

Ambiguity issues in OCL postconditions

Jordi Cabot

Estudis d'Informàtica i Multimèdia, Universitat Oberta de Catalunya
Rbla. Poblenou, 156 E08018 Barcelona, Spain

jcabot@uoc.edu

Abstract: There are two different approaches to specify the behavior of the
operations of an Information System. In the imperative approach, the operation
effect is defined by means of specifying the set of actions (creation of objects
and links, attribute updates…) to apply over the system state. With the
declarative approach, the effect is defined by means of contracts stating the
conditions that the system state must satisfy before (precondition) and after
(postcondition) the operation execution.

From a specification point of view, the declarative approach is preferable. The
main issue regarding declarative specifications is their ambiguity. Commonly,
there are many different system states that satisfy an operation postcondition.
However, in general, only one of them is the one the designer had in mind
when defining the operation, and thus, that state should be the only one
considered valid at the end of the operation execution. In this paper, we identify
some of the common ambiguities appearing in OCL postconditions and provide
a default interpretation for each of them in order to improve the usefulness of
declarative specifications.

1. Introduction

A conceptual schema (CS) is the representation of the general knowledge of a
domain. In conceptual modeling, we call Information Base (IB) the representation of
the state of the CS (the set of existing objects and links) in the Information System.

The state of the IB changes due to the application of the modifying actions issued
by the execution of the operations defined in the CS. An action is the fundamental
unit of behavior specification [11]. Among the possible actions we have the creation
of a new object or link, its deletion, the update of an attribute and so forth.

The effect of the operations can be specified in two different ways, imperatively or
declaratively [16]. In an imperative specification the designer explicitly defines the
set of actions to be applied over the IB. In a declarative specification the designer
defines a contract for each operation. The contract consists of a set of pre and
postconditions. A precondition defines a set of conditions over the operation input
and the IB that must hold when the operation is invoked. The postcondition states the
set of conditions that must be satisfied by the IB at the end of the operation execution.
We assume that pre and postconditions are specified in OCL.

From a specification point of view, the declarative approach is preferable since it
allows a more abstract definition of the operation effect and defers until a later stage
most of the implementation issues [16]. In this sense, the imperative definition of an
operation can be regarded as a lower-level definition of the operation effect.
Moreover, declarative specifications are more concise than their imperative
counterparts. This favours the readability of the contract specifications.

The main problem regarding declarative specifications is that they are
underspecifications [16], i.e. in general there are several possible states of the IB that
may verify the postcondition of an operation contract. This means that a declarative
specification may have several equivalent implementations (i.e. imperative versions).
We have a different version for each set of actions that, given a state of the IB
verifying the precondition, evolve the IB to one of the possible states verifying the
postcondition of the operation contract. This problem is not specific of OCL
declarative specifications but common to other purely declarative languages used to
specify operation contracts as JML, Eiffel or logic languages. However, it is
especially relevant in OCL contracts because of the high expressiveness of the OCL.

The definition of a postcondition precise enough to characterize a single state of
the IB is cumbersome and error-prone [5],[15]. For instance, it would require to
specify in the postcondition all objects and links not modified by the operation (frame
problem [5]). There are other ambiguities too. Consider a postcondition as
o.at1=o.at2, where o represents an arbitrary object and at1 and at2 two attributes.
Given an initial state of the IB, states obtained after assigning to at1 the value of at2
satisfy the postcondition. However, states where at2 is changed to hold the value of
at1 or where the same value is assigned to both attributes satisfy the postcondition as
well. Strictly speaking, all three interpretations are correct since all satisfy the
postcondition. However, most probably, only the first one (where we assign the value
of at2 over at1) represents the behaviour the designer meant when defining the
postcondition.

We believe it is really important designers are aware of the different ambiguities
included in a postcondition and of the whole set of possible states that satisfy the
postcondition due to such ambiguities. Then, they may decide to extend/rephrase the
postcondition in order to prevent some of the undesired states. This may imply to
complement the postcondition with additional information regarding the parts of the
system state that cannot be changed by the operation [4, 5], or even, to mix the
declarative specification with imperative constructs [2].

