
Model-Driven Constraint Engineering

Michael Wahler1, Jana Koehler1, and Achim D. Brucker2

1 IBM Zurich Research Laboratory, Saeumerstrasse 4, 8803 Rueschlikon, Switzerland
[wah,koe]@zurich.ibm.com

2 Information Security, ETH Zurich, 8092 Zurich, Switzerland
brucker@inf.ethz.ch

Abstract. A high level of detail and well-formedness of models have
become crucial ingredients in model-driven development. Constraints
play a central role in model precision and validity. However, the task
of constraint development is time-consuming and error-prone because
constraints can be arbitrarily complex in real-world models.
To overcome this problem, we propose a solution that we call model-
driven constraint engineering. In our solution, we define the notion of
computation-independent constraints that are provided in the form of
meta-model integrated patterns. The parameterized patterns are trans-
formed into platform-independent or platform-independent constraints
by a model transformation. In addition, we show how our approach can
be supported by a tool.

1 Introduction

In model-driven engineering, textual constraints are used to express details about
a model that are either hard or even impossible to express in a diagrammatic way.
For instance, hundreds of constraints are used in the specification of the UML
(Unified Modeling Language [24]) meta-model. Constraints stem from different
sources: there may be legal restrictions that a system needs to obey; there may be
company policies that grant privileges to certain kinds of customers; there may be
technical restrictions on a system [8]; there may be security restrictions [20]; and
there may be facts that are implied by common sense that cannot be expressed
diagrammatically.

While models were solely used for documentation and communication pur-
poses in the past, recent model-centric development approaches such as MDA
(Model Driven Architecture [19]) use models as first-class artifacts in the de-
velopment process. For instance, business process models can be transformed
to executable code that is run on process execution engines [17] or models in
a domain-specific security language are transformed to UML [7]. To guarantee
the correctness of the execution of the generated code, it is crucial that every
model instance conforms to its defining model and satisfies its constraints. These
validity checks can be performed automatically if the constraints are formalized.
For instance, tools exist that type-check a set of OCL (Object Constraint Lan-
guage [23]) constraints and validate a model against them [3]. Alternatively,

http://www.zurich.ibm.com/~wah/
http://www.zurich.ibm.com/csc/bit/
http://www.brucker.ch/

validity checks can be implemented in a programming language, e.g., Java, us-
ing a model access API, e.g., EMF (Eclipse Modeling Framework [14]).

The creation and maintenance of constraints is a tedious task. In a case study
in the business modeling environment that we performed, about 80 constraints
were necessary to guarantee the executability of a behavioral model for business
process monitoring. All the constraints are invariants on the model elements and
restrict the set of allowed model instances to a set that is executable on a process
execution engine. While some of these constraints were rather simple, many
complex constraints needed to be formalized, which turned out to be a time-
consuming and error-prone task. The formalization resulted in approximately
500 lines of OCL code, which by nature are unlikely to be bug-free.

Even when the constraint expressions or validation code do not contain any
errors, they need to be adapted once the model changes. This usually results
in additional time-consuming coding and debugging phases, especially in model
refactorings [11,21] where models undergo frequent changes and the attached
constraints need to be kept consistent with new versions of the model.

Our contribution to solving the problem of constraint development consists
of three parts. Firstly, we introduce the notion of computation-independent con-
straints and transformations to platform-independent constraints. Secondly, we
introduce constraint patterns and separate the patterns into atomic and com-
posite patterns and add a structure to them to enhance their expressiveness and
usability. Thirdly, we discuss the requirements for tool support and illustrate
our prototype for Eclipse/UML2 [13].

We believe that a flexible pattern-based approach that is supported by a tool
offers an important improvement for constraint engineering. Most syntactic and
semantic errors can be avoided because the developer can generate OCL code
instead of writing it by hand. Furthermore, our solution promises to decrease
development time substantially.

2 Background

Our solution is based on the idea of constraint patterns (sometimes called idioms)
for UML models [1,2]. A constraint pattern is a parameterized formula that can
be instantiated to a constraint by providing values for its parameters. In [1],
only two structural constraint patterns—Semantic Key Attribute and Invariant
for an Attribute Value of a Class—are presented, which we consider too little to
have a relevant impact on solving the aforementioned problem.

The semantics of a constraint pattern can be provided in any language,
e.g., parameterized OCL templates such as in [1]. This has the advantage that an
OCL constraint can be simply instantiated by providing values for the pattern
parameters. In our solution that we call model-driven constraint engineering we
follow the MDA approach [19] that comprises models at different levels of ab-
straction. We consider a constraint pattern a computation-independent model
(CIM) of a constraint. A CIM constraint can be transformed into a platform-
independent or platform-specific model (PIM/PSM) by a model transformation.

