
OCL-based Validation of a Railway Domain
Profile

Kirsten Berkenkötter

University of Bremen,
P.O. Box 330 440

28334 Bremen, Germany
kirsten@informatik.uni-bremen.de

Abstract. Domain-specific languages become more and more important
these days as they facilitate the close collaboration of domain experts and
software developers. One effect of this general tendency is the increasing
number of UML profiles. UML itself as the most popular modeling lan-
guage is capable of modeling all kinds of systems but it is often inefficient
due to its wide-spectrum approach. Profiles tailor the UML to a specific
domain and can hence be seen as domain-specific dialects of UML. At
the moment, profiles mainly introduce new terminology, often in com-
bination with OCL constraints which describe the new constructs more
precisely. As most tools do not support validation of OCL expressions
let alone supplementing profiles with OCL constraints, it is difficult to
check if models based on a profile comply to this profile. A related prob-
lem is checking whether constraints in the profile contradict constraints
in the UML specification. In this paper, it is shown how to complete
these tasks with the tool USE. As an example, a profile from the railway
control systems domain is taken which describes the use of its modeling
elements quite strictly. Models based on this profile serve as a foundation
for automated code generation. Therefore, they require a rigorous and
unambiguous meaning. OCL is heavily used to reach this goal.

1 Introduction

The current interest in model driven architecture (MDA) [OMG03] and its sur-
rounding techniques like metamodeling and model driven development (MDD)
has also increased the interest in domain-specific languages (DSL) and their de-
velopment. MDA enforces the idea of platform independent models (PIM) as
main artifact in the design of software systems, while the concrete implemen-
tation will be based on a platform specific model (PSM). The step from PIM
to PSM is performed by transformations while the generation of code is based
on the PSM and a description of the concrete target platform called platform
model (PM).

In the context of MDA, several standards have been developed like the Meta
Object Facility (MOF) [OMG06] for designing metamodels and the Unified Mod-
eling Language (UML) [OMG05c,OMG05b] as a modeling language. UML has

become the de-facto standard for modeling languages and is supported by various
tools. Due to its wide-spectrum approach, it can be used for modeling all kinds
of systems. This is an advantage as one tool can be used to develop different
kinds of systems. In contrast, it may also lead to inefficiency and inaccuracy as
each domain has its own need, e.g. domain-specific terminology that differs from
the one of UML may lead to misunderstandings. Another problem are seman-
tic variation points in UML. These are necessary to enable the wide-spectrum
approach but not useful if the model is to be used in the MDA context as trans-
formations and code generation cannot be utilized with an ambiguous model as
foundation.

A good example are railway control systems that are described in specific ter-
minology and notation. The domain of control are track networks that consist
of elements like segments, points, or signals. Routes are defined to describe how
trains travel on the network. In addition, there are rules that specify in which
way a network is constructed and how it is operated. Some rules apply to all
kinds of railway systems and some are specific for each kind of railway system,
e.g. tramway or railroads. In principle, UML is capable of modeling such sys-
tems: class diagrams can be used to describe segments, points, and other track
elements and their dependencies while object diagrams model concrete track
layouts and routes. Rules can be specified by means of OCL. The problem is
that we have to model each kind of railway system with all rules explicitly. The
domain knowledge that covers the common parts of all railway control systems
is not captured in such models. Neither is specific notation that is used in the
domain like symbols for signals and sensors.

Domain-specific languages are a means to overcome these disadvantages
[Eva06]. Designing a new modeling language from scratch is obviously time-
consuming and costly, therefore UML profiles have become a popular mechanism
to tailor the UML to specific domains. In this way, different UML dialects have
been developed with considerably low effort. New terminology based on existing
UML constructs is introduced and further supplied with OCL [OMG05a,WK04]
constraints to specify its usage precisely. Semantics are often described in natural
language just as for UML itself.

With respect to railways, the Railway Control Systems Domain (RCSD)
profile has been developed [BHP,BH06] as domain-specific UML derivative with
formal semantics.The main reason for developing this profile was to simplify the
collaboration of domain experts of the railway domain and software developers
that design controllers for this domain. With the help of the profile, the system
expert develops track networks for different kind of railway systems consisting
of track segment, signal, points, etc. The software specialist works on the same
information to develop controllers. In the end, controller code which satisfies
safety-critical requirements shall be generated automatically. Railway control
systems are especially interesting as the domain knowledge gathered in the long
history of the domain has to be preserved while combining it with development
techniques for safety-critical systems. Structural aspects are specified by class
and object diagrams (see Fig. 8 and Fig. 9) whose compliance to the domain

is ensured by OCL constraints. Semantics are based on a timed state transition
system that serves as foundation for formal transformations towards code gen-
eration for controllers as well as for verification tasks. In this paper, the focus is
on the validation of the structural aspects to ensure the correct and successful
application of transformations and verification. Details about semantics can be
found in [PBD+05,BH06,BHP].

