
An MDA Framework Supporting OCL

Achim D. Brucker, Jürgen Doser, and Burkhart Wolff

Information Security, ETH Zurich, 8092 Zurich, Switzerland
{brucker,doserj,bwolff}@inf.ethz.ch

Abstract We present an mda framework, developed in the functional
programming language sml, that tries to bridge the gap between formal
software development and the needs of industrial software development,
e.g., code generation. Overall, our toolchain provides support for software
modeling using uml/ocl and guides the user from type-checking and
model transformations to code generation and formal analysis of the
uml/ocl model. We conclude with a report on our experiences in using
a functional language for implementing mda tools.

1 Introduction

Model-Driven Engineering refers to the systematic use of models as primary
engineering artifacts throughout the development life-cycle of software systems.
The instance of Model-Driven Engineering based on the uml and defined by the
Object Management Group (omg) is called model-driven architecture (mda). In
uml, various model elements like classes or state machines can be annotated by
logical constraints using the Object Constraint Language (ocl); for this reason,
uml can be used as a formal specification language with diagrammatic syntax.

For Model-Driven Engineering in general and mda in particular, techni-
cal support ranging over several stages of the software development process—
requirements analysis, design, code generation—is vital. This holds to an even
larger extent if semantic information like formal specifications are processed.
Thus, a technical framework is needed that provides an infrastructure for model
elements annotated by ocl.

In this paper, we present such a framework, comprising a toolchain that
guides the development process from modeling in a case tool to code-generation
and formal verification. In particular, our framework consists of a type-checking
component allowing to represent ocl in a structured format which can be im-
ported into our model repository (su4sml). This model repository can serve as
a basis for model transformations. Moreover, su4sml is the basis for a template-
based code generator supporting code-generation for the uml core and state
machines, enriched by ocl specifications and access control policies specified us-
ing SecureUML. Further, this model can be directly transformed into a (formal)
model for the theorem proving environment hol-ocl [4].

As a distinguishing feature, su4sml is developed in the functional program-
ming language sml [11]. For this reason, implementers of model transformations
can profit from several techniques that have proven to be of major importance

http://www.brucker.ch/
http://www.infsec.ethz.ch/people/doserj
http://www.infsec.ethz.ch/people/bwolff
http://www.brucker.ch/projects/hol-ocl/

for symbolic computations occurring naturally in compiler construction or the-
orem proving: pattern matching allows for direct representations of rules to be
performed during transformation, higher-order functions allow for the compact
description of search- and replacement strategies, and having a strongly typed
language helps to detect many errors at compile time.

We also present an implementation of one particular extension of our frame-
work for uml/ocl: namely support for the uml-based language SecureUML [2].
SecureUML is designed to enrich the business logic of a system (represented
by a class diagram or a statechart) with a concrete access control model for
objects and operations. By a model transformation [3], class systems and oper-
ation specifications are transformed such that a combined model is generated,
incorporating security and functional aspects. During the transformation, sev-
eral proof obligations are generated, making explicit under which conditions the
business logic of a system is not interfered by its security model. With the help
of our framework, the combined model can be transformed to code, while the
proof obligations making this transformation “correct” (in the sense of “no bad
interference”) can be proven by hol-ocl. Thus, our framework can be seen as
a first step towards a uniform framework supporting both semantic and code-
generative aspects of uml/ocl specifications.

The Plan of the Paper. After a general overview of the framework, we present
its main components: In section 3, we describe the implementation of our model
repository, in section 4 we present a template-based code generator and in sec-
tion 5 we describe the interface to hol-ocl. Finally, we describe the SecureUML
instance and discuss our experiences and observations.

2 Our Framework: An Overview

In this section, we give an overview of our framework and present an exemplary
toolchain in which it can be used. As a prerequisite, we introduce the tools and
technologies our framework is based on.

2.1 Background

SecureUML. SecureUML [2] is a security modeling language based on rbac [12].
In particular, SecureUML supports notions of users, roles and permissions, as
well as assignments between them: Users can be assigned to roles, and roles
are assigned to specific permission. Users acquire permissions through the roles
they are assigned to. Moreover, users are organized into a hierarchy of groups,
and roles are organized into a role hierarchy. In addition to this rbac model,
permissions can be restricted by Authorization Constraints (expressed in ocl
formulae), which have to hold to allow access. SecureUML is generic in the no-
tion of protected actions that can be assigned to permissions. These are specified
in a SecureUML dialect.