CIM constraints are integrated into the UML meta-model. This integration
is accomplished by using the meta-model representation of model elements as
parameters for a constraint instead of their textual representation. The types of
these parameters are thus elements from the UML meta-model and can be both
object types, e.g., Property, or simple types, e.g., String. The PIM constraint,
namely the constraint in a concrete syntax of the constraint language—in our
case, OCL—is automatically generated from model-integrated constraint using
a model transformation.

We illustrate these concepts in Fig. 1. On the left hand side of this figure, a
class Employee is shown. This class owns a property whose name is name and
whose type is String. Class Employee is constrained by C1, which has one param-
eter, targetAttribute, which is an association to a UML Property. Furthermore,
this constraint is stereotyped UniqueAttributeValue which denotes a constraint
pattern. Thus, C1 is the CIM of a constraint.

Employee

salary : Integer

String

«UniqueAttributeValue»

C1

Employee

name : String

salary : Integer

C2

{Employee.allInstances()->

isUnique(name)}

T1
- name

- targetAttribute

Fig. 1: Transformation from CIM to PIM

The transformation T1 provides the semantics for the CIM C1 which is
given in this case as a parameterized OCL template. The result can be seen
on the right hand side of Fig. 1 where C2 is the result from transforming C1
into a platform-independent constraint. By replacing the transformation T1,
different target platforms can be served. For instance, instead of generating an
OCL expression, Java code could be generated that implements a constraint
in the Eclipse/EMF [14] framework. In this case, platform-specific knowledge
has to be provided in the transformations because our constraint patterns are
computation- and platform-independent.

3 Example Model and Constraints

In Fig. 2 we illustrate a simple model that serves as running example. The UML
class diagram contains two classes, Manager and Employee. These classes are
related by a many-to-many relation. An instance of Employee worksFor at least
one manager; a manager employs any natural number of employees.

Besides the defined classes and associations, instances of this model are not
restricted in any way. There may be managers without employees, and employees
may have a salary of zero but work for multiple managers.

Manager

budget : Integer

Employee

name : String

salary : Integer1..*

+ worksFor

*

+ employs

Fig. 2: Manager and Employee Class Diagram

We assume fictitious labor union and company IT requirements that every
work environment has to satisfy. The requirements are captured in the following
constraints informally in English and formally as OCL expressions.

Constraint 1. A manager must employ at least one employee with a salary of
at least 3000.

This constraint requires that for each instance m of Manager there exists an
instance e of Employee that is related to m by the relation employs. Furthermore,
the value of the salary attribute of e must be at least 3000.
context Manager
inv: self.employs−>exists(e | e.salary >= 3000)

Constraint 2. A manager may not occur within his management hierarchy.

This constraint prevents that a manager m is responsible for him-/herself by
being related to him-/herself directly by the worksFor relation or indirectly
by other managers {mi, . . . ,mj} that work for m. For the corresponding OCL
expression, we need to define an operation closureWorksFor(S) that computes the
transitive closure [4] of the worksFor relation. A parameter S in which elements
already processed are stored ensures the termination of this operation.
context Manager
def: closureWorksFor(S:Set(Manager)) : Set(Manager) =

worksFor−>union((worksFor − S)−>
collect(m : Manager | m.closureWorksFor(S−>including(self)))−>asSet())

inv: not self.closureWorksFor(Set{})−>includes(self)

Constraint 3. The company may not have more than five organizational layers.

This constraint restricts the depth of the worksFor navigation path. Because a
manager can employ another manager, arbitrary hierarchy levels can be realized.
However, the fictitious labor union forbids more than five hierarchy levels. A
recursive query pathDepth() needs to be defined to compute the path depth.
This query has two parameters, max and counter, where max is set to the desired
maximum path depth minus 1 and counter is initialized with 0.
context Manager
def: pathDepth(max:Integer, counter:Integer): Boolean =

if (counter > max or counter < 0 or max < 0) then false
else if (self.worksFor−>isEmpty()) then true

else self.worksFor−>forAll(m:Manager|m.pathDepth(max, counter+1))
endif

endif
inv: self.pathDepth(4,0)

Constraint patterns can be identified by analyzing existing constraints and
abstracting from them. For example, the constraints introduced in this section
can be generalized to the following expressions. Constraint 1 requires the ex-
istence of an instance that is related to the context object and has a value
restriction on an attribute. Constraint 2 prevents cyclic navigation paths in a
model instance. Constraint 3 can be generally seen as a constraint that restricts
the maximum length of a navigation path.

