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Abstract. This paper shows how to write formal OCL contracts for
system operations in such way that a translation to natural language
(a subset of English), understandable by a customer, can be obtained
automatically. To achieve natural language text understandable by a
customer we use the vocabulary of the problem domain when writing
formal contracts for system operations. The benefits of our approach are
that we increase the precision of the model by using formal specifications,
and that a customer is able to validate (by viewing the natural language
rendering) if a contract actually describes the behavior desired from the
system. Without validation of this kind there is generally no guarantee
that the formal specification states the correct properties.

1 Introduction

Large programs need specifications. These specifications might be used in dif-
ferent contexts: for software developers to support the implementation of the
software, for testers to understand the required behavior of the software, for
customers to validate the correctness of the system, and for users of the software
to understand the behavior of the system.

It is important that the specifications are of high quality to avoid problems
such as ambiguity and under-specification. To that end, several formal languages
have been developed to write more precise specifications [1, 4, 5]. The nature of
these languages forces one to be more precise than when using natural language
to specify behavior of programs. The problem is, however, that not everyone
involved in the software process — for example the customers — can be expected
to understand these formal languages. So, the customer cannot, at least easily,
validate whether a formal specification states the correct behavior or not. There
is little point in being precise if the specification states wrong properties. This
is the problem we deal with in this paper.

We consider formal contracts similar to those in Eiffel [11] by attaching OCL
(Object Constraint Language)[12] constraints to system operations in UML [12]
class diagrams. The constraints specify the signature of an operation together
with its pre- and post-conditions. We previously developed a tool[3] which trans-
lates OCL constrains to natural language text (a subset of English). But remov-
ing the overhead of OCL does not necessary make the natural language text



understandable for customer and users. The text might contain too many de-
sign and implementation details and is therefore more suited for designers and
implementers.

This paper is about controlling the vocabulary used in OCL pre- and post-
conditions for system operations, in such a way that natural language text pro-
duced by our tool can be read by customers and users having domain knowledge,
but not necessarily computer science knowledge. Not only does our tool make
translation understandable for customers, users, and domain experts, but it also
permits the tool to be used earlier in a software development process than pre-
viously [3]. With respect to our previous work in [9, 3], the contribution of this
paper is not to improve the tool itself, but rather a new use of the tool.

In our previous work [3] the focus was on the quality of the translation for any
type of OCL contracts. In this work we restrict ourself to contracts for system
operations, which represent the external interface of the system. The reason
for only considering these operations is that customers and users are mostly
interested in these operations, and not in the internals of the system. It is crucial
that the contracts for system operations capture the behavior customers want.
It is impossible to build a system correctly if one does not know its expected
behavior. It is well known that requirement deficiencies are the prime source of
project failures [7].

We introduce the notion of abstract contracts, which abstract away from
implementation details by using problem domain models instead of class dia-
grams for system operations contracts. Both problem domain models and class
diagrams can be represented by UML class diagrams, but they differ in an im-
portant way: the vocabulary of domain models should be fully understood by
the customer but it is not a requirement for class diagrams used in the design
phase. Domain models restrict OCL constraints to a vocabulary, which should
be completely understood by the customer. Translating these formal contracts
using our tool does not only remove OCL, but also guarantees that the natural
language text obtained contains vocabulary of the domain model — the vocab-
ulary of the customers, users, and domain experts. So the only requirement for
reading these specifications are domain knowledge which permits validation of
the abstract formal contracts without having to read OCL — the customer only
needs to read the natural language text produced by our tool.

There are further benefits of our work going beyond the validation of formal
specifications. The natural text produced can be used as a documentation of the
system. Since the text is generated from formal specifications, even the natural
language text will be in some sense formal, but of course readable for customers.
So, the benefit is more precise natural language specifications avoiding ambiguity
and under-specification. Furthermore, if the formal specifications change, one can
just produce new natural language text, avoiding the problem of synchronizing
formal and informal specifications.

One important lesson to learn from our work is that if the translation being
for most parts compositional, as in our case, from formal to natural language the
choice of vocabulary of the formal specification becomes crucial in controlling



the vocabulary of the natural text produced. Customer- and user-understandable
natural text does not come for free. In our case the trick was to use the domain
model.