The Dresden OCL2 Toolkit. The software platform provided by the Dresden
ocl2 Toolkit (http://dresden-ocl.sf.net/), written in Java, provides mani-
fold support for ocl. Among other tools, a parser and type-checker for ocl is
included. The toolkit is designed for modularity and flexibility. Thus, the Dres-
den ocl2 Toolkit is a good basis for building new ocl-based tools, either by
integrating it into a case tool directly or by using it as a standalone tool lever-
aging the provided xmi import and export facilities. In our setting, we especially
benefit from the xmi export, which includes the typed-checked ocl constraints
as abstract syntax using an xml-based encoding.

HOL-OCL. hol-ocl [4] (http://www.brucker.ch/projects/hol-ocl/) is
an interactive proof environment for uml/ocl. Its mission is to give the term
“object-oriented specification” a formal semantic foundation and to provide ef-
fective means to formally reason over object-oriented models. On the theoretical
side, this is achieved by representing uml/ocl as a conservative, shallow em-
bedding into the hol instance of the interactive theorem prover Isabelle [8]
while following the standard [9] as closely as possible; in particular, we prove
that inheritance can be represented inside the typed λ-calculus with parametric
polymorphism. As a consequence of conservativity with respect to hol, we can
guarantee the consistency of the semantic model. On the technical side, this is
achieved by automated support for typed, extensible uml data models. More-
over, hol-ocl provides several derived calculi for uml/ocl that allow for formal
derivations establishing the validity of uml/ocl formulae. Some automated sup-
port for such proofs is also provided, albeit the achieved degree of automation
is not yet satisfactory.

2.2 The Toolchain
Our framework is completed by a toolchain (see Figure 1) that consists of a uml
case tool with an ocl type-checker for modeling software systems. The frame-
work provides a model repository, model analyzers and various code generators.

We use the uml case tool ArgoUML (http://argouml.tigris.org) and
combine it with the Dresden ocl2 Toolkit. The Dresden ocl Toolkit uses a
specialized metamodel combining the uml 1.5 and the ocl 2.0 metamodel. This
results in an upward compatible extension of the uml 1.5 metamodel: every uml
1.5 model is still a model of the combined metamodel. Models expressed in his
specialized metamodel can be exported using the xmi export.

We also developed a Java-based transformation tool, su2holocl, on top of the
Dresden ocl Toolkit which transforms a SecureUML model into a semantically
identical pure uml/ocl model. This model transformation is explained in more
detail elsewhere [3].

At time of writing, our sml-based framework comprises
1. an xmi import supporting the uml 1.4 and 1.5 meta-model (e.g., as used by

ArgoUML) and also a metamodel combining uml 1.5 and ocl 2.0 (as used
by the Dresden ocl2 Toolkit),

http://dresden-ocl.sf.net/
http://www.brucker.ch/projects/hol-ocl/
http://argouml.tigris.org

1..∗

Role

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

ArgoUML

Dresden OCL2

Model

Transformation
(su2holocl)

Model−Analysis
and Verification

(HOL−OCL)

Repository
Model

(su4sml)

Transformation
Model

Code
Generation

Java

C#

...

C#
+OCL

SecureUML UML+OCL

XMI

(UML+OCL)

(UML)
XMI

Figure 1. mda Framework and Toolchain Overview

2. a model repository, su4sml, which supports the various metamodels we are
using, e.g., uml, ocl, SecureUML,

3. a generic, template-based code generator supporting SecureUML (including
the generation of access-control checks for the target languages Java and
C#), the uml core (e.g., class diagrams), state machines, and ocl,

4. model transformations that normalize the models in several normal forms;
this comprises the conversion of multiplicities into ocl constraints, etc., and

5. an interface to our theorem prover environment, hol-ocl, which allows to
do (formal) model analysis and verification of uml/ocl models.

The framework is implemented as a set of sml modules that are designed to be
easily extensible and also can be used independently.

3 The Model Repository: su4sml

When implementing an object-oriented model repository in a functional pro-
gramming language one has to solve several challenges: first one has to decide
how to represent the inherently graph-based structure of object-oriented models
into a tree-structure that is suitable in a functional programming language. Of
course, one can always simulate pointers, but then one loses convenient features
of functional programming languages, like safeness and strong typing.

For class models, we decided to employ the inherent tree structure given by
the “containment hierarchy.” For example, a class contains attributes, opera-
tions, or statemachines. We also decided to ignore associations as such. We only
represent their association ends, again as part of the participating classifiers.

Statemachines, however, do not present an obvious way of representation in a
tree structure. There we fall back to using pointers, for example from transitions
to source and target states, or from states to incoming and outgoing transitions.