From these general expressions, constraint patterns can be derived and de-
scribed using a schema similar to the one described in [1]. We call the pattern
used for Constraint 1 Exists, the pattern derived from Constraint 2 CyclicDepen-
dency and the pattern from Constraint 3 PathDepthRestriction. These patterns
are part of the taxonomy that we introduce in the following section.

4 A Taxonomy of Structured, Computation-Independent
Constraint Patterns

Although the constraint pattern approach as introduced in [1] reduces both the
development time and error rate for model constraints, it has one important
restriction. As each pattern represents a subset of all possible constraint expres-
sions, even with an extensive pattern library, there will be many constraints that
are not expressible in terms of existing constraint patterns.

Therefore, we introduce the notion of structured constraint patterns that add
a high degree of expressiveness to the existing constraint pattern approach by
two measures. Firstly, we divide constraint patterns into atomic and composite
patterns where we introduce a large set of atomic patterns. Composite patterns
are recursively constructed from atomic patterns. Secondly, we introduce the
logical concepts of implication and negation that allow the applicability of an
instance of a constraint pattern to be restricted.

4.1 Atomic Constraint Patterns

In this section we present an extensible library of atomic constraint patterns.
The constraint patterns are related with generalization associations. Therefore,
we create a taxonomy of patterns. The taxonomy gives a structure to the set of
patterns and helps one to find the right pattern for a specific purpose.

The idea of atomic constraint patterns is to identify a large set of atomic
constraints that restrict fundamental concepts of a model, e.g., attribute values
or relations between objects. Furthermore, atomic constraints can be referenced
from composite constraints to create a complex constraint from several compo-
nents. The atomic constraint patterns that we have identified are illustrated in
Fig. 3 where we included the two structural patterns from [1] as UniqueAttribute-
Value and AttributeValueRestriction. The patterns refer to the UML meta-classes
Class and Property and to the OCL meta-class OclExpression.

In MDA, the semantics of a model is inherent in the model transformations
that generate PIM constraints from parameterized CIM constraint patterns. In

AtomicConstraint

AssociationTypeRestriction

allowedTypes : Class [1..*]

CyclicDependency PathDepthRestriction

maxDepth : Integer

UniquePath

PathRestriction

navigation : Property [1..*]

InjectiveRelation SurjectiveRelation

RelationProperties

relation : Association

AttributeValueRestriction

operator : OclExpression

operand : OclExpression

targetAttribute : Property

MultiplicityRestriction

navigation : Property

operator : OclExpression

term : OclExpression

UniqueAttributeValue

targetAttribute : Property

ObjectIsInCollection

collection : OCLExpression

{collection.oclIsKindOf(Set(OclAny))}

Fig. 3: UML Class Diagram of Atomic Constraint Patterns

the following, we provide informal semantics for the patterns in Fig. 3 and discuss
the model transformations in Sect. 5.

Pattern descriptions. The MultiplicityRestriction pattern restricts the mul-
tiplicity of an association. Although the multiplicity of an association can be
restricted in a UML class diagram, this pattern allows for multiplicity restric-
tions that depend on properties of the model instance, e.g., an attribute value.

Two constraint patterns target at attribute values. The AttributeValueRe-
striction can be used to restrict the value of an attribute of a class for all in-
stances of the class. The UniqueAttributeValue pattern requires that all instances
of the constrained class have distinct values for the specified target attribute.

The ObjectIsInCollection pattern can be used to require that the context
element is in the specified collection of objects. For instance, we could require
that each manager is in the set of his employees in Fig. 2.

In the lower part of Fig. 3, we show patterns that can be generalized to
PathRestriction constraints. These patterns restrict properties of a navigation
path in a model instance. The AssociationTypeRestriction pattern can be used
to restrict an association a that is defined on a general class C0 in a way that
in an instance, only certain subclasses C1, . . . , Cn of C0 may participate in the
relation that is defined by a.

The CyclicDependency pattern can be used to require cycles in the instance
graph of the model. Such a cycle can occur if an instance element is related to
itself with a certain navigation. This navigation is the only parameter for this
constraint pattern. An example for an instance of this pattern is Constraint 2.

The InjectiveRelation and SurjectiveRelation patterns can be used to estab-
lish the mathematical concepts of injective (f(a) = f(b) → a = b) and surjective
(f : X → Y ∧ range(f) = Y) relations. Bĳective relations can be modeled by
constraining an element with a constraint for injectivity and one for surjectivity.