The key contributions: (1) We create a formal, machine-transformable model
early in the software engineering process (2) The model can be validated by cus-
tomers, since the OCL contracts can be translated into understandable natural
language. (3) By automatically translating OCL to natural language and using
OCL as a single source, we avoid the problem of synchronizing formal specifi-
cations with natural language text describing customer requirements. (4) The
natural text produced can be used as part of the documentations of systems.

Paper Overview. Some background on the translation tool and domain models
is given in Sect. 2 and 3. We then discuss system operations, contracts and the
vocabulary of the domain model in Sect. 4, 5 and 6. Finally, Sect. 7 describes
related work and we conclude in Sect. 8.

2 From OCL To Natural Language

We have developed a tool for linking specifications in OCL to natural language
specifications. It has been previously described in [9], where we give basic mo-
tivation and design principles, and in [3], where we conduct a case study. It is
based on the Grammatical Framework (GF) [13], and is being integrated into
the KeY system [2]. The basic idea of the tool is to define an abstract representa-
tion (an abstract syntax) of “specifications” and to relate this representation to
both OCL and English using a GF grammar. The GF system then allows us to
translate between OCL and English using the abstract syntax as an interlingua.
We can therefore always keep OCL and English in sync.

Given a UML model, the tool provides two basic functionalities: (1) Auto-
matic translation of OCL specifications into English. (2) A multilingual, syntax-
directed editor which allows editing of OCL and English specifications in parallel.
The input to the translator is an OCL specification, along with a description of
the UML model (a domain model or class diagram) in question. The output is
English text, formatted in HTML or LATEX. In the editor, OCL and English are
kept in sync since the editing takes place on the level of abstract syntax.

In previous work [3] we did not consider the style of formal abstract contracts.
These contracts contained design and implementation details, and we refer to
them as concrete contracts, for an example see Fig. 1. This figure shows parts
of the OCL specification for the operation check of the class OwnerPIN, a class
in the Java Card API. Java Card [17] is a subset of Java, tailored to smart
cards and similar devices, which comes with its own API. The operation check

checks whether a given PIN matches the PIN on a smart card, keeps track of
the number of times you have entered an incorrect PIN, and so on.

Translating concrete contracts to natural language text removes the overhead
of having to understand OCL, but they still contain design and implementation
details, see Fig. 2. This figure shows the natural language translation provided



context OwnerPIN::check(pin: Sequence(Integer),

offset: Integer, length: Integer): Boolean

post: (self.tryCounter > 0 and not (pin <> null and offset >= 0

and length >= 0 and offset+length <= pin->size()

and Util.arrayCompare(self.pin, 0, pin, offset, length) = 0)

) implies (not self.isValidated()

and self.tryCounter = tryCounter@pre-1 and

(( not excThrown(java::lang::Exception) and result = false)

or excThrown(java::lang::NullPointerException) or

excThrown(java::lang::ArrayIndexOutOfBoundsException)))

Fig. 1. Design Level OCL Contract

by our system. The translation will make sense only to a reader who already has
an understanding of the Java Card API classes. He or she must be familiar with
the use of byte arrays and their representation in OCL, as well as with various
Java Card exceptions.

For the operation check ( pin : Sequence(Integer) , offset : Integer , length :
Integer ) : Boolean of the class javacard::framework::OwnerPIN ,
the following post-condition should hold :

– if the try counter is greater than 0 and at least one of the following conditions is
not true
• pin is not equal to null
• offset and length are at least 0
• offset plus length is at most the size of pin
• the query arrayCompare ( the pin , 0 , pin , offset , length

) on Util is equal to 0
then this implies that the following conditions are true
• this own er PIN is not validated
• the try counter is decremented by 1
• at least one of the following conditions is true

∗ Exception is not thrown and the result is equal to false
∗ NullPointerException is thrown
∗ ArrayIndexOutOfBoundsException is thrown

Fig. 2. Design Level Natural Language Contract

In summary, concrete contracts, in formal or natural language, are not gen-
erally understandable to customers, since customers cannot be expected to be
familiar with design and implementation matters.

If we compare the natural language text in Fig. 2 to the original OCL con-
tract in Fig. 1, we can note that they both share roughly the same structure



and vocabulary. This is a consequence of our translation being (for most parts)
compositional, using the same abstract syntax for both OCL and natural lan-
guage. If an OCL contract uses the vocabulary of a UML class diagram (design
phase), which is not normally understandable to a customer, the natural lan-
guage translation will not be understandable either. This is fine since concrete
contracts are meant to be read and understood by designers and implementers
but not customers and users.