In contrast, ocl expressions naturally translate into an abstract datatype, as
shown in Listing 1.1 and Listing 1.2. This abstract datatype is modeled closely

1 s i g n a t u r e REP_OCL_TYPE = s i g

type Path = s t r i n g l i s t

datatype OclType = I n t e g e r | Rea l | S t r i n g | Boolean (∗ P r i m i t i v e Types ∗)
6 | OclAny | OclVoid

| Set of OclType | Sequence of OclType
| OrderedSet of OclType | Bag of OclType
| C o l l e c t i o n of OclType
| C l a s s i f i e r of Path (∗ use r−d e f i n e d c l a s s i f i e r s ∗)

11 | DummyT (∗ dummy type f o r untyped e x p r e s s i o n s ∗)
end

Listing 1.1. su4sml: Representing ocl Types

s i g n a t u r e REP_OCL_TERM = s i g
i n c l u d e REP_OCL_TYPE

3
datatype OclTerm =

L i t e r a l of s t r i n g ∗ OclType (∗ L i t e r a l w i th type ∗)
| C o l l e c t i o n L i t e r a l of Co l l e c t i o nP a r t l i s t ∗ OclType (∗ co n t en t w i th type ∗)
| I f of OclTerm ∗ OclType (∗ c o n d i t i o n ∗)

8 ∗ OclTerm ∗ OclType (∗ then ∗)
∗ OclTerm ∗ OclType (∗ e l s e ∗)
∗ OclType (∗ r e s u l t t ype ∗)

| A s s o c i a t i o nEndCa l l of OclTerm ∗ OclType (∗ s o u r c e ∗)
∗ Path (∗ a s s o c .−enc ∗)

13 ∗ OclType (∗ r e s u l t t ype ∗)
| A t t r i b u t e C a l l of OclTerm ∗ OclType (∗ s o u r c e ∗)

∗ Path (∗ a t t r i b u t e ∗)
∗ OclType (∗ r e s u l t t ype ∗)

| Op e r a t i o nCa l l of OclTerm ∗ OclType (∗ s o u r c e ∗)
18 ∗ Path (∗ o p e r a t i o n ∗)

∗ (OclTerm ∗ OclType) l i s t (∗ pa ramete r s ∗)
∗ OclType (∗ r e s u l t tupe ∗)

| Operat ionWithType of OclTerm ∗ OclType (∗ s o u r c e ∗)
∗ s t r i n g ∗ OclType (∗ type paramete r ∗)

23 ∗ OclType (∗ r e s u l t t ype ∗)
| V a r i a b l e of s t r i n g ∗ OclType (∗ name wi th type ∗)
| Let of s t r i n g ∗ OclType (∗ v a r i a b l e ∗)

∗ OclTerm ∗ OclType (∗ r h s ∗)
∗ OclTerm ∗ OclType (∗ i n ∗)

28 | I t e r a t e of (s t r i n g ∗ OclType) l i s t (∗ i t e r a t o r v a r i a b l e s ∗)
∗ s t r i n g ∗ OclType ∗ OclTerm (∗ r e s u l t v a r i a b l e ∗)
∗ OclTerm ∗ OclType (∗ s o u r c e ∗)
∗ OclTerm ∗ OclType (∗ i t e r a t o r body ∗)
∗ OclType (∗ r e s u l t t ype ∗)

33 | I t e r a t o r of s t r i n g (∗ name o f i t e r a t o r ∗)
∗ (s t r i n g ∗ OclType) l i s t (∗ i t e r a t o r v a r i a b l e s ∗)
∗ OclTerm ∗ OclType (∗ s o u r c e ∗)
∗ OclTerm ∗ OclType (∗ i t e r a t o r−body ∗)
∗ OclType (∗ r e s u l t t ype ∗)

38 and Co l l e c t i o nP a r t = Co l l e c t i o n I t em of OclTerm ∗ OclType (∗ e l ement wi th type ∗)
| Co l l e c t i o nRang e of OclTerm (∗ f i r s t ∗)

∗ OclTerm (∗ l a s t ∗)
∗ OclType (∗ type o f range ∗)

end

Listing 1.2. su4sml: Representing ocl Expressions

s i g n a t u r e REP_CORE = s i g
type Scope

3 type V i s i b i l i t y
type op e r a t i o n = { name : s t r i n g ,

p r e c o n d i t i o n : (s t r i n g op t i on ∗ OclTerm) l i s t ,
p o s t c o n d i t i o n : (s t r i n g op t i on ∗ OclTerm) l i s t ,
arguments : (s t r i n g ∗ OclType) l i s t ,