The UniquePath pattern can be used to constrain that there may not be
more than one path from the context element to a related element. An infamous
configuration that can be excluded with this pattern is the “diamond of death”
in object-oriented programming languages [22].

The PathDepthRestriction pattern can be used to restrict the maximum path
length in a model instance for reflexive associations. Constraint 3 from our ex-
ample is an instance of this pattern where the maximum length of the employs
association to 5.

4.2 Composite Constraint Patterns

Apart from atomic constraint patterns, which each represent one property of
a model element, composite constraints can be used to express complex prop-
erties of a model. Therefore, they can integrate an arbitrary number of other
constraints (either atomic or composite). Thus, complex constraints can be de-
veloped by combining several simple constraints.

CompositeConstraint

properties : Constraint [*]

Exists

objects : OclExpression

ForAll

objects : OclExpression

{objects.oclIsKindOf(Set(OclAny))}

IfThenElse

then : Constraint [1..*]

else : Constraint [*]

Fig. 4: Class Diagram of Composite Constraint Patterns

So far, we have identified three composite constraint patterns, Exists, ForAll
and IfThenElse. Constraint 1 is an example instance of the Exists pattern: for
the context element m of class Manager there has to exist an element e that
is related to m with the navigation employs. This element e needs to satisfy a
number of constraints, the properties of the composite constraint. The ForAll
constraint pattern is similar except that all elements in the object collection
need to satisfy the properties specified.

The IfThenElse pattern realizes an if-then-else expression. If the context
element of the constraint satisfies all properties, it also needs to satisfy all then
constraints, otherwise, it needs to satisfy all else constraints.

4.3 Adding Logical Structure to Constraint Patterns

We add structure to the concept of constraint patterns by introducing the con-
cepts of negation and implication in a class StructuredConstraint, which is a
specialization of the UML meta-class Constraint. Class StructuredConstraint has

StructuredConstraint

negated : Boolean

AtomicConstraint

CompositeConstraint

properties : Constraint [*]

objects : OclExpression

«metaclass»

Constraint

constrainedElement : Element [*]

1

* - assumption

Fig. 5: UML Class Diagram Overview of Structured Constraint Classes

two child classes, namely the previously introduced classes AtomicConstraint and
CompositeConstraint. This idea is illustrated in Fig. 5.

The concept of logical implication is realized as follows. Each structured
constraint c can have a finite set A of assumptions that can be any kind of con-
straint. This is illustrated by the association assumption from StructuredCon-
straint to Constraint. This allows us to use either arbitrary constraints (defined
by a UML ValueSpecification) or structured pattern instances as assumptions for
constraints. The semantics of the assumption relation is defined as follows: Let
c be an instance of a structured constraint and A be a finite set of constraints
that is related to c with the assumption relation. Then the conjunction of all
constraints in A implies c. The concept of logical negation is realized by the
attribute negated of the class StructuredConstraint.

5 Transforming CIM to PIM

Having defined a library of CIM constraint patterns, we provide the transforma-
tion definitions that are necessary to generate PIM constraints from the param-
eterized patterns. In this section, we introduce a transformation that generates
OCL constraints from parameterized CIM constraint patterns. The transforma-
tion transform_OCL(c) uses OCL templates to generate output. We use pseudo
code that has the same expressivity as common programming languages for the
definition of the operations.

Three steps are necessary to transform an atomic constraint pattern.
First, the assumptions need to be generated. Therefore, we define a function
transform_assumptions_OCL(c) (Listing 1.1). Then, the OCL keyword not is
inserted if the pattern attribute negated is true. Finally, the variables in the
templates for the constraint patterns are replaced by concrete values from the
pattern specification. The OCL templates are shown in Table 1.

sub transform_assumptions_OCL (c : S t r u c t u r e d C o n s t r a i n t) {
p r i n t the c o n j u n c t i o n of as sumpt i ons
f o r e a c h p i n c . as sumpt ion

p r i n t (transform_OCL (p) + " and ") ;
5

p r i n t the i m p l i c a t i o n o p e r a t o r ;
i t needs to be p receded by ‘ t rue ’ to g e n e r a t e c o r r e c t s y n t a x
p r i n t " t r u e i m p l i e s " ;

}

Listing 1.1: Transformation Function for assumptions

For conciseness, we do not present a definition of the replace_parameters(t)
function. Listing 1.2 shows complete the transformation from CIM to PIM for
an atomic pattern.