In this paper we follow an alternative approach. For each ambiguous OCL
expression that may appear in a postcondition we define its default interpretation.
These default interpretations represent usual designers’ assumptions about how that
expression should be tackled when implementing/validating the operation. As an
example, a default interpretation for the X=Y ambiguous expression commented
above is that X should take the value of Y. According to this interpretation, states
where Y takes the value of X or where both take a different value, should be
considered invalid.

The detection of common types of ambiguities and the proposal of a default
interpretation for each of them are the main contributions of this paper. We believe
that our approach offers several benefits. It improves the quality of the applications

by means of detecting possible errors in the specification of the operation contracts
and by ensuring that the application behaviour is better aligned with the designer
intentions. Moreover, it opens the possibility of leveraging current MDA and MDD
methods and tools by allowing code-generation from declarative specifications (once
translated to an equivalent imperative version) in the final technology platform. Until
now, an automatic translation was not feasible because of the high number of possible
imperative versions for each declarative specification. The default interpretation
reduces the number of possible alternatives (to just one, in the best case) and could be
used to guide the code-generation process. As an additional benefit, the discussion
presented in the paper may help to achieve a deeper understanding of the semantics of
operation contracts and their ambiguity problems.

The rest of the paper is structured as follows. Next section presents a set of
ambiguous OCL expressions and provides their default interpretation. Section 3
covers some inherently ambiguous postconditions. Section 4 compares our approach
with related work and, finally, section 5 present some conclusions and further
research.

2. Ambiguities in operation contracts

Given the contract of an operation op and an initial state s of an IB (where s verifies
the precondition of op) there exist, in general, a set of final states sets’ that satisfy the
postcondition of op. All implementations of op leading from s to a state s’ ∈ sets’
must be considered correct. Obviously, s’ must also be consistent with the integrity
constraints defined in the CS, but, assuming a strict interpretation of operation
contracts [12], the verification of those constraints does need to be part of the
contract.

Even though, strictly speaking, all states in sets’ are correct, only a small subset
accs’ ⊂ sets’ could probably be accepted as such by the designer. The other states
satisfy the postcondition but do not represent the expected behaviour of the operation
intended by the designer. In most cases |accs’| = 1 (i.e. from the designer’s point of
view there exists only a state s’ that satisfies the postcondition).

The first aim of this section is to detect some common OCL expressions that, when
appearing in a postcondition, increase the value of |sets’|, that is, the expressions that
introduce an ambiguity problem in the operation contract. We also consider the frame
problem, which, in fact, appears because expressions required to specify conditions
over the state of parts of the IB are missing in the postcondition.

Ideally, once the designer is aware of the ambiguities appearing in an operation op,
he/she should define the postcondition of op precise enough to ensure that accs’ =
sets’. However, this is not feasible in practice since then postconditions become much
longer, cumbersome and error-prone [5],[15]. Therefore, the second aim of this
section is to provide, for each ambiguity expression, a default interpretation that
solves the ambiguity problem by selecting from sets’ those that most probably
represent the intention of the designer at the moment of writing that part of the
postcondition.

The default interpretations express common assumptions used during the
specification of operation contracts. They have been developed after analyzing many
examples of operation contracts of different books, papers and case studies and
comparing them, when available, with the operation textual description.

In what follows we present different ambiguity problems. We provide in the
appendix a list of transformation rules we can apply over the original OCL
expressions to extend the set of postconditions covered in this section.

2.1 Ambiguity 1: “State of objects and links not referenced in the postcondition”

In general, OCL expressions appearing in a postcondition only restrict the possible
values of part of the elements of the IB (in particular, the ones referenced in the
operation). The values of the rest of objects and links in the IB are left undefined,
and thus, any state that modifies them is acceptable as long as the state verifies the
postcondition.

Default interpretation: Nothing else changes.
This interpretation represents the most common adopted solution to the frame
problem. It states that objects not explicitly referenced in the postcondition should
remain unchanged in the IB. This implies that they cannot be created, updated or
deleted during the transition to the new state of the IB. Similarly, links of associations
not traversed during the evaluation of the postcondition cannot be created nor deleted.

Besides, for those objects that appear in the postcondition, only the properties
(either attributes or association ends) mentioned in the postcondition definition may
be updated.