A problem that has not been tackled until now is to validate that the con-
straints of a profile comply to the ones of UML and that models using a profile
comply to this profile. One reason for this is that CASE tools often support
profiles as far as new terminology can be introduced but lack support of OCL
[BCC+05]. One of the few tools that support OCL is USE (UML Specification
Environment) [Ric02,GZ04]. It allows the definition of a metamodel supplied
with OCL constraints and checks whether models based on this metamodel ful-
fill all constraints. Using (a part of) the UML metamodel in combination with
a profile as the USE metamodel allows for fulfilling three goals: (a) Validating
that this profile complies to the UML metamodel as each model has to fulfill
the invariants of the UML metamodel and the profile. (b) Validating that class
diagrams comply to the profile. (c) Validating that object diagrams comply to
the profile if the profile describes instances as well as instantiable elements. This
approach has been used to validate the RCSD profile and models based on this
profile.

The paper is organized in the following way: the next section gives an intro-
duction to UML profiles and the usage of OCL in this context. After that, the
railway domain is briefly introduced in Sec. 3, followed by a description of the
RCSD profile and typical constraints in Sec. 4. After that, Sec. 5 describes the
validation with USE on the different levels. At last, the results of this validation
approach and future work are discussed in Sec. 6.

2 UML Profiles and OCL

UML profiles as described in in [OMG05b] and [OMG05c] offer the possibil-
ity to tailor the UML to a specific domain in several ways: (a) introducing
new terminology, (b) introducing new syntax/notation, (c) introducing new con-
straints, (d) introducing new semantics, and (e) introducing further information
like transformation rules.

Changing the existing metamodel itself e.g. by introducing semantics con-
trary to the existing ones or removing elements is not allowed. Consequently,
each model that uses profiles is a valid UML model. Profiles are therefore not a
means to develop domain-specific languages that contradict UML constraints or
semantics. Due to the wide-spectrum approach of UML, semantics are loosely
enough to allow all kinds of profiles. A UML 2.0 profile mainly consists of stereo-
types, i.e. extensions of already existing UML modeling elements. You have to
choose which element should be extended and define the add-ons. In addition,
new primitive datatypes and enumerations can be defined as necessary.

OCL can be used in various ways to specify the stereotypes more precisely:

(a) Constraining property values: A stereotype has all properties of its base class
and can add only attributes. Defining new associations to classes in the refer-
ence metamodel or other stereotypes is not allowed. Therefore, constraining
values of existing attributes and associations is a useful means to give a
stereotype the desired functionality.

(b) Specifying dependencies between values of different properties of one ele-
ment: Often, it is necessary to describe dependencies between the properties
of a modeling element precisely.

(c) Specifying dependencies between property values of different instances of one
element: Some properties like identification numbers need specific values for
different instances of one element.

(d) Specifying dependencies between property values of different instances of
different elements: In the same way, several elements may have properties
whose values have some kind of relationship. Here, it is important to chose
the context of the constraint carefully such that the constraint is not unnec-
essarily complicated because another modeling element would have been the
better choice as basis for the constraint.

3 Short Introduction to the Railway Domain

Creating a domain specific profile requires identifying the elements of this domain
and their properties as e.g. described in [Pac02]. In the railway domain, track
elements, sensors, signals, automatic train runnings, and routes have been proven
essential modeling elements. They are described shortly in the following, more
details can be found in [BH06]:
Track Elements The track network consists of segments, crossings, and points.
Segments are rails with two ends, while crossings consist of either two crossing
segments or two interlaced segments. Points allow a changeover from one seg-
ment to another one. Single points have a stem and a branch. Single slip points
and double slip points are crossings with one, respectively two, changeover pos-
sibilities.
Sensors Sensors are used to identify the position of trains on the track network,
i.e. the current track element. To achieve this goal, track elements have entry and
exit sensors located at each end. The number of sensors depends on the allowed
driving directions, i.e. the uni- or bidirectional usage of the track element.
Signals Signals come in various ways. In general, they indicate if a train may
go or if it has to stop. The permission to go may be constrained, e.g. by speed
limits or by obligatory directions in case of points. As it is significant to know if
a train moves according to signaling, signals are always located at sensors.
Automatic Train Running Automatic train running systems are used to enforce
braking of trains, usually in safety-critical situations. The brake enforcement
may be permanent or controlled, i.e. it can be switched on and off. Automatic
train running systems are also located at sensors.
Route Definition As sensors are used as connection between track elements,
routes of a track network are defined by sequences of sensors. They can be

entered if the required signal setting of the first signal of the route is set. This
can only be done if all points are in the correct position needed for this route.
Conflicting routes cannot be released at the same time.