sub transform_OCL (c : A t o m i c C o n s t r a i n t) {
p r i n t the a s sumpt i ons of the c o n s t r a i n t
transform_assumptions_OCL (c) ;

5 # p r i n t the OCL keyword ‘ not ’ i f the c o n s t r a i n t i s negated
i f (c . negated) p r i n t " not " ;

r e p l a c e the v a r i a b l e s i n the t emp la t e and p r i n t c o n s t r a i n t
p r i n t r e p l a c e _ p a r a m e t e r s (t emp la t e (c)) ;

10 }

Listing 1.2: OCL Transformation Function for Path Depth Restriction Pattern

Pattern Name Template

PathDepthRestriction

def: pathDepth(max:Integer, counter:Integer): Boolean =
if (counter > max or counter < 0 or max < 0) then false
else if (self.<navigation>−>isEmpty()) then true

else self.<navigation>.forAll(e|e.pathDepth(max,counter+1))
endif endif

inv: self.pathDepth(<maxDepth>−1,0)
MultiplicityRestriction inv: self.<navigation>−>size() <operator> <term>
AttributeValue–
Restriction inv: self.<targetAttribute> <operator> <operand>

UniqueAttributeValue inv: self.allInstances()−>isUnique(<targetAttribute>)
ObjectIsInCollection inv: self.<navigation>−>includes(self)
AssociationType–
Restriction

inv: self.<navigation>−>forAll(x | <allowedTypes>
−>exists(c | x.oclIsTypeOf(c)))

CyclicDependency
def: closure<navigation>(S:Set(OclAny)) : Set(OclAny) =

<navigation>−>union((<navigation> − S).
closure<navigation>(S−>union(<navigation>))−>asSet())

inv: not self.closure<navigation>(Set{})−>includes(self)

InjectiveRelation
inv: self.<navigation>.lower = 1 and

self.<navigation>.upper = 1 and
self.allInstances()−>forAll(x1,x2 |

x1.<navigation> = x2.<navigation> implies x1=x2)

SurjectiveRelation inv: self.<navigation>.allInstances()−>forAll(y |
y.<relation>−>size() >= 1)

UniquePath inv: self.<navigation>−>forAll(x |
self.<navigation>−>count(x)=1)

Table 1: OCL Templates for Atomic Constraint Patterns

The composite constraints we introduced use other constraints as properties
for the elements in their object collections. This higher-order use of constraints
makes the code generation slightly more complicated than for atomic constraints.
A special transformation needs to be written for each composite pattern. For
instance, a transformation function for the Exists pattern is shown in Listing 1.3.
The transformation function for the ForAll is similar; only line 6 needs to be
adapted. The IfThenElse pattern can be transformed analogously.

The OCL generation works as follows. First, the assumptions and the nega-
tion are generated if necessary (lines 2,3). Then, the header for the existential
quantification over the object collection is generated (line 6) where e is the vari-
able that represents an element of the collection. In lines 9-12, a conjunction
of expressions is created from the properties of the Exists pattern. In this con-
junction, every occurrence of the keyword self is replaced by the bound variable
e. Finally, the conjunction is concluded with the constant true and a closing
bracket is added (line 15).

1 sub transform_OCL (c : E x i s t s) {
2 transform_assumptions_OCL (c) ;
3 i f (c . negated) p r i n t " not " ;
4
5 # p r i n t the f i r s t p a r t of the c o n s t r a i n t body and open b r a c k e t
6 p r i n t " s e l f . "+c . o b j e c t s+"→e x i s t s (e | " ;
7
8 # p r i n t the p r o p e r t i e s t h a t e needs to s a t i s f y
9 f o r e a c h p i n c . p r o p e r t i e s {

10 p r i n t transform_OCL (c . p r o p e r t i e s) . r e p l a c e (" s e l f " , " e ") ;
11 p r i n t " and " ;
12 }
13
14 # p r i n t a f i n a l i z i n g ‘ t rue ’ and c l o s i n g b r a c k e t
15 p r i n t " t r u e) " ; }

Listing 1.3: Transformation Functions for Composite Constraints

6 Tool Support for Model-Driven Constraint Engineering

Tool support is essential for the acceptance and success of model-driven engi-
neering approaches. In the following, we present how we employ our idea of
structured CIM constraint patterns in a model-driven development tool.