8 r e s u l t : OclType ,
i sQue r y : bool ,
scope : Scope ,
v i s i b i l i t y : V i s i b i l i t y }

13 type a s s o c i a t i o n e n d = { name : s t r i n g ,
aend_type : OclType ,
m u l t i p l i c i t y : (i n t ∗ i n t) l i s t ,
o r d e r ed : bool ,
v i s i b i l i t y : V i s i b i l i t y ,

18 i n i t : OclTerm op t i on }

type a t t r i b u t e = { name : s t r i n g ,
a t t r_ t yp e : OclType ,
v i s i b i l i t y : V i s i b i l i t y ,

23 scope : Scope ,
s t e r e o t y p e s : s t r i n g l i s t ,
i n i t : OclTerm op t i on }

datatype C l a s s i f i e r = C l a s s of { name : Path ,
28 pa r en t : Path opt ion ,

a t t r i b u t e s : a t t r i b u t e l i s t ,
o p e r a t i o n s : o p e r a t i o n l i s t ,
a s s o c i a t i o n e n d s : a s s o c i a t i o n e n d l i s t ,
i n v a r i a n t : (s t r i n g op t i on ∗ OclTerm) l i s t ,

33 s t e r e o t y p e s : s t r i n g l i s t ,
i n t e r f a c e s : Path l i s t ,
a c t i v i t y_ g r a p h s : A c t i v i t yG r a ph l i s t }

| I n t e r f a c e of { . . . } (∗ s i m i l a r to C l a s s ∗)
| Enumerat ion of { . . . }

38 | P r im i t i v e of { . . . }
end

Listing 1.3. su4sml: Representing the uml Core

following the standard ocl 2.0 metamodel. Note however, that ocl expressions
include a lot of type information in this model. In essence, the type of each
subexpression appears twice: once as the type of the subexpression itself, and
once as the type expected (or inferred) as part of the enclosing expression. This
constructions allows us, for example, to insert explicit typecasts that are only
implicit in the original expression.

In addition to these datatype definitions, the repository structure defines a
couple of normalization functions, for example for converting association ends
into attributes with corresponding type, together with an invariant expressing
the cardinality constraint.

Summarizing, the top-level data structures (see Listing 1.1, Listing 1.2 and
Listing 1.3) of su4sml are inspired by the metamodels of ocl [9, Chapter 8]
and uml [10] and readers familiar with these metamodels should recognize the
similarities.

@// Example t emp la t e f o r Java
@foreach c l a s s i f i e r _ l i s t

@ o p e n f i l e gene r a t ed / $ c l a s s i f i e r _ n ame$. j a v a
package $ c l a s s i f i e r _ p a c k a g e $;

5
p u b l i c c l a s s $ c l a s s i f i e r _ n ame$
@ i f hasParent

e x t end s $ c l a s s i f i e r _ p a r e n t $
@end

10 {
@foreach a t t r i b u t e _ l i s t

p u b l i c $ a t t r i b u t e_ t y p e $ $at t r ibute_name$;
@end
@foreach o p e r a t i o n _ l i s t

15 p u b l i c $ op e r a t i o n_ r e s u l t_ t y p e $ $operat ion_name$ (
@foreach a r gumen t_ l i s t

$argument_type$ $argument_name$
@end)
{}

20 @end
}

@end

Listing 1.4. A Simplified Template File

4 A Template-Based Code Generator

We developed a Generic Template-driven Code Generator (gcg) on top of the
su4sml repository. Template-based means that for each code artifact to be gener-
ated there is a template file which contains a skeleton of what has to be generated
intertwined with instructions for the code-generator how to fill out the template.
The code generator consists of a generic core and a set of cartridges that can be
“plugged” into this core. The core part of gcg is independent both with respect
to the input as well as the output language, the cartridges are responsible for
interpreting the language-dependent instructions in the template files.

The template language has at the core just three syntactic elements: an
@if statement for branching on Boolean predicates, a @foreach statement for it-
erating over lists, and $variable$ interpolation. The template language is not
Turing-complete. For example, the predicates in @if statements come from a
fixed (finite) set that is defined by the cartridges that are plugged into the core.
Example predicates are attribute_isPublic or operation_isStatic. Similarly, the lists
to iterate over are also defined by the cartridges. Example lists are classifier_list,
attribute_list, or operation_list. These lists have an implicit notion of hierarchy.
The attribute_list, for example, evaluates to the list of attributes of the current
classifier that one iterates over in the enclosing @foreach statement. Finally, the
variables that can be interpolated are also defined by the cartridges. Typical
examples are operation_name or attribute_type, see Listing 1.4 for an example
template file.

