

TargetSource

LibraryAndEmployeeView

Library EmployeeHas

employees

0..*

1

11 0..*0..*

1

Model Synchronization with the Role-oriented Single Underlying Model

Software Technology Group / Werner, Christopher

MRT 2018 // 14.10.2018

Folie 10

Extension Mechanism

Extension mechanism allows adding of new functionalities to the RSUM

Use cases:

• History mechanism

• Save changes over a period of time on one element

• Allows logging on specific elements

• Versioning mechanism

• Allows UNDO and REDO operations on single model elements

Library

name

RsumManagement

+createView(query)

RsumManager

+manage()

Extensions
Extensions

Extensions

Extension

…

Model Synchronization with the Role-oriented Single Underlying Model

Software Technology Group / Werner, Christopher

MRT 2018 // 14.10.2018

Folie 11

Deep Views

• Runtime models that depend on

other runtime models

• Create a structure of deep views

• Destruction of CompleteLibrary view

also destroys the two other views

• Create a structure for the views

• Insert a new abstraction layer

RSUM

Library

name

Employee

salary

Person

name

LibraryHasEmployee

TargetSource

CompleteLibraryView

HasManagerLibrary EmployeeHas

ManagerOfEmployee

Target

RoleGroup (1..1)

Source

manageremployees
0..1

0..*

1 1

1

1

11 0..*0..*

0..*

0..1

1 1

EmployeeAndManagerViewLibraryAndEmployeeView

Employee HasManagerLibrary EmployeeHas
1

1

11 0..*0..*

0..*

0..1

Model Synchronization with the Role-oriented Single Underlying Model

Software Technology Group / Werner, Christopher

MRT 2018 // 14.10.2018

Folie 12

Creation Process

Process of adding a manager relation between two

employee

1. Get the naturals of the employees from the RSUM

2. Create a new ManagerOfEmployee compartment in

the RSUM

3. Bind the source and target roles to the used

employees

4. Create a new HasManager role in the view and

bind it to the new relational compartment

5. Add a new RsumManager role for the relational

compartment in the RSUMManagement

RsumM:RsumManagement

EM1:ManOfEmp

T1: Target

S1: Source

Rm3: RsumManager

EaM: EaMView

E2:Employee

name=Alice

salary=45000

E1:Employee

name=Bob

salary=60000

Rm2: RsumManager

Rm1: RsumManager

Er1: Employee

Mr1: HasManager

Er2: Employee

View

4

4

1

5

3

3

2

3

4

1

Model Synchronization with the Role-oriented Single Underlying Model

Software Technology Group / Werner, Christopher

MRT 2018 // 14.10.2018

Folie 13

Implementation with SCROLL

SCala ROLes Language (SCROLL) [Leuthäuser2015]:

• Role-based programming language

• Open source Scala library

• Implements most role features [Kühn2014]

• Flexible, lightweight, and easily extensible

• Compartments contain role graphs

Important operators:

• “Play” binds a role to a player

• “+” operator before a method call performs a dynamic

dispatch to a suitable role played by the receiver

Scala allows class loading for runtime integration of new

relational compartments, views, and extensions

class Library (_name : String) {

private var name : String = _name

def getName (): String = name

def setName (n: String): Unit = {

name = n

}

}

class LibraryRole (name : String) extends IViewRole {

def getNameView (): String = {

return + this getName ()

}

def setNameView (name : String): Unit = {

+ this setName (name)

+ this changeTrigger ()

}

}

Model Synchronization with the Role-oriented Single Underlying Model

Software Technology Group / Werner, Christopher

MRT 2018 // 14.10.2018

Folie 14

object RsumManagement extends MultiCompartment {

protected var extensions = ListBuffer [..]()

protected var activeViews = ListBuffer [..]()

protected var allViews = ListBuffer [..]()

protected var allRelations = ListBuffer [..]()

protected var allNaturals = ListBuffer [..]()

/* Insertion, creation, and deletion of views */

class RsumManager () {

def manageRsum (input : Object): Unit = {

if (input.isInstanceOf [IRelationCompartment])

allRelations = allRelations :+ input

else

allNaturals = allNaturals :+ input

input play roles in activeViews and extenstions

}

}

}

Limitations of Implementation

• Currently hand written prototype

• Runtime models as compartments with roles as new

objects

• Limitations from the use of relational compartments

• No dynamic loading of roles into compartments

• No domain specific language to describe the models

as views from the RSUM

• Remove relations from the classes and use them as

naturals

• Sometimes complex mechanism to combine all

models in one RSUM

Model Synchronization with the Role-oriented Single Underlying Model

Software Technology Group / Werner, Christopher

MRT 2018 // 14.10.2018

Folie 15

Related Work

MORSE Approach [Holmes2009]

• Model aware service environment consisting of a model repository and model-aware services