As depicted in Fig. 5, our concept of structured constraint is a specialization
of the UML meta-class Constraint. We suggest an implementation of our ap-
proach as UML Profile where each structured constraint pattern is represented
by a UML stereotype. The taxonomy of constraint patterns is realized using
generalization associations between the stereotypes. The attributes of the con-
straint patterns become attributes of the stereotypes in the implementation.
Here, one deficiency of UML 2.0 becomes critical. In UML 2.0, stereotypes may
not have associations with meta-classes [24]. Thus, a UniqueAttributeValue con-
straint cannot refer to the UML meta-class Property. Even worse, a composite
constraint cannot refer to other constraints that elements need to satisfy. How-
ever, this deficiency no longer exists in UML 2.1 [25], where associations between
a stereotype and a meta-class may be defined.

Fig. 6: Screenshot of Eclipse/UML Profile Editor

The Eclipse UML2 project [13] provides an implementation of the UML
2.1 meta-model based on the Eclipse Modeling Framework [14]. This makes
Eclipse/UML2 an ideal platform for realizing tool support for structured con-
straint patterns. In Fig. 6 we show a screenshot of the UML Profile editor in
Eclipse. As can be seen, the taxonomy of structured constraint patterns can be
implemented in a straight-forward manner.

Fig. 7: Screenshot of Constraint Wizard

We prototyped a graphical user interface that guides a user during constraint
creation and maintenance. In Fig. 7 we show a screenshot of our “wizard”. In the
top left window, the user can choose a constraint pattern. When a pattern is se-
lected, a description of the pattern and its parameters are shown in the top right

part of the window. In the bottom part, the attributes of the selected pattern
are shown and values can be entered for them. As can be seen, the wizard im-
plements one CIM-to-PIM transformation that generates OCL expressions and
one CIM-to-PSM transformation that creates Java code for run-time model val-
idation. Furthermore, the wizard can also be used to modify previously created
structured constraints.

6.1 Applying the Tool to the Example

We have claimed throughout this paper that our approach helps to decrease
development time and rate of syntactic errors. To indicate the practicability of
our approach, we revisit the example from Sect. 3 and apply our method to
it. Using the constraint wizard prototype, we choose appropriate patterns for
Constraints 1–3 and specify their parameters.

The result can be seen in Fig. 8. The class Manager is constrained by two
atomic constraints. An instance of the PathDepthRestriction pattern, represent-
ing Constraint 3, and an instance of the CyclicDependency pattern representing
Constraint 2 are attached to Manager. Constraint 1 is realized as an instance of
the composite pattern Exists: among the set of all employees (self.employs), at
least one element needs to satisfy the AttributeValueRestriction property that is
attached to the composite constraint.

Manager

budget : Integer

Employee

name : String

salary : Integer

Not more than five hierarchy levels.

«PathDepthRestriction»

{navigationPath = employs,

maxDepth = 5}

Must employ one employee with

salary of at least 3000.

«Exists»

{objects = self.employs}

Salary ist at least 3000.

«AttributeValueRestriction»

{targetAttribute = salary,

operator = >=,

operand = 3000}

properties

May not manage her-/himself.

«CyclicDependency»

{negated = true,

navigation = employs}

1..*

+ worksFor

*

+ employs

Fig. 8: Example Class Diagram with Structured Constraints Attached

This small example shows the benefits of our approach. The two compli-
cated constraints, Constraint 2 and 3, can be specified by simply providing two
parameter values each. If requirements change, these constraints can be quickly
adapted without reading, adapting and testing verbose expressions. Constraint 1
is split into two parts, a quantification and a predicate part. This allows for
advanced graphical input support that may help users without background in
formal languages.

We believe that this small example already shows the practicability of our
approach. Complicated recursive expressions are replaced by structured, concise

and easy-to-read constraint definitions. In addition, our model-driven approach
enables the automatic generation of platform-independent or platform-specific
constraints in various languages or modeling frameworks.

7 Related Work and Conclusion

The difficulty of developing concise and correct OCL constraints has been ad-
dressed in numerous publications. OCL is considered to be a very important
formalism in today’s modeling technologies, still unsolved problems make con-
straint development difficult [9]. Several solutions have been proposed for dealing
with the complexity of constraints and syntactic hurdles. In [10], a set of recom-
mendations is provided to increase correctness, clearness and efficiency of OCL
specifications. To simplify the syntax of OCL, a visual concrete syntax for OCL
is proposed in [6].

Several publications use the idea of constraint patterns, thus following up
the general idea introduced in [15]. Patterns for model-driven development con-
straints were first mentioned in [5], where one pattern – Singleton – is introduced.
The idea of constraint patterns is further elaborated on in [1,2], where a small
number of constraint patterns are introduced along with OCL templates.