2.2 Ambiguity 2: “Equality expressions”

By far, the most common operator in postconditions is the equality operator. Given an
expression X.a=Y.b (where X and Y are two arbitrary OCL expressions and a and b
two properties), there are three kinds of changes over the initial state resulting in a
new state satisfying the expression. We can either assign the value of b to a, assign
the value of a to b or assign to a and b an alternative value c.

Note that if either operand of the equality comparison is a constant value or is
defined with the @pre operator then just a possible final state exists. Since the value
of that operand cannot be modified, the only possible change is to assign its value to
the other operand. This applies also to other ambiguities described in this section.

Default interpretation: The order of the operands in the equality expression reflects
the desired change
We believe that the common interpretation for an expression X.a=Y.b is that a must
take the value of b. This should be the only final state considered valid at the end of
the operation. If a designer was meant to define that b should take the value of a
he/she would have surely written the expression as Y.b = X.a. In the same way, if the
desired final state was that the one where the value of a and b was equal to c, most

probably, he/she would have included in the postcondition the expression X.a=c and
X.b=c.

2.3 Ambiguity 3: “if-then-else expressions”

An if-then-else expression evaluates to false when the if condition is satisfied but the
then condition is evaluates to false or, reversely, when the if condition evaluates to
false but the else expression is not satisfied. Therefore, given an if-then-else
expression included in a postcondition p, there are two groups of final states that
satisfy p: 1 – States where the if and the then condition are satisfied or 2 – states
where the if condition evaluates to false and the else condition evaluates to true.

Default interpretation: Do not falsify the if clause.
We believe the desired behaviour for if X then Y else Z expressions is to evaluate X
and enforce Y or Z depending on the value of X. According to this interpretation,
states obtained by means of falsifying X do not represent the designer’s intention.
Implementations of postconditions that modify the X expression to ensure that X
evaluates to false are not acceptable (even if, for some states of the IB, it could be
easier falsifying X to always avoid enforcing Y instead of enforcing Y or Z depending
on the value of X).

2.4 Ambiguity 4: “includes and includesAll expressions”

Given an initial state s and a postcondition of type X->includesAll(Y), all final states
where, at least, the objects of Y have been included in X satisfy the postcondition.
However, states that, apart from the objects in Y, add other objects to X also satisfy
the postcondition. Moreover, another possible group of final states that satisfy the
expression are those where Y evaluates to an empty set, since by definition all sets
include the empty set.

For includes expressions we follow the same reasoning. The only difference is
that, for those expressions, Y does not return a set of objects but a single instance.

Default interpretation: Minimum number of insertions over the collection X and no
changes over Y
Following this assumption, the new state s’ should be obtained by means of adding to
s the minimum number of links necessary to satisfy the operation postcondition. For
expressions such as X->includes(Y) or X->includesAll(Y) (where X and Y are two
arbitrary OCL expressions) a maximum of X@pre->size()+Y->size() links must be
created. States including additional insertions are not acceptable.

States where Y is modified to ensure that it returns an empty result are neither
acceptable.

This interpretation may seem similar to the one defined to deal with the frame
problem. The difference is that there we addressed the creation and deletion of links
of associations not referenced in the postcondition, while this one tackles minimal
modifications over elements that are referenced in the postcondition.

2.5 Ambiguity 5: “excludes and excludesAll expressions”

Given an initial state s and a postcondition of type X->excludesAll(Y), all final states
where, at least, the objects of Y have been removed from the collection of objects
returned by X satisfy the postcondition. However, states that, apart from the objects in
Y, remove other objects from X also satisfy the postcondition.

Additionally, states where Y does not return any object also satisfy the
postcondition since then, clearly, X also excludes all the objects in Y.

For excludes expressions we follow the same reasoning. The only difference is that
for those expressions Y does not return a set of objects but a single instance.

Default interpretation: Minimum number of deletions over the collection X and no
changes over Y
According to this interpretation, the acceptable states are those where the new state s’
is obtained by means of adding to the initial state s the minimum number of links
necessary to satisfy the operation postcondition and where Y has not been modified to
ensure that it returns an empty set.

For expressions like X->excludes(Y) or X->excludesAll(Y) a maximum of X@pre-
>size()−Y->size() may be deleted.