While the generic core parses the template file, the actual evaluation of the
statements is delegated to the cartridges. For example, when the core executes
the statement @if operation_isStatic, it asks the cartridge for the current value of

s i g n a t u r e GCG = s i g
v a l gene r a t e : Rep . Model → s t r i n g → un i t

end

5 f u n c t o r GCG_Core (C : CARTRIDGE) : GCG = s t r u c t
(∗ misc . a u x i l i a r y f u n c t i o n s omi t ted ∗)

fun gene r a t e model t emp la t e
= l e t v a l env = C . i n i t E n v model

10 v a l t r e e = pa r s e t emp la t e
i n

(i n i tOu t () ;
w r i t e env t r e e ;
c l o s e F i l e ())

15 hand le GCG_Error ⇒ (c l o s e F i l e () ; r a i s e GCG_Error)
end

end

Listing 1.5. gcg: the generic code generator

the predicate operation_isStatic. Depending on the answer, the core executes the
following statements or not.

On the implementation level, the core is a functor which takes a cartridge as
an argument (see Listing 1.5). The functor GCG_Core only takes one cartridge
as an argument, whereas we want to be able to plug arbitrarily many cartridges
together (see Figure 2). We achieve this by letting each cartridge be a functor
itself, which takes another cartridge as an argument. In this way, we can build
up cartridge chains supporting increasing functionalities. If one cartridge does
not support a requested functionality, it passes the request on to the next car-
tridge, and the result back to the requester. To bootstrap this cartridge chain,
we start with a cartridge that is not a functor. This could for example be a
trivial cartridge that simply does nothing. For convenience, however, we imple-
mented a base cartridge that implements the most basic functionalities which
one would probably need in most languages anyways, for example, variables like
attribute_name of lists like operation_list. The design allows for cartridges to over-
ride these functionalities by implementing them themselves. This is sometimes
necessary for language-specific cartridges when the language requires certain
syntactic properties. We implemented cartridges for Java and C# in this way.

To get a Java code generator, for example, one has to plug the cartridges
together like follows:

s t r u c t u r e Java_Gcg = GCG_Core (Java_Car t r i dge (Base_Car t r i dge)) ;

The functor GCG_Core is applied over the cartridge resulting from the ap-
plication of the functor Java_Cartridge over the base cartridge. The resulting
structure Java_Gcg implements the signature gcg and therefore has a function
generate which generates Java code from a given uml-model and a given template.

Target

Code

Target

Code

Target

Code

Repository
Model

(su4sml)

Template

Template
Template

Parser

GCG−Core

Cartridge 1

Cartridge n

Base Cartridge

Generic Template−driven Code Generator

Figure 2. The Cartridge Chain Architecture

s i g n a t u r e REP_ENCODER = s i g
type mdr = { theo r y : theo ry ,

u n i v e r s e : typ ,
c l a s s i f i e r s : C l a s s i f i e r l i s t }

5 v a l a d d _ c l a s s i f i e r s : C l a s s i f i e r l i s t → mdr → mdr
end

Listing 1.6. The Top-level Interface of the Repository Encoder

5 A su4sml-based Datatype Package for HOL-OCL

In this section, we present one vital component of hol-ocl concerned with
the encoding of object-oriented data structures in hol, which is a tedious and
error-prone activity to be automated. In this section, we give an overview of the
su4sml-based datatype package we implemented to automate this process. In
the theorem prover community, a datatype package [7] is a module that allows
one to introduce new datatypes and automatically derive certain properties over
them. A (conservative) datatype package has two main tasks:
1. generate all required (conservative) constant definitions, and
2. prove as much (interesting) properties over the generated definitions as pos-

sible automatically behind the scenes.
Our datatype package uses the possibility to build sml programs performing
symbolic computations over formulae in a logically safe way over derived rules.