Here, we have introduced the idea of model-driven constraint engineering.
Our approach goes beyond existing work in three directions. Firstly, we have in-
troduced the notion of computation-independent patterns and transformations
to platform-independent constraints. Secondly, we have introduced a library of
patterns that goes far beyond existing pattern solutions in quantity and quality
and provided a high degree of expressiveness to this approach by adding logical
structure and classifying patterns into atomic and composite patterns. Thirdly,
we provide tool support for applying the concepts in a real development envi-
ronment.

We claim that our approach helps to decrease the time and error rate for
constraint development. For instance, the OCL expression that is necessary to
express Constraint 3 (Sect. 3) uses a recursive definition that is not easy to
understand. In contrast to the lengthy and complicated OCL statement, the same
constraint can be defined as an instance of the PathDepthRestriction pattern.
Appropriate tool support (Fig. 7) further reduces the problem of defining a
constraint by pointing-and-clicking to relevant model elements.

The patterns that we present in this paper were elicited from a large set of
structural constraints for a model in the business process modeling domain. From
the current constraint patterns, almost 90% of the constraints in our case study
(cf. Sect. 1) can be instantiated. We believe that more interesting constraint
patterns can be identified in other application domains, e.g., model transfor-
mations [18], ontology modeling [12] or model refactorings [16]. Therefore, we
envision to make the taxonomy publicly available such that any interested user
can use the approach and extend the constraint pattern library.

Future work includes the definition of new atomic and composite constraint
patterns. However, a pattern-based approach such as the one that we introduce

in this paper is always a tightrope walk between simplicity and completeness
with respect to the expressivity of the underlying constraint language. On the
one hand, patterns are there to simplify the definition of constraints by providing
abstractions for commonly used constraint expressions. On the other hand, given
a set of constraint patterns, you can always find a constraint that cannot be
expressed as an instance of the available patterns. Adding as many patterns in
as much detail as possible to the taxonomy will eventually turn the taxonomy
into a meta-model of the OCL language specification. Such a fine granularity
would not help with the initial problems of time consumption and error rate.

As a rule of thumb, we discourage the introduction of trivial patterns for two
reasons. Firstly, trivial patterns can always be replaced by short OCL expres-
sions. Secondly, a large number of patterns makes it difficult to keep an overview
and select the “right” pattern for a specific purpose. For this reason, we discour-
age the use of the AttributeValueRestriction pattern, which we included in this
paper for “historic” reasons only. The other patterns will be subject to discussion
whether they simplify matters or introduce additional overhead. We believe that
further case studies can clarify this issue. Future work also includes the devel-
opment of constraints for the patterns themselves that deal with problems such
as meaningful input ranges or type safety for the values of pattern variables.

We would like to emphasize that although we have introduced a wizard, we
cannot spirit away the complexity inherent to many constraints. However, we
believe that that our approach offers a powerful tool for dealing with this inherent
complexity.

Acknowledgements

We would like to thank David Basin, Jochen Küster, Alexander Pretschner and
Ksenia Ryndina for their valuable feedback on earlier versions of this paper.

References
1. J. Ackermann. Formal Description of OCL Specification Patterns for Behavioral

Specification of Software Components. In T. Baar, editor, Workshop on Tool Sup-
port for OCL and Related Formalisms, Technical Report LGL-REPORT-2005-001,
pages 15–29. EPFL, 2005.

2. W. Ahrendt, T. Baar, B. Beckert, R. Bubel, M. Giese, R. Hähnle, W. Menzel,
W. Mostowski, A. Roth, S. Schlager, and P. H. Schmitt. The KeY Tool. Software
and System Modeling, 4(1):32–54, 2005.

3. J. A. T. Álvarez, V. Requena, and J. L. Fernández. Emerging OCL Tools. Software
and System Modeling, 2(4):248–261, 2003.

4. T. Baar. The Definition of Transitive Closure with OCL – Limitations and Appli-
cations. In A. Ershov, editor, Perspectives of System Informatics, 2003.

5. T. Baar, R. Hähnle, T. Sattler, and P. H. Schmitt. Entwurfgesteuerte Erzeugung
von OCL-Constraints. Softwaretechnik-Trends, 20(3), 2000.

6. P. Bottoni, M. Koch, F. Parisi-Presicce, and G. Taentzer. Consistency Checking
and Visualization of OCL Constraints. In A. Evans, S. Kent, and B. Selic, editors,
UML 2000, volume 1939 of LNCS, pages 294–308. Springer, 2000.