The goal of this work is to obtain specifications understandable by customers,
users, and domain experts not trained in computer science. We show how domain
models can be used for this purpose, but first we will have closer look at what
we mean by a domain model.

3 Domain Models

In this section we provide background on domain models used in our work. The
problem domain models we use are as in the book of Larman [10]. A problem
domain model is a visualization of concepts in a real-life domain of interest
without behavior, not software classes such as Java, C++, or C# classes.

UML does not offer separate notation for domain models, but a restricted
form of UML class diagrams can be used. For example, the operation compart-
ment of UML classes are not needed. On the other hand, the benefit is that this
permits OCL constraints to be written over the domain models. As a running
example we will consider an ATM system. The concepts involved in such a sys-
tem would include Card, Customer, Account, and Bank, as shown in Fig. 3. In
general, a banking application would require more concepts and attributes, but
for our purposes this domain model is sufficient. To make our example simpler,
we assume that a customer can never have more than one account.

Customer Card

 pin: Integer

Account

 balance: Integer
Bank

1 0..1

*

1

customers

card

1account

1

Fig. 3. Domain model of an ATM machine

Concepts can have attributes. For example, a Card has a PIN code, and an
Account has a balance. Furthermore, concepts can stand in relationship to each
other; in our example a Card is associated with Customer. With the help of
multiplicity annotations, one can describe constraints on how many instances of



one concept are related to another. For example, one can express the constraint
that each card can be linked to only one customer.

There are no hard and fast rules of how to choose the correct abstraction
level for domain models. But there is one rule which should never be broken:
whatever abstraction level one chooses, the domain model should always be
understandable for customers, users, and domain experts. Of course, the more
concrete and detailed domain model the more concrete contracts can be written.
Yet, a domain model should never be so concrete and detailed that the customer
does not understand it anymore.

Before considering how domain models permit to create formal contracts
rather early in the development process we will have a closer look at system
operations.

4 System Operations

System operations are the operations that deal with the events coming from out-
side the system. For information about how to obtain system operations from
use cases we refer to [15]. From a customer’s point of view system operations
are the important operations: they define the functionality of the system. To
exemplify we consider three operations for our ATM system: identify, authenti-

cate, and withdraw, as seen in Fig. 4. We collect the system operations in a class
ATMController, further explained in Sect 5.

ATMController

 identify(card:Card)

 authenticate(pin:Integer): PinResult

 withdraw(amount:Integer): Boolean

<<enumeration>>

PinResult

 Correct

 Wrong

 Abort

Fig. 4. System Operations for an ATM

The identity of a customer is given by presenting a card, using the operation
identify, the operation authenticate ensures that the card is used by the autho-
rized person, and withdraw is used to retrieve money from the ATM machine.
We introduce an enumeration type to indicate the result of authenticate: either
the pin is accepted (Correct), or it is wrong but the user is given another chance
to enter the correct code (Wrong), or the wrong code has been given too many
times (Abort). The result of withdraw is a boolean, indicating whether there was
enough money in the account or not. In next section we will consider how to
obtain contracts for these system operations.



5 Abstract Formal Contracts

To write OCL contracts for system operations requires a context for the oper-
ations. Our approach is to include all system operations in one UML class and
associate this class to appropriate concepts of the problem domain — creating
a hybrid between a class representing the system and concepts. This permits us
to write OCL pre- and post-conditions for the system operations. It might be
necessary to add attributes to the system class to model the state of the sys-
tem not captured by the domain model. In our running ATM example, we put
the system operations in a class ATMController and attach it to the domain
model as shown in Fig. 5. We have also added two attributes numberOfTries

and pinAccepted to keep track of the state.

Customer Card

 pin: Integer

Account

 balance: Integer

Bank

1 0..1

*

1

customer

card

ATMController

 numberOfTries: Integer

 pinAccepted: Boolean

 identify(card:Card)

 authenticate(pin:Integer): PinResult

 withdraw(amount:Integer): Boolean

<<enumeration>>

PinResult

 Correct

 Wrong

 Abort

customers
0..1

0..1

1

*

bank

account

1

1

Fig. 5. The System Class Attached to the Domain Model

The UML class diagram in Fig. 5 can be viewed as the first approximation
of the system to be built, but it is important to point out that it is not the
final software design. In an object oriented design one will expect that some
or all of the concepts of Fig. 5 to become design classes with operations and
possibly more attributes. Furthermore, new classes will most often be added due
to for example design patterns. The purpose of the class diagram in Fig. 5 is to
permit writing formal contracts for system operations using the vocabulary of
the customer.