4 RCSD Profile

Unfortunately, defining eight stereotypes as suggested by the domain analysis
in Sec. 3 is not sufficient. New primitive datatypes, enumerations, and special
kinds of association to model interrelationships between stereotypes are needed.
Furthermore, UML supports two modeling layers, i.e. the model layer itself (class
diagrams) and the instances layer (object diagrams). In the RCSD profile, both
layers are needed: class diagrams are used to model specific parts of the railway
domain, e.g. tramways or railroad models, while object diagrams show explicit
track layouts for such models. Hence, stereotypes on the object level have to
be defined. For these reasons, the RCSD profile is structured in five parts: the
definition of primitive datatypes and literals, network elements on class level,
associations between these elements, instances of network elements and associa-
tions, and route definitions.

4.1 Types and Literals

0..1
LiteralId

LiteralAutoRunId
<<stereotype>>

<<stereotype>>

<<stereotype>>

<<stereotype>>

<<stereotype>>

LiteralSensorId

LiteralSignalId

LiteralPointId

LiteralRouteId

LiteralDuration

LiteralTimeInstant

<<stereotype>>

<<stereotype>>

<<stereotype>>0..1

0..1

LiteralInteger
<<metaclass>>

value:Integer prefix:String

Fig. 1. Literals part of the RCSD profile

Several new datatypes are needed: identifiers for all controllable elements, identi-
fiers for routes (e.g. to specify conflicting ones), time instants and durations. All
of them have in common that the value domain is N. Defining different datatypes
facilitates constraints like: all signal identifiers are unique, all point identifiers
are unique and so on. In addition, each new datatype has a dedicated stereotype
to model literals of this type (see Fig. 1). For the identification types, the corre-
sponding literal consists of an integer value and a prefix character. Literals for
time instants and durations are integer values.

inv LiteralPointId1:

value >= 0

inv LiteralPointId2:

prefix = ’P’

OCL constraints for these stereotypes are simple as only values of properties are
restricted. Integers values have to be from N; prefixes for different identification
types have specific values: ’S’ for sensors, ’Sig’ for signals, ’P’ for points, ’A’
for automatic runnings, and ’R’ for routes. As an example, the two constraints
needed for LiteralPointId are given above. For the sake of brevity, the name of
invariants and the invariants context, where it is unmistakable, are omitted in
the following.

4.2 Network Elements

<<stereotype>>
Segment

<<stereotype>>
Crossing

<<stereotype>>
Sensor

0..1

AutomaticRunning
<<stereotype>>0..1

<<metaclass>>
Class

<<stereotype>>
Point

0..1 <<stereotype>>
TrackElement

<<stereotype>>

<<stereotype>>

SinglePoint

SlipPoint

0..1 <<stereotype>>
Signal

<<enumeration>>

LOW
HIGH
FAILURE

SensorStateKind
<<enumeration>>

GO
STOP

<<enumeration>>

STRAIGHT
LEFT
RIGHT
FAILURE

PointStateKind
<<enumeration>>

GO
STOP
FAILURE

SignalStateKind

<<enumeration>>

OFF
FAILURE

ON

AutoRunKind

LEFT
RIGHT

STRAIGHT

<<enumeration>>
RouteKind PermissionKind

Fig. 2. Network elements of the RCSD profile

The next part of the profile defines track network elements, i.e. segments, cross-
ing, points, signals, sensors, and automatic train runnings (see Fig. 2). Segment,
Crossing, and Point have in common that they form the track network itself,
therefore they are all subclasses of the abstract TrackElement. Similarly, Single-
Point and SlipPoint are specializations of Point. Enumerations are defined to
specify values of properties. All elements are equipped with a set of constraints
that define which properties must be supported by each element and how it is
related to other elements.