7. A. D. Brucker, J. Doser, and B. Wolff. A Model Transformation Semantics and
Analysis Methodology for SecureUML. In O. Nierstrasz, J. Whittle, D. Harel,
and G. Reggio, editors, MoDELS 2006, number 4199 in LNCS, pages 306–320.
Springer-Verlag, Genova, 2006.

8. S.-K. Chen, H. Lei, M. Wahler, H. Chang, K. Bhaskaran, and J. Frank. A model
driven XML transformation framework for Business Performance Management
model creation. In International Journal of Electronic Business, volume 4. In-
derscience, 2006.

9. D. Chiorean, M. Bortes, and D. Corutiu. Proposals for a Widespread Use of OCL.
In T. Baar, editor, Workshop on Tool Support for OCL and Related Formalisms,
Technical Report LGL-REPORT-2005-001, pages 68–82. EPFL, 2005.

10. D. Chiorean, D. Corutiu, M. Bortes, and I. Chiorean. Good Practices for Creating
Correct, Clear and Efficient OCL Specifications. In NWUML 2004, 2004.

11. A. L. Correa and C. M. L. Werner. Applying Refactoring Techniques to UML/OCL
Models. In T. Baar, A. Strohmeier, A. M. D. Moreira, and S. J. Mellor, editors,
UML, volume 3273 of LNCS, pages 173–187. Springer, 2004.

12. S. Cranefield and M. Purvis. UML as an Ontology Modelling Language. In ĲCAI
99, 1999.

13. The Eclipse UML2 Project. http://www.eclipse.org/uml2/.
14. The Eclipse Modeling Framework. http://www.eclipse.org/emf.
15. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley, Boston, MA, USA, 1995.
16. M. Gogolla and M. Richters. Expressing UML Class Diagrams Properties with

OCL. In Object Modeling with the OCL, The Rationale behind the Object Con-
straint Language, pages 85–114, London, UK, 2002. Springer-Verlag.

17. R. Hauser and J. Koehler. Compiling Process Graphs into Executable Code. In
Third International Conference on Generative Programming and Component En-
gineering, volume 3286 of LNCS, pages 317–336. Springer, 2004.

18. R. Hauser, J. Koehler, S. Sendall, and M. Wahler. Declarative Techniques for
Model-Driven Business Process Integration. IBM Systems Journal, 44(1), 2005.

19. A. Kleppe, J. Warmer, and W. Bast. MDA Explained. The Model Driven Archi-
tecture: Practice and Promise. Addison-Wesley, 2003.

20. T. Lodderstedt, D. A. Basin, and J. Doser. SecureUML: A UML-Based Modeling
Language for Model-Driven Security. In J.-M. Jézéquel, H. Hußmann, and S. Cook,
editors, UML 2002, volume 2460 of LNCS, pages 426–441. Springer, 2002.

21. S. Markovic and T. Baar. Refactoring OCL Annotated UML Class Diagrams. In
MODELS 2005, volume 3713 of LNCS, pages 280–294, 2005.

22. R. C. Martin. Java and C++. A Critical Comparison. Online document. www.
objectmentor.com/resources/articles/javacpp.pdf, March 1997.

23. Object Management Group (OMG). UML 2.0 OCL Final Adopted Specification.
http://www.omg.org/cgi-bin/apps/doc?ptc/03-10-14.pdf, 2003.

24. Object Management Group (OMG). Unified Modeling Language: Superstructure.
Version 2.0. OMG Document formal/05-07-04, July 2005.

25. Object Management Group (OMG). Unified Modeling Language: Superstructure.
Version 2.1. OMG document ptc/06-04-02, April 2006.

http://www.eclipse.org/uml2/
http://www.eclipse.org/emf
www.objectmentor.com/resources/articles/javacpp.pdf
www.objectmentor.com/resources/articles/javacpp.pdf
http://www.omg.org/cgi-bin/apps/doc?ptc/03-10-14.pdf

	Model-Driven Constraint Engineering
	1 Introduction
	2 Background
	3 Example Model and Constraints
	4 A Taxonomy of Structured, Computation-Independent Constraint Patterns
	4.1 Atomic Constraint Patterns
	4.2 Composite Constraint Patterns
	4.3 Adding Logical Structure to Constraint Patterns

	5 Transforming CIM to PIM
	6 Tool Support for Model-Driven Constraint Engineering
	6.1 Applying the Tool to the Example

	7 Related Work and Conclusion