2.6 Ambiguity 6: “forAll iterators”

There are two possible approaches to ensure that an expression like X ->forAll(Y)
(where X represents an arbitrary expression and Y a boolean expression) is satisfied in
a new state of the IB. We can either ensure that, in the final state, all elements in X
verify Y or to ensure that X results in an empty collection, since a forAll iterator over
an empty collection always returns true.

Default interpretation: Do not empty the collection expression
The desired behaviour is to ensure that all elements in X verify the condition Y and
not to force X to be empty.

2.7 Ambiguity 7: “oclIsTypeOf and oclIsKindOf operators”

The condition obj.oclIsTypeOf(C) requires type C to be one of the classifiers of obj.
Therefore, new states where C is added to the list of classifiers of obj satisfy the
condition, regardless of any other modifications to the list of classifiers of obj. States
where additional classifiers have been added or some classifiers removed from obj
also satisfy the condition.

Similarly with obj.oclIsKindOf(C) expressions. The only difference is that, for
these expressions, we only require that C or one of its subtypes is added to obj.

On the contrary, conditions like not obj.oclIsTypeOf(C) establish that in the new
state obj cannot be instance of C (and likewise with not obj.oclIsKindOf(C), where
obj cannot be instance of C or instance of one of its subtypes). Therefore all states

verifying this condition are valid even if they add/remove other classifiers from the
list of classifiers of obj.

Default interpretation: Minimum number of specializations/generalizations
When defining this kind of expressions, we assume that the desired behaviour is just
to express the minimum set of specializations/generalizations required to satisfy the
postcondition. Therefore, new states where obj has been specialized also to other
classifiers apart from C are not valid (unless required due to other expressions
appearing in the postcondition). As an example, for expressions like
obj.oclIsKindOf(C) only the classifier C or one of its subtypes may be added to obj
during the transition to the new state.

For not obj.oclIsTypeOf(C) expressions, no other classifiers (apart from C) should
be removed from obj. Similarly, conditions like not obj.oclIsKindOf(C) require that
obj is generalized to a direct supertype of C. No other generalizations should be
applied.

3. Inherently ambiguous postconditions

In some sense, all postconditions may be considered ambiguous since, in general,
there are several states of the IB that verify a given postcondition. However, for most
postconditions, the default interpretations presented in section 2 allow to
disambiguate them by means of determining which state is the preferred among the
possible ones.

Nevertheless, some postconditions are inherently ambiguous (also called non-
deterministic [2]). We cannot define a default interpretation for them since, among all
possible states satisfying the postcondition, there does not exists a state clearly more
appropriate than the others. As an example assume a postcondition with an expression
a>b. There is a whole family of states verifying the postcondition (all states where a
is greater than b), all of them equally correct, even from the designer point of view or,
otherwise, he/she would have expressed the relation between the values of a and b
more precisely (for instance saying that a=b+c).

We believe it is worth to identify these inherent ambiguous postconditions since
most times the designer does not define them on purpose but by mistake. Table 3.1
shows a list of expressions that cause a postcondition to become inherently
ambiguous. The list is not exhaustive but contains the most representative ones.

Table 3.1 List of ambiguous expressions

Expression Ambiguity description

post: B1 or … or Bn
At least a Bi condition should be true but it is not defined which
one/s

X<>Y, X>Y, X>=Y,

X<Y, X<=Y
The exact relation between the values of X and Y is not stated

X+Y=W+Z

(likewise with -,*,/,…)
The exact relation between the values of the different variables is
not stated.

X->exists(Y) An element of X must verify Y but it is not defined which one

X->any(Y)=Z Any element of X verifying Y could be the one equal to Z

X->union(Y)=Z

(likewise with ∩,−,…)

There are at least 2n different ways to distribute the elements of Z
between X and Y (n=|Z|) to ensure that the expression is satisfied

X.p->sum()=Y There exist many combinations of single values that once added
may result in Y

X.n1.n2…nn=Y We can either assign Y to the object/s obtained at the end of the
navigation nn or to change an intermediate link to obtain at nn an
object/s equal to Y

Op1() = op2() The values returned by two operations must coincide. Depending
on its body, there may be several alternative ways to satisfy this
equality

4. Related Work

Ambiguity problems of declarative specifications have been poorly studied apart from
the frame problem [5],[15] and a couple of basic assumptions regarding object (and
collection) creations and removals [14]. The most usual strategy to deal with the
ambiguity problems in declarative specifications forces the designer to explicitly state
in the postconditions which elements of the IB change and which remain the same
(this is the case of [5], [4] and formal languages as Z, VDM or Larch). More recent
approaches, as [2], try to combine the OCL with imperative languages to permit
designers specify more clearly the semantics of the contracts.