In the following, we give a brief overview what our package does ([4,5] de-
scribes more details). The datatype package is implemented on top of the su4sml
interface on one hand and on top of the Isabelle core on the other (see Listing 1.6
for details). During the encoding, our datatype packages extends the given the-
ory by a hol-ocl-representation of the given uml/ocl model. This is done in
an extensible way, i.e., classes can be added later on to an existing theory pre-
serving all proven properties ([5] presents for more details). The obvious tasks
of the datatype package are:
1. declare hol types for the classifiers of the model,
2. encode the core data model into hol, and
3. encode the ocl specification and combine it with the core data model.

fun c a s t_ c l a s s_ i d c l a s s pa r en t thy = l e t
v a l pname = name_of pa r en t
v a l cname = name_of c l a s s
v a l thmname = " cast_ " ^(cname)^ " _id "

5 v a l goa l_ i = mkGoal_cterm
(Const (i s _ c l a s s _ o f c l a s s , dummyT) $Free (" ob j " ,dummyT))
(Const (" op =" ,dummyT) $ (Const (p a r e n t 2 c l a s s_o f c l a s s pname ,dummyT)

$ (Const (c l a s s 2 g e t_pa r e n t c l a s s pname ,dummyT) $Free (" ob j " ,dummyT)))
$ (Free (" ob j " ,dummyT)))

10 v a l thm = prove_goalw_cterm thy [] g oa l_ i
(λ p ⇒ [c u t_ fa c t s_ tac p 1 , (∗ p r o o f s c r i p t ∗)

asm_fu l l_s imp_tac
(HOL_ss adds imps

[o_def ,
15 get_de f thy (p a r e n t 2 c l a s s_o f c l a s s pname) ,

ge t_de f thy (c l a s s 2 g e t_pa r e n t
c l a s s pname)]) 1 ,

s t a c (get_thm thy (Name mk_get_parent)) 1 ,
asm_fu l l_s imp_tac (HOL_ss adds imps [

20 get_de f thy (i s _ c l a s s _ o f c l a s s) ,
get_thm thy (Name (" i s_ "^pname^"_mk_" ^(cname)))]) 1 ,

s t a c (get_thm thy (Name ("get_mk_" ^(cname)^ " _id "))) 1 ,
ALLGOALS(s imp_tac (HOL_ss))])

i n
25 (f s t (PureThy . add_thms [((thmname , thm) , [])] (thy)))

end

Listing 1.7. Proving Cast and Re-Cast (simplified)

In fact, the most important task is probably not that obvious: The package
has to generate formal proofs that the generated encoding of object-structures
is a faithful representation of object-orientation (e.g., in the sense of the uml
standard [10], or Java). These theorems have to be proven for each model during
its encoding phase. Among many other properties, our package proves that for
each pair of classes A and B where B is a generalizationof A the following fact:

self.oclIsType(B)
self.oclIsKind(A)

(1)

as well as the more complicated property:

self.oclIsDefined() self.oclIsType(B)

self.oclAsType(A).oclAsType(B).oclIsDefined()
and self.oclAsType(A).oclAsTypeB.oclIsType(B)

(2)

Listing 1.7 presents a simplified version of the sml function cast_class_id that
proves the property (2). The expression starting in line 5 generates a type-
checked instance of the current theorem to prove with respect to the current
class (and its parent). Readers familiar with lcf-style theorem provers will rec-
ognize the “proof script” in lines 10 to 23. Finally, the function registers the
proven theorem in Isabelle’s theorem database. Logical rules like (1) or (2) or
co-induction schemes given by class invariants constitute the object-oriented
datatype theory of a given class diagram and represent the basic weapon for

proofs over them, in particular verifications of uml/ocl specifications. Stating
these rules could be achieved by adding axioms (i.e., unproven facts) during the
encoding process, which is definitively easier to implement. Instead, our datatype
package generates entirely conservative definitions and derives these rules from
them; this also includes the definition of recursive class invariants, which are in
itself not conservative ([4] describes this construction in detail).

This strategy, i.e., stating entirely conservative definitions and formally prov-
ing the datatype properties for them, ensures two very important properties:
1. our encoding fulfills the required properties, otherwise the proofs would fail,

and
2. doing all definitions conservatively together with proving all properties en-

sures the consistency of our model (provided that hol is consistent and
Isabelle/hol is a correct implementation).
One might ask what benefit an end-user will get from conservativity after

all. Its need becomes apparent when considering recursive object structures or
recursive class invariants. Stating recursive predicates as axiom results in logical
inconsistency in general. For example:

context A inv: not self.oclIsType(A)

This invariant requires for all instances of type A not to be of type A. Thus,
it is in fact possible to state a variant of Russell’s paradox which is known to
introduce logical inconsistency in naive set theory. Inconsistency means that
the ocl logic can derive any fact; this might be exploited by an automated
tactic accidentally. Logical inconsistency is different from an unsatisfiable class
invariant meaning “there is no instance.” In particular, in an inconsistent system,
each class invariant can be proven both satisfiable and unsatisfiable.