Fig. 6 shows abstract OCL contracts for our example ATM system operations
using the class diagram of Fig. 5. Let us consider the operation identify. This
operation should initialize the state of ATMController : the association from



context ATMController::identify(card:Card)

post: customer = card.customer

and numberOfTries = 0

and not pinAccepted

context ATMController::authenticate(userPin:Integer) : PinResult

pre: not pinAccepted

post: numberOfTries = numberOfTries@pre + 1

and if userPin = customer.card.pin and numberOfTries <= 3

then pinAccepted and result = PinResult::Correct

else not pinAccepted

and if numberOfTries <= 3

then result = PinResult::Wrong

else result = PinResult::Abort

endif

endif

context ATMController::withdraw(amount:Real) : Boolean

pre: pinAccepted

post: if (amount <= customer.account.balance)

then customer.account.balance =

customer.account.balance@pre - amount

and result = true

else customer.account.balance =

customer.account.balance@pre

and result = false

endif

Fig. 6. OCL Abstract Contracts

ATMController to Customer is instantiated with the customer of the card, the
number of tries is 0, and a correct pin code has not yet been entered.

Obtaining a customer from the association of the card is not enough. In
addition, a guarantee that one is dealing with the right customer is desirable.
According to the domain model the concept Card is related to a customer.
So, the operation authenticate compares the PIN given as argument with the
PIN stored in the card associated with the customer. Depending on whether
the PIN argument matches the PIN on the card, and on the number times an
incorrect PIN has been entered, the state of the system class ATMController is
set appropriately.

Finally, there is withdraw which gives the customer money if there is enough
money in the account. The return value indicates whether the withdrawal was
successful or not.

Both problem domain model and system operations are found early in the
development process, so abstract contracts like the one in Fig. 6 can be created



at an early stage of the development process. Even though the contracts in Fig. 6
are not readable for people not trained in formal methods, we will see that the
natural language counterpart will indeed be readable.

Using the domain model in the contracts also provides a validation of the
domain model, which is important since the domain model is the foundation
of the system to be built. One might discover shortcomings — e.g. a missing
attribute or concept — when creating the contract. In this sense, writing the
contract over the domain model may improve the domain model itself.

6 The Vocabulary of the Domain Model

Fig. 7 shows what our translator produces from the OCL specification in Fig. 6.
Natural language contracts should be understandable to customers not only
because it has been translated from OCL to natural language, but also because
it uses a vocabulary of the problem domain model.

If we compare the natural language text in Fig. 7 to the original OCL con-
tract in Fig. 6, we can note that they both share roughly the same structure
and vocabulary. Again, this is a consequence of our translation being (for most
parts) compositional, using the same abstract syntax for both OCL and natural
language. In comparison to the natural language text produced in Fig. 2 the text
in Fig. 7 do not contain any design and implementation details.

Improving the style of the natural language text is still ongoing research. For
example, we can see from Fig. 5 that fragments of the formal abstract contract
can be found in the natural language text, such as identify(card : Card). We
have not found a way of translating this fragment better and more clear than
just keeping the method signature.

It is important to point out that formal abstract contracts such as in Fig. 6
probably have to be produced by formal methods experts, but customers and
users only need to consider the natural language counterpart.

In this work we are not directly considering the problem of formalization:
constructing formal specifications from informal ones. However, once an OCL
contract has been developed, our tool can be used to generate a natural language
contract, which can then be validated against the informal specification. This
can be used to improve the original informal specification as well as the formal
one.

7 Related Work

The approach taken in [16, 15] is similar to ours in the sense that they also provide
OCL contracts for system operations. An important difference to our work is that
they do not consider customer validation of the OCL contracts, which reduces
the benefit of using formal contracts at an early stage in the process. They also
consider how to find the system operations based on descriptions of use cases,
which we do not discuss. Our work is more focused on the domain model and
the translation to natural language.