However, none of them tries to automatically disambiguate declarative
specifications without burdening the designer with the task of defining additional
information in the postconditions. Besides, as we have commented before, the
specification of completely precise postconditions is not feasible in practice.
Nevertheless, such approaches could be useful to deal with the problematic
postconditions of section 3.

The support for declarative specifications in current CASE and MDA tool is rather
limited. Most of them only deal with imperative specifications (see [10] as a
representative example). There exist several OCL tools allowing the definition of
operation contracts (see, among others, [3], [6], [8],[7]). However, during the code-
generation phase, the contracts are simply added as validation conditions. Contracts
are transformed into if-then clauses that check at the beginning and at the end of the
operation if the pre and postconditions are satisfied (and raise an exception
otherwise). An exception is [1] that is able to check the correctness of an
implementation with respect to its contract. None of them considers the ambiguity
problems of the declarative specification, any state satisfying the postcondition is

considered valid without considering that, in fact, the designer would regard some of
these valid states as invalid ones.

5. Conclusions and further research

In this paper we have detected several OCL expressions that, when included in a
postcondition specification, introduce ambiguity problems. We define that a
postcondition is ambiguous when it is an underspecification, i.e. when there are
several states of the IB that satisfy it, even though, most probably, the designer would
only consider as valid states a (small) subset of them.

Therefore, regardless how the designer decides to handle these ambiguity issues,
we believe it is important he/she be aware of them since they may even indicate an
error in the declarative specification (especially for the inherent ambiguities of
section 3). In the declarative specifications we analyzed and according to the contract
definition in natural language, many times the designers were unaware of the
ambiguities present in their postconditions.

Additionally, we propose an approach to automatically disambiguate the
postconditions by means of providing a default interpretation for each kind of
ambiguous expression. The default interpretation determines, from the possible states
satisfying the ambiguous expression, the one/s that best represents the designer’s
intention when specifying the postcondition.

Our proposed interpretations require some strong assumptions about how the
postconditions are specified, yet we believe the assumptions reflect the way designers
tend to (unconsciously?) specify the postconditions. They have been validated against
two case studies of real-life applications (a Car Rental System [9] and an e-
marketplace system [13]) as well as with other examples appearing in different books,
papers and tutorials. Nevertheless, we would like to have the opportunity to discuss
them among the members of the OCL community in order to see whether they are
accepted or alternatives ones should be proposed (or even if there is no agreement in
the existence of such default semantics for postconditions). Obviously, our approach
cannot be applied when the proposed assumptions are not followed since then we
may end up restricting some possible final states that should be considered valid.

There are other directions in which we plan to continue our work. First, we plan to
extend the set of ambiguous expressions we detect. To facilitate an empirical
validation of our approach we are also interested in developing an animator tool that
given an operation contract and a state of the IB, applies our default interpretations to
the contract postcondition in order to compute the new state for the IB. Moreover, we
want to explore the possibility of generating (semi) automatically the implementation
of an operation starting from its declarative specification. This translation would be
useful to leverage current MDA tools, which only support code-generation from
imperative specifications.

Acknowledgments

Thanks to people of the GMC group (and especially to Anna Queralt) for their many
useful comments to previous drafts of this paper. This work has been partly supported
by the Ministerio de Educacion y Ciencia (project TIN 2005-06053) and by the
Generalitat de Catalunya (grant 2006 BE 00062).