Our conservative construction requires proofs of side-conditions which will
fail in paradoxical situations as the one discussed above (c.f. [4] for details) while
admitting the “useful” forms of recursion in class invariants. To get an idea for
the amount of work needed, the import of the “Company” model (including the
ocl specification) presented in the ocl standard [9, Chapter 7] generates 1147
conservative definitions and proven theorems, the larger “Royals and Loyals”
model [13] model generates 2472 conservative definitions and proven theorems.
The load process usually proceeds in reasonable times.

Using hol-ocl (see Figure 3) one can formally prove certain properties of
uml/ocl specifications. For SecureUML specifications one can generate security-
related proof obligations that can be formally analyzed, the details how and
which proof obligations are generated is described elsewhere [3]. An example
for an important standard property of a class diagram is consistency (i.e., there
is at least one system state fulfilling all invariants, and there exist functions
for all operation specifications satisfying the pre- and postconditions for legal
states) of a model. Another important property is the refinement relation (e.g.,
forward-simulation [14]) between two class diagrams, stating that one model is a
refinement of the other. A further interesting formal technique allows for proving
that an implementation (i.e., a “method” in uml terminology) is compliant to

Figure 3. A hol-ocl session Using the Isar Interface of Isabelle

a specification (i.e., a pair of pre- and postconditions). An in-depth discussion
of these issues is out of the scope of this paper; with respect to the compliance
problem, the reader might consult [5].

6 SecureUML Support

As we want to not only support standard uml/ocl models in our framework,
but also SecureUML models, we have to extend the framework accordingly. We
describe these extensions in the following sections.

6.1 SecureUML Support in the Model Repository

First, we have to extend the model repository to also contain model information
coming from a SecureUML dialect.

s i g n a t u r e REP_SECURE = s i g
s t r u c t u r e S e c u r i t y : SECURITY_LANGUAGE
type Model = C l a s s i f i e r l i s t ∗ S e c u r i t y . C o n f i g u r a t i o n
v a l readXMI : s t r i n g → Model

5 end

This means, a “secure” model not only contains a list of classifiers (like the unse-
cured model), but also a security “configuration.” The type of this configuration
is parametrized by the concrete security language.

s i g n a t u r e SECURITY_LANGUAGE = s i g
s t r u c t u r e Des ign : DESIGN_LANGUAGE

type Con f i g u r a t i o n
5 eqtype Pe rm i s s i on

v a l g e tP e rm i s s i o n s : C o n f i g u r a t i o n → Pe rm i s s i on l i s t

(∗ misc . a u x i l i a r y f u n c t i o n s omi t ted ∗)
10

v a l pa r s e : C l a s s i f i e r l i s t → (C l a s s i f i e r l i s t ∗ Con f i g u r a t i o n)
end

We currently have only one implementation of this signature, corresponding
to the SecureUML metamodel, i.e., the permissions are given in terms of rbac
with additional authorization constraints. This design allows for other security
languages, for example, a hypothetical PrivacyUML language. The function parse
is responsible for extracting the security model information from a uml/ocl
model, where it is usually given by a custom uml profile, i.e., stereotypes and
tagged values.

The security language is itself parametrized by a design language, i.e., by a
concrete SecureUML dialect.

s i g n a t u r e DESIGN_LANGUAGE = s i g
eqtype Resource
datatype Act ion = S imp l eAc t i on of s t r i n g ∗ Resource

| Compos i teAct ion of s t r i n g ∗ Resource
5

(∗ The r e s o u r c e h i e r a r c h y ∗)
v a l c on t a i n e d_ r e s ou r c e s : Resource → Resource l i s t

(∗ the a c t i o n h i e r a r c h y ∗)
10 v a l s u bo r d i n a t e d_a c t i o n s : Act i on → Act ion l i s t

(∗ misc . a u x i l i a r y f u n c t i o n s omi t ted ∗)

v a l pa r s e_ac t i o n : C l a s s i f i e r → a t t r i b u t e → Act ion
15 end

The dialect specifies the actual resources and actions that are possible on
these resources, together with the corresponding hierarchies over them. We im-
plemented this signature both for the ComponentUML as well as for the Con-
trollerUML dialect of SecureUML. Note the function parse_action, which is re-
sponsible for parsing the attributes of permission classes.