An instance of TrackElement on the model layer must provide several proper-
ties: maximalNumberofTrains to restrict the number of trains on a track element
at one point in time (mandatory) and limit to give a speed limit (optional). Both
properties have to be integers. The first one has a fixed multiplicity 1, the second
one may have multiplicities 0..1 or 1. Such requirements for TrackElement are
defined in the following way:

ownedAttribute->one(a | a.name->includes(’maxNumberOfTrains’) and

a.type.name->includes(’Integer’) and

a.upperBound() = 1 and a.lowerBound() = 1 and

a.isReadOnly = true)

At each end of a TrackElement, entry or exit sensors can be associated. e1Entry,
e1Exit, e2Entry, and e2Exit are used to model these ends of associations to
sensors (optional). All outgoing associations must be SensorAssociations.

ownedAttribute->one(a | a.name->includes(’e1Entry’) and

a.upperBound() = 1 and a.lowerBound() >= 0 and

a.isReadOnly = true and

a.outgoingAssociation.

oclIsTypeOf(SensorAssociation)) or

(not ownedAttribute->exists(a2 | a2.name->includes(’e1Entry’)))

...

ownedAttribute->collect(outgoingAssociation)->

forAll(a | a.oclIsTypeOf(SensorAssociation) or a.isUndefined)

To understand the structure of these constraints, a look at the UML meta-
model is helpful. As all network elements are stereotypes of Class from the UML
2.0 Kernel package, we can refer to all properties of Class in our constraints.
Properties on the model level are instances of class Property on the metamodel
level, which are associated to Class by ownedAttribute. As a StructuralFeature,
Property is also a NamedElement, a TypedElement, and a MultiplicityElement,
which allows to restrain name, type, and multiplicity as shown in the constraints
above. Such constraints are defined for all network elements. They all belong ob-
viously to the category (a) as described in Sec. 2. They restrict properties on
the metamodel level for the usage on the model level.

4.3 Associations

Three types of associations are defined: SensorAssociation that connect track
elements and sensors, SignalAssociations that connect signals and sensors, and
AutoRunAssociations that connect automatic train runnings and sensors (see
Fig. 5). Constraints are needed e.g. to determine the kind of stereotype at the
ends of each association and their number. As an example, each SignalAssocia-
tion is connected to one sensor and one signal:

inv SignalAssociation1: memberEnd->size() = 2

inv SignalAssociation2: endType->size() = 2

inv SignalAssociation3: endType->one(t | t.oclIsKindOf(Sensor))

inv SignalAssociation4: endType->one(t | t.oclIsKindOf(Signal))

Similar constraints are defined for the other kinds of association.

4.4 Instances of Network Elements and Associations

For each non-abstract modeling element and each association, there exists a cor-
responding instance stereotype (see Fig. 6). Here, the domain-specific notation
is defined. In Fig. 3, two unidirectional segments connected by a sensor S1 are
shown. For comparison, the same constellation in object notation is given in
Fig. 4.

S1

Fig. 3. RCSD notation

exit e2exit
S1:<<Sensor>>Sens

entrye1entry
:<<Segment>>Seg:<<Segment>>Seg

Fig. 4. UML notation

The instances are heavily restricted by OCL constraints as the instance level
serves as the basis for automated code generation. Again, we find several con-
straints of category (a), where the values of properties are specified explicitly. To
give an example, the maximal number of trains on a crossing or point is always
defined and the value is 1:

slot->one(s1 | s1.definingFeature.name->includes(’maxNumberOfTrains’) and

s1.value->size()= 1 and

s1.value->first().oclIsTypeOf(LiteralInteger) and

s1.value->first()->oclAsType(LiteralInteger).value = 1)

0..1

SensorAssociation
<<stereotype>>

0..1 <<stereotype>>
AutoRunAssociation

<<metaclass>> 0..1
SignalAssociation

<<stereotype>>
Association

Fig. 5. Associations part of the
RCSD profile

<<stereotype>>
AutomaticRunningInstance

0..1 <<stereotype>>
SignalInstance

<<stereotype>>
AutoRunLink

<<stereotype>>
SignalLink

<<stereotype>>
SensorLink

<<stereotype>>
SensorInstance

<<metaclass>>

InstanceSpecification

0..1

0..1

SegmentInstance
<<stereotype>>

CrossingInstance
<<stereotype>>

<<stereotype>>

<<stereotype>>

0..1

0..1

0..1

SinglePointInstance

SlipPointInstance

0..1 0..1

0..1

0..1

Fig. 6. Instances of network elements and as-
sociations part of the RCSD profile

Similar constraints appear for all kinds of track elements, e.g. the limit on track
elements must have a value from N if present. More interesting are the constraints
from category (b) that describe the dependencies between properties of one

stereotype. As an example, each Point has a plus and minus position. One of
these has to be STRAIGHT and the other one LEFT or RIGHT :

slot->select(s1 | s1.definingFeature.name->includes(’minus’) or

s1.definingFeature.name->includes(’plus’))->

one(s2 | s2.value->size()= 1 and

s2.value->first().oclIsTypeOf(InstanceValue) and

s2.value->first().oclAsType(InstanceValue).instance.name->

includes(’STRAIGHT’)) and

slot->select(s1 | s1.definingFeature.name->includes(’minus’) or

s1.definingFeature.name->includes(’plus’))->

one(s2 | s2.value->size()= 1 and

s2.value->first().oclIsTypeOf(InstanceValue) and

(s2.value->first().oclAsType(InstanceValue).instance.name->

includes(’LEFT’) or

s2.value->first()->oclAsType(InstanceValue).instance.name->

includes(’RIGHT’)))

An example from category (c) are identification numbers of sensors that have
to be unique. Each Sensor must have a property sensorId that is unique with
respect to all instances of Sensor :

SensorInstance.allInstances->collect(slot)->asSet->flatten->

select(s | s.definingFeature.name->includes(’sensorId’))->

iterate(s:Slot;

result:Set(LiteralSensorId) = oclEmpty(Set(LiteralSensorId)) |

result->including(s.value->first.oclAsType(LiteralSensorId)))->

isUnique(value)

4.5 Route definitions

<<stereotype>>

<<stereotype>>
Route

<<metaclass>>

0..1

0..1 <<stereotype>>
Class SignalSetting

<<stereotype>>
RouteConflict

PointPosition

0..1

0..1

<<enumeration>>
RouteConflictKind

<<stereotype>><<metaclass>>
InstanceSpecification RouteInstance

0..1

noAllocation
stopSignal

Fig. 7. Route definition part of the RCSD profile

Moreover, the profile defines routes and their instances as shown in Fig. 7.
Each Route is defined by an ordered sequence of sensors. The signal setting
for entering the route and sets of required point positions and of conflicts with

other routes are further necessary information. Again, constraints are used for
unambiguous and strict definitions of properties. Constraints from category (d)
are typical as sensors, signals, and points are referenced by their id in route
definitions. This implies that these ids belong to some existing instances, e.g.
the sensor ids given in the definition of a route. Hence, the following constraint
must hold for each RouteInstance:

let i:Set(Integer) =

slot->select(s | s.definingFeature.name->includes(’routeDefinition’))->

asSequence->first().value->

iterate(v:ValueSpecification;

result:Set(Integer)=oclEmpty(Set(Integer)) |

result->including(v.oclAsType(LiteralSensorId).value))

in

i->forAll(id | SensorInstance.allInstances->exists(sens |

sens.slot->select(s | s.definingFeature.name->includes(’sensorId’))->

asSequence->first().value->first().

oclAsType(LiteralSensorId).value = id))

5 Validation of Wellformedness Rules with USE

The next step is adapting the profile and its various invariants to USE for the
validation process. USE expects a model in textual notation as input. For syntax
details, we refer to [GZ04]. In our case, this is the metamodel consisting of (a
part of) the UML metamodel and the profile. On this basis, instance models
can be checked with respect to the invariants in the metamodel. In our case,
the instance model consists of both class layer and object layer, i.e. models
using the RCSD profile. A similar application of USE with respect to the four
metamodeling layers of UML is shown in [GFB05].

This metamodel file includes both the necessary part of the UML 2.0 meta-
model and the RCSD profile for two reasons: first, the profile cannot exist with-
out its reference metamodel and second, one goal is to check the compliance of
the profile to the metamodel. This task must be performed implicitly as USE
does not check if the given constraints contradict. Instead, we assume the profile
compliant to the metamodel as long as both the constraints in the metamodel
and the constraints in the profile are all valid. Contradicting constraints can be
identified if all constraints in the profile evaluate to true but some constraint(s)
in the metamodel evaluate(s) to false.

5.1 Modeling the UML Metamodel and the RCSD Profile for USE

In the metamodel file, a description of classes with attributes and operations,
associations, and OCL constraints is expected. OCL constraints are either in-
variants as shown in Sec.4, definitions of operations, or pre-and postconditions of
operations. Only operations whose return value is directly specified in OCL and
not dependent on preconditions are considered side-effect free and may be used

in invariants. For the validation of the profile, all invariants must be fulfilled by
the instance model(s).

limit:Integer[0..1] {readOnly}
maxNumberOfTrains:Integer=1 {readOnly}

TramCrossing
<<Crossing>>

<<Sensor>>
TramSensor

TramSegment
<<Segment>>

limit:Integer[0..1] {readOnly}
maxNumberOfTrains:Integer=1 {readOnly}

<<RouteConflict>>
Conflicts

routeId:RouteId {readOnly}
kind:RouteConflictKind {readOnly}

Signals
<<SignalSetting>>

sigState:SignalStateKind {readOnly}
signalId:SignalId {readOnly}

dirState:RouteKind[0..1] {readOnly}

Points
<<PointPosition>>

pointId:PointId {readOnly}
pointState:PointStateKind {readOnly}

TramRoute
<<Route>>

routeId:RouteId {readOnly}
routeDefinition:SensorId[0..*] {readOnly, ordered}

actualState:SignalStateKind
requestedState:SignalStateKind

delta_s:Duration {readOnly}

signalId:SignalId {readOnly}

requestTime:TimeInstant

direction:RouteKind

<<Signal>>
TramSignal

TramPoint
<<SinglePoint>>

pointId:PointId {readOnly}
plus:PointStateKind {readOnly}
minus:PointStateKind {ReadOnly}
actualState:PointStateKind
requestedState:PointStateKind
requestTime:TimeInstant

limit:Integer[0..1] {readOnly}
maxNumberOfTrains:Integer=1 {readOnly}
delta_p:Duration {readOnly}

e4exit

e3exit

e2exit
0..1

1

11

actualState:SensorStateKind
sentTime:TimeInstant
counter:Integer
delta_l:Duration {readOnly}
delta_tram:Duration {readOnly}

sensorId:SensorId {readOnly}

e2exit

e2exit

e1exit

sensor

e3entry

e2entry

e3entry

e1entry

e1entry

e1entry

1

0..1

0..1 0..1

0..1

1

1

1

pointPosrouteConflict

signalSetting{readOnly}
1

signal 0..1

0..* 0..*

entrySeg exitSeg

exitPointentryPoint

{readOnly} {readOnly}

entryCross exitCross

1 1

0..1

0..1

0..1

0..1

0..1

Fig. 8. Tram network definitions - class level

From the UML metamodel, the Kernel package has been modeled with some
modifications: (a) Packages are not needed by the RCSD profile and therefore
skipped in all diagrams, diagram Packages has been omitted completely. (b)
Lower and upper bounds of multiplicities have been changed to LiteralInteger
instead of ValueSpecification for easier handling. One reason is that the invariants
in the context of MultiplicityElement are not specific enough to guarantee that
the ValueSpecification really evaluates to LiteralInteger as necessary. Therefore,
expressions cannot be used to specify multiplicities. The invariants of Multiplic-
ityElement have been adapted to this. (c) Several invariants and operations had
to be rewritten or omitted completely as they are erroneous in the UML specifi-
cation. More information about this problem can be found in [BGG04]. (d) Some
names in the UML specification had to be changed due to conflicts with USE
keywords or multiple usage in the specification which also leads to conflicts. This
problem is also described in [BGG04]. (e) USE does not support UnlimitedNat-
ural as type. This problem has been overcome by using Integer and additional
constraints that restrict corresponding values to N. All in all, 34 invariants have
been modeled here. Further packages from the UML metamodel are not needed.

Profiles are not directly supported by USE. This problem has been overcome
by modeling each stereotype as a subclass from its metaclass, i.e. a metamodel
extension. Modeling profiles as restricted extensions to metamodels is feasible
with respect to [JSZ+04]. Here, modifications to metamodels are classified in

level one (all extensions to the reference metamodel allowed), level two (new
constructs can be added to the referenced metamodel, but existing ones cannot
be changed), level three (each new construct must have a parent in the reference
metamodel), and level four (new relationships are only allowed as far as existing
ones are specialized. The lower levels include all restrictions of the levels above.
Therefore, profiles can be considered a level four metamodel extension and mod-
eled as such in USE. 1 All in all, the following invariants of types (a) - (d) have
been specified:

Profile part (a) (b) (c) (d)

Types and Literals 12 0 0 0
Network Elements 92 0 0 0
Associations 23 0 0 0
Instances 101 21 5 0
Route Definitions 36 4 1 16

5.2 Compliance of RCSD Model to Profile on Class Level

Evaluating constraints is possible for instances of the given (meta)model. As
an example, a tram network description is used on class level. Tram networks
consist of segments, crossing and single points that are all used unidirectionally.
Furthermore, there are signals, sensors, and routes, but no automatic runnings.
This constellation is shown in Fig. 8.

In USE, an instance model can be constructed step by step by adding in-
stances of classes and associations of the metamodel to an instance diagram.
More convenient is the usage of a *.cmd command file where instance creation
and setting of property values are specified in textual notation. Again, we refer
to [GZ04] for syntax details.

5.3 Compliance of RCSD Model to Profile on Instance Level

A concrete network of a tram maintenance site with six routes is shown in Fig. 9.
Note that this is diagram is given in RCSD notation and can also be shown in
UML object notation as discussed in Sec. 4. The explicit route definitions have
been omitted for the sake of brevity, but can be easily extracted from Fig. 9.
This diagram has been used for the validation on the instance level. It consists
of 12 segments, 3 crossing, 6 points, 25 sensors, 3 signals, and 6 routes, specified
in a second *.cmd file. The two *.cmd files form a complete instance model of
the metamodel consisting of classes and their instances.

5.4 Results

In this example, all invariants have been fulfilled. The correctness of the OCL
constraints could be easily checked by adding intentional errors like incorrect
association ends or signals with the same id. USE facilitates tracing of such

1 [JSZ+04] considers profiles as level three which is incorrect as the relationship re-
striction has to be respected by profiles.

W100

S22−G21.1

G25.1

G24.1

TRAM MAINTENANCE SITE

ROUTE 3: S21−G25.1

ROUTE 5:

G25.0
ROUTE 0:
S20−G21.1

S21−G23.1
ROUTE 2

G23.0

G23.1G20.0

G20.1

G21.0

G21.1

G22.1

ROUTE4: S22−G23.1

G22.9 G24.3G20.3G20.2

W102 W119

G22.3G22.2

W118

G22.0

G20.9 G20.8

W103

W101

G24.2

G22.9

G24.0

G30.1

G29.9

G30.0

S20−G25.1
ROUTE 1:

S21

S20

S22

Fig. 9. Concrete track network - instance level

errors by (a) showing which instance of the metamodel has violated an invariant
and by (b) decomposing the invariant in all sub-clauses and giving the respective
evaluation. In Fig. 10, we can see that sensor2 and sensor3 have a duplicate
identification numbers.

Fig. 10. Evaluation example - two identical sensor ids

For the validation process, some effort has to be made for the modeling part.
Fortunately, the metamodel and profile have to be modeled only once for each
profile. The part of the UML metamodel that has to be included varies from
profile to profile depending on the metaclasses references by stereotypes. The
current version of the USE model file consists of approximately 4000 lines. As
this task is performed once per profile, the effort seems reasonable. With respect
of the RCSD profile, the instance model on class level has to be modeled once per

specific railway system, e.g. once for trams. With this part of the instance model,
all kinds of concrete track layouts can be checked. The tram example consists
of approximately 1500 lines of input data to USE. These can be generated from
class diagrams by parsing the output of CASE tools and adapting them to USE.
Concrete track layout can also be generated, this time from object diagrams. In
this way, all kinds of track layouts for one system can be checked. The example
track layout needs about 5000 lines. As writing them for each layout would be
an obnoxious task, automation is highly required.

6 Conclusion

The validation of models of the RCSD profile and the profile itself based on OCL
constraints with USE has been proven useful in several ways. It has been shown
that the profile complies to UML as it is required and that an example model
for tramways is valid in the RCSD context. This makes object diagrams for
such tramways applicable for transformation and verification purposes. Another
effect of the validation with USE was the improvement of the OCL constraints
themselves. As most case tools have no OCL support, it is hard to detect if
constraints exhibit syntax errors or if complicated constraints really have the
intended meaning.

An adaption of the validation process to other profiles can be performed
straightforward as the same kinds of constraints should appear. It is possible
that the UML metamodel part has to be enhanced for other profiles as this
depends on the metaclasses referenced by stereotypes. Validation is reasonable
in each profile whose application relies on a solid and unambiguous model.

With respect to the RCSD profile, future work has to investigate the behav-
ioral aspects of track layouts as described in [BH06]. At the moment, only statical
aspects have been examined, but USE can also be applied to the validation and
test of controllers that have been generated for a concrete track network. Passing
trains have to be simulated by changes of sensor values just as route requests by
trains to the controller. Signals and points have to be switched by the controller
with respect to safety conditions like ’only one tram on a point at one point in
time’ or ’only one tram on conflicting routes’. Such safety requirements can also
be expressed in OCL. As train movements and signal and point switches are
all modeled by variables in the track network, the outcome is always an object
diagram with changed variable values whose invariants can be checked.