References

1. Ahrendt, W., Baar, T., Beckert, B., Bubel, R., Giese, M., Hähnle, R., Menzel, W.,
Mostowski, W., Roth, A., Schlager, S., Schmitt, P. H.: The KeY tool, Integrating
object oriented design and formal verification. Software and Systems Modeling 4
(2005) 32-54

2. Baar, T.: OCL and Graph-Transformations - A Symbiotic Alliance to Alleviate the
Frame Problem. In: Proc. MODELS'05 Workshop on Tool Support for OCL and
Related Formalisms, Technical Report, LGL-Report-2005-001 (2005) 93-109

3. Babes-Bolyai University. Object Constraint Language Environment 2.0.
http://lci.cs.ubbcluj.ro/ocle/

4. Beckert, B., Schmitt, P. H.: Program verification using change information. In: Proc.
1st Int. Conf. on Software Engineering and Formal Methods (SEFM'03), (2003) 91-
101

5. Borgida, A., Mylopoulos, J., Reiter, R.: On the frame problem in procedure
specifications. IEEE Transactions on Software Engineering 21 (1995) 785-798

6. Borland. Borland® Together® Architect 2006.
http://www.borland.com/us/products/together/

7. Dresden. Dresden OCL Toolkit. http://dresden-ocl.sourceforge.net/index.html
8. Dzidek, W. J., Briand, L. C., Labiche, Y.: Lessons Learned from Developing a

Dynamic OCL Constraint Enforcement Tool for Java. In: Proc. MODELS 2005
Workshops, LNCS, 3844 (2005) 10-19

9. Frias, L., Queralt, A., Olivé, A.: EU-Rent Car Rentals Specification. LSI Research
Report, LSI-03-59-R (2003)

10. Mellor, S. J., Balcer, M. J.: Executable UML. Object Technology Series. Addison-
Wesley (2002)

11. OMG: UML 2.0 Superstructure Specification. OMG Adopted Specification (ptc/03-
08-02) (2003)

12. Queralt, A., Teniente, E.: On the Semantics of Operation Contracts in Conceptual
Modeling. In: Proc. CAiSE Short Papers 2005, CEUR Workshop Proceedings, 161
(2005)

13. Queralt, A., Teniente, E.: A Platform Independent Model for the Electronic
Marketplace Domain. LSI Technical Report, LSI-05-9-R (2005)

14. Sendall, S.: Specifying reactive system behavior. Phd. Thesis. Dir: A. Strohmeier.
École Polytechnique Fédérale de Lausanne (2002)

15. Sendall, S., Strohmeier, A.: Using OCL and UML to Specify System Behavior. In:
Object Modeling with the OCL, The Rationale behind the Object Constraint
Language. Springer-Verlag (2002) 250--280

16. Wieringa, R.: A survey of structured and object-oriented software specification
methods and techniques. ACM Computing Surveys 30 (1998) 459-527

http://lci.cs.ubbcluj.ro/ocle/
http://www.borland.com/us/products/together/
http://dresden-ocl.sourceforge.net/index.html

Appendix

This appendix provides a list of simple transformation rules between OCL
expressions. These transformations help to extend the set of OCL expressions
included in the ambiguity patterns of sections 2 and 3. We group the equivalences by
the type of expressions they affect. The capital letters X, Y and Z represent arbitrary
OCL expressions of the appropriate type. The letter o represents an arbitrary object.

Table A.1 List of substitution rules

Type Rules
X implies Y if X then Y else true (not X or Y) and (X or Z)

 if X then Y else Z
A xor B (A or B) and (not A or not B) not (not A) A
not (A or B) not A and not B not (A and B) not A or not B

Boolean
types

A or (B and C) (A or B) and (A or C)
X->count(o)>0 X->includes(o) X->count(o)=0 X->excludes(o)

Y->forAll(y1| X->count(y1)>0)
 X->includesAll(Y)

Y->forAll(y1| X->count (y1)=0)
 X->excludesAll(Y)

Collection
Types

X->size()=0 X-> isEmpty() X->size()>0 X->notEmpty()

X->select(Y)->size()>0 X->exists(Y) not X->exists(Y) X->forAll(not Y)

X->reject(Y) X->select(not Y) X->one(Y) X->select(Y)->size()=1

X->select(Y)->size()=0
 X->forAll(not Y)

X->select(Y)->size()=X->size()
 X->forAll(Y)

X->select(Y)->forAll(Z)
 X->forAll(Y implies Z)

X->select(Y)->exists(Z)
 X->exists(Y and Z)

Predef.
iterators

not X->forAll(Y) X->exists(not Y)