6.2 SecureUML Support in the Code Generator
After the repository has been extended, for code generation purposes we only
need to define a corresponding cartridge. Implementing a cartridge mainly con-
sists of deciding which “features” to support in the template language, i.e., which
Boolean predicates, which lists, and which variables. As parts of this strongly
depend on the SecureUML dialect, we implemented a SecureUML cartridge that
again is parametrized by a SecureUML dialect. The SecureUML cartridge only
knows about the global list of permissions, their assigned roles and constraints,
which is information that is independent from the used dialect. The dialect spe-
cific cartridges then, e.g., deal with the assignment of actions to permissions.

6.3 SecureUML Support for HOL-OCL

At present, our datatype package for hol-ocl supports SecureUML only indi-
rectly using an external model transformation, su2holocl [3]. This model trans-
formation converts a given SecureUML model into a semantically equivalent pure
uml/ocl model. For the future, first-class SecureUML support for hol-ocl is
planned. The development of this support requires:

– the development of a machine-readable, formal semantics for SecureUML,
e.g., as an embedding into hol-ocl. Similar to the already existing theories
covering the uml core and ocl, we have to develop a set of theories covering
the SecureUML entities and their properties. For example, the development
of a generic theory summarizing role-based access control models.

– the extension of the existing datatype package with support for the new
SecureUML theories, i.e., the package must be extended to generate defi-
nitions for SecureUML entities and, if possible, the generation of security
related proof obligations, together with proof attempts.

7 Conclusion

We have presented a framework for mda comprising ocl support in model trans-
formations, code generation and verification, together with one application of
such a combined framework, namely SecureUML. In a way, our work can be
seen as an approach to extend mda with model-driven formal reasoning.

The code generator is a template-based generator which can be easily con-
figured to produce code for various parts of models, target languages and target
runtime-environments. The technique in itself is by no means new, but having it
integrated into our framework and having access to structured ocl will, in our
view, pave the way for new and up to now unexpected applications.

7.1 Related Work

Since code generation is at the heart of model-driven engineering, there is a
wealth of similar approaches, e.g., AndroMDA (http://www.andromda.org/),
which itself is based on Velocity (http://jakarta.apache.org/velocity/).
Besides the fact that we apply functional programming techniques, there are
two main differences: first, Velocity provides a rich template language with
(among others) support for arithmetical, relational and logical operators over
user-definable variables. Instead, our template language is intentionally very sim-
ple and restricted, but provides an @eval construct allowing for the execution of
arbitrary sml code. The second difference lies in our concept of cartridges. Since a
fixed, static template language is not flexible enough for generic code-generation,
a template engine has to provide some support for extensibility. Velocity sup-
ports this by customizing and unstructured merging of the “context” object(s).
In contrast, our concept of cartridges supports a notion of hierarchy and depen-
dency between cartridges, which is type-checked on the sml module level. Our

http://www.andromda.org/
http://jakarta.apache.org/velocity/

cartridges also do not entail the complexity and overhead of AndroMDA car-
tridges, which include not only the template vocabulary, but also model-facades
for the uml profile, and the template files themselves. Keeping these separated
both simplifies the development of new cartridges and proves to be more flexible.

There are also some proof environments for ocl; since we focus on tool
aspects and integration into mda in this paper, we only mention the KeY Tool [1].
It offers a concrete verification method for a Java-like language (which hol-ocl
does not at present) at the dispense of compliance to the semantic foundations of
ocl—the underlying semantics is a two-valued dynamic logic with an axiomatic
representation of the data-models resulting from class diagrams.

With UMLsec [6] we share the conviction that security models should be in-
tegrated into the software engineering development process by using uml. How-
ever, although UMLsec provides a formal semantics, it does only provide rudi-
mentary tool support, both for code generation and for (formal) model analysis.

7.2 Lessons Learned

Using Functional Programming Languages. Using a functional program-
ming language for an object-oriented data model (e.g., the uml meta model) has
advantages and disadvantages: on the one hand, a direct compilation into sml
datatypes, i.e., mapping classes (with attributes) to constructors over records
(with corresponding fields), leads to a quite substantial duplication of code for
the inherited attributes and possibly in the pattern matching based functions
processing these data structures. This representation of data models can be gen-
erated automatically from class diagrams via code generators such as our own
(thus overcoming typical errors due to duplication). Nevertheless, pattern match-
ing over constructors has to be designed and prepared with care to be extensible.
For example, selector functions of inherited attributes like:

fun get_name (C l a s s {name , . . . }) = name
| get_name (I n t e r f a c e {name , . . . }) = name
| get_name (Enumerat ion {name , . . . }