• Repository manages model projects and artifacts

• Using unique ids for all elements

SM@RT Tool [Song2010]

• Synchronization between running models and a MOF-compliant

• Synchronizations are triggered before and after write operations

TGGs [Vogel2010]

• Synchronize and generate runtime models with triple graph grammars

• Incremental updates at runtime

Model Synchronization with the Role-oriented Single Underlying Model

Software Technology Group / Werner, Christopher

MRT 2018 // 14.10.2018

Folie 16

Comparison with View-based Approaches

EMF

Profiles
[Langer2012]

mVTGG
[Anjorin2014]

OSM
[Atkinson2010]

OpenFlexo
[Golra2016]

VIATRA

viewers
[Depreceni

2014]

RSUM

Bidirectional updates ● ● ● ● ● ●

Immediate updates ● ● ● ● ● ●

Incremental updates ● ● ● ● ● ●

Virtual views ○ ○ ● ● ● ●

Deep views n.a. ● ○ ○ ● ●

No object schizophrenia ○ ○ ○ ○ ○ ●

Model Synchronization with the Role-oriented Single Underlying Model

Software Technology Group / Werner, Christopher

MRT 2018 // 14.10.2018

Folie 17

Conclusion & Future Work

• Advantages of roles as the foundation for a runtime model synchronization

approach using a single underlying model

• Runtime models as views over a single underlying model that manages the

information

• Feasibility of the role-oriented single underlying model approach by prototypically

splitting a model into two views and synchronize them

• Implementation with SCROLL

• Extend the implementation to a framework

• Use a domain specific language to create the views form the RSUM in a

simple way

• Extend the example and show the benefits on a bigger case study

S T

U

RSUM

Model Synchronization with the Role-oriented Single Underlying Model

Software Technology Group / Werner, Christopher

MRT 2018 // 14.10.2018

Folie 18

References (1)

[Anjorin2014] A. Anjorin, S. Rose, F. Deckwerth, and A. Schürr. 2014. “Efficient Model Synchronization with View Triple

Graph Grammars”. In Modelling Foundations and Applications. Springer International Publishing, Cham, 1–17.

[Atkinson2010] C. Atkinson, D. Stoll, and P. Bostan. 2010. Orthographic Software Modeling: A Practical Approach to

View-Based Development. In Communications in Computer and Information Science. Springer Science & Business

Media, 206–219.

[Debreceni2014] C. Debreceni, Á. Horváth, Á. Hegedüs, Z. Ujhelyi, I. Ráth, and D. Varró. 2014. “Query-driven

Incremental Synchronization of View Models”. In 2nd Workshop on View-Based, Aspect-Oriented and Orthographic

Software Modelling. ACM.

[Golra2016] F. R. Golra, A. Beugnard, F. Dagnat, S. Guerin, and C. Guychard. 2016. “Addressing Modularity for

Heterogeneous Multi-model Systems Using Model Federation”. In Companion Proceedings of the 15th International

Conference on Modularity. ACM, 206–211.

[Holmes2009] T. Holmes, U. Zdun, and S. Dustdar. 2009. “MORSE: A Model-Aware service environment”. In 2009 IEEE

Asia-Pacific Services Computing Conference (APSCC). 470–477.

[Kühn2014] T. Kühn, M. Leuthäuser, S. Götz, C. Seidl, and U. Aßmann, "A Metamodel Family for Role-Based Modeling

and Programming Languages," Cham: Springer International Publishing, 2014, pp. 141–160.

Model Synchronization with the Role-oriented Single Underlying Model

Software Technology Group / Werner, Christopher

MRT 2018 // 14.10.2018

Folie 19

References (2)

[Langer2012] P. Langer, K. Wieland, M. Wimmer, J. Cabot, et al. 2012. “EMF Profiles: A Lightweight Extension Approach

for EMF Models”. Journal of Object Technology 11, 1 (2012), 1–29.

[Leuthäuser2015] M. Leuthäuser and U. Aßmann, "Enabling view-based programming with scroll: Using roles and

dynamic dispatch for etablishing view-based programming," in Proceedings of the 2015 Joint MORSE/VAO Workshop

on Model-Driven Robot Software Engineering and View-based Software-Engineering, New York, NY, USA: ACM, 2015,

pp. 25–33.

[Song2010] H. Song, Y. Xiong, F. Chauvel, G. Huang, Z. Hu, and H. Mei. 2010. “Generating Synchronization Engines

between Running Systems and Their Model-Based Views”. In Models in Software Engineering. Springer Berlin

Heidelberg, 140–154.

[Vogel2010] T. Vogel, S. Neumann, S. Hildebrandt, H. Giese, and B. Becker. 2010. “Incremental Model Synchronization

for Efficient Run-Time Monitoring”. In Models in Software Engineering. Springer Berlin Heidelberg, 124–139.