Acknowledgments Special thanks go to Fabian Büttner and Arne Lindow for
their help with USE and to Ulrich Hannemann for his valuable feedback to the
first versions of this paper and the related work.

References

[BCC+05] Thomas Baar, Dan Chiorean, Alexandre Correa, Martin Gogolla, Heinrich
Hußmann, Octavian Patrascoiu, Peter H. Schmitt, and Jos Warmer. Tool

Support for OCL and Related Formalisms - Needs and Trends. In Jean-
Michel Bruel, editor, Satellite Events at the ModELS‘2005 Conference, vol-
ume 3844 of LNCS, pages 1–9. Springer-Verlag, 2005.

[BGG04] Hanna Bauerdick, Martin Gogolla, and Fabian Gutsche. Detecting OCL
Traps in the UML 2.0 Superstructure. In Thomas Baar, Alfred Strohmeier,
Ana Moreira, and Stephen J. Mellor, editors, Proceedings 7th International
Conference Unified Modeling Language (UML’2004), volume 3273 of LNCS,
pages 188–197. Springer-Verlag, 2004.

[BH06] Kirsten Berkenkötter and Ulrich Hannemann. Modeling the railway control
domain rigorously with a uml 2.0 profile. In J. Górski, editor, Safecomp
2006, volume 4166 of LNCS, pages 398–411. Springer, 2006. to appear.

[BHP] Kirsten Berkenkötter, Ulrich Hannemann, and Jan Peleska. The
railway control system domain. Draft, http://www.informatik.uni-
bremen.de/agbs/research/RCSD/.

[Eva06] Andy Evans. Domain Specific Languages and MDA.
http://www.xactium.com, 2006.

[GFB05] Martin Gogolla, Jean-Marie Favre, and Fabian Büttner. On Squeezing M0,
M1, M2, and M3 into a Single Object Diagram. Technical Report LGL-
REPORT-2005-001, Ecole Polytechnique Fédérale de Lausanne, 2005.

[GZ04] Martin Gogolla and Paul Ziemann. Checking BART Test Scenarios with
UML’s Object Constraint Language. Formal Methods for Embedded Dis-
tributed Systems - How to master the complexity. Fabrice Kordon, Michel
Lemoine (Eds.), Kluwer, Boston. pages 133-170, 2004.

[JSZ+04] Yanbing Jiang, Weizhong Shao, Lu Zhang, Zhiyi Ma, Xiangwen Meng, and
Haohai Ma. On the Classification of UML’s Meta Model Extension Mech-
anism. In The Unified Modelling Language: Modelling Languages and Ap-
plications, pages 54–68, 2004.

[OMG03] Object Management Group. MDA Guide Version 1.0.1, June 2003.
[OMG05a] Object Management Group. OCL 2.0 Specification, version 2.0.

http://www.omg.org/docs/ptc/05-06-06.pdf, June 2005.
[OMG05b] Object Management Group. Unified Modeling Language: Superstructure,

version 2.0. http://www.omg.org/docs/formal/05-07-04.pdf, July 2005.
[OMG05c] Object Management Group. Unified Modeling Language (UML) Specifi-

cation: Infrastructure, version 2.0. http://www.omg.org/docs/ptc/04-10-
14.pdf, July 2005.

[OMG06] Object Management Group. Meta Object Facility (MOF) 2.0 Core Specifi-
cation. http://www.omg.org/docs/formal/06-01-01.pdf, January 2006.

[Pac02] Joern Pachl. Railway Operation and Control. VTD Rail Publishing, Mount-
lake Terrace (USA), 2002. ISBN 0-9719915-1-0.

[PBD+05] Jan Peleska, Kirsten Berkenkötter, Rolf Drechsler, Daniel Große, Ulrich
Hannemann, Anne E. Haxthausen, and Sebastian Kinder. Domain-specific
formalisms and model-driven development for railway control systems. In
TRain workshop at SEFM2005, September 2005.

[Ric02] Mark Richters. A Precise Approach to Validating UML Models and OCL
Constraints, volume 14 of BISS Monographs. Logos Verlag, Berlin, 2002.
Ph.D. thesis, Universität Bremen.

[WK04] Jos Warmer and Anneke Kleppe. Object Constraint Language 2.0. MITP-
Verlag, Bonn, 2004.

http://www.omg.org/docs/ptc/05-06-06.pdf
http://www.omg.org/docs/formal/05-07-04.pdf
http://www.omg.org/docs/ptc/04-10-14.pdf
http://www.omg.org/docs/ptc/04-10-14.pdf
http://www.omg.org/docs/formal/06-01-01.pdf