For the operation identify (card: Card) of the class ATMController ,
the following post-condition should hold:

– the following conditions are true
• the customer is equal to the customer of card
• the number of tries is equal to 0
• the property pinAccepted does not hold

For the operation authenticate (userPin: Integer): PinResult of the class
ATMController ,
given the following pre-condition:

– the property pinAccepted does not hold

then the following post-condition should hold:

– the number of tries is incremented by 1 and if userPin is equal to the pin of the
card of the customer and the number of tries is at most 3 then:
• the property pinAccepted holds and the result is equal to Correct

otherwise:
• the property pinAccepted does not hold and if the number of tries is at most

3 then:
∗ the result is equal to Wrong

otherwise:
∗ the result is equal to Abort

For the operation withdraw (amount: Real): Boolean of the class ATMCon-
troller ,
given the following pre-condition:

– the property pinAccepted holds

then the following post-condition should hold:

– if amount is at most the balance of the account of the customer then:
• the balance of the account of the customer is decremented by amount and

the result is equal to true
otherwise:
• the balance of the account of the customer does not change and the result is

equal to false

Fig. 7. Contracts in Natural Language



The UP process [10] also makes use of contracts for system operations, which
are based on the domain model. However, the contracts are informal. We believe
that rather than having another informal specification, system operation con-
tracts are a good place to become formal. Our approach could be incorporated
into the UP process by replacing informal system operation contracts with for-
mal ones. In that way one can introduce formal specification into the UP process
at an early stage in the development process.

Previously, we have also been working on relating formal and informal spec-
ifications [6]. In that paper we gave a method for relating post-conditions of use
cases to OCL contracts. In that paper, we did not consider different styles of
writing contracts or translation to natural language text. Furthermore, we re-
quired formal method experts to use our method of relating formal and informal
specifications.

The idea of producing natural language from a formal representation to en-
able validation by people not trained in formal languages is familiar from concep-
tual modelling and requirements engineering. For instance, the paper [8] presents
a system for generating natural language explanations from conceptual models,
and also gives an overview of related work. The basic difference to our approach
is that we translate textual OCL contracts for system operations — not the do-
main model itself — into natural language, while [8] generates explanations from
“. . . process-oriented and static ER-like languages. . . ”, e.g. data flow diagrams.
As explained in Sect. 6, the translations we provide have the same basic struc-
ture as the OCL specifications, and are understandable to a customer because
of the use of the vocabulary of the domain model. In contrast, the process of
generating explanations from conceptual models in [8] involves information ex-
traction from the model, and various strategies for presenting this information
in natural language. There is also work on going in the other direction: from
informal, natural language text to conceptual models, e.g. [14].

8 Conclusion and Future Work

We have presented a way of attaching system operations to a domain model
which permits the creation of formal abstract contracts, which in turn can be
translated to natural language understandable to a customer. The purpose is to
provide a precise model at an early stage which can be validated by customers.
Formal specifications require more precision than informal ones, such as infor-
mal contracts and use cases. So, the developer has to make decisions about the
behavior of the system. Our approach permits the customer to validate that the
decisions made in the formal specification are really what the customer wants.
This is crucial to provide a good starting point for the development process.

Since we have an automatic translation from OCL to natural language, we
can always keep formal and natural language contracts synchronized. This is in
general considered a very hard task. We have also identified the importance of
using domain models when writing contracts, in particular with respect to the
readability of natural language translation of the contracts.



As future work, we want to look at how to relate our work to Model Driven
Architecture (MDA) [12]. Maybe our abstract contract could be a good starting
point for MDA transformations. At some point models need to be related to
informal specifications.

In addition, we plan to test how real customers react to our generated texts.
The vocabulary should be known to the customers since the generated text
contains the vocabulary of the domain model. However, the style of the generated
text might be confusing.

We also plan to further investigate the quality of the natural language text
produced. For example, given a system to be specified one can have groups
writing informal contracts and other groups writing formal abstract contracts.
Thereafter our tool would translate the formal abstract contracts to natural
language contracts. This permits comparison between informal text produced
by hand and the text produced by our tool.

Another interesting experiment would be to start from an informal specifi-
cation, and then create an abstract formal specification. Then our tool would
be used to translate the abstract formal specification into natural language text.
Thereafter, make a comparison between the two natural language specifications.
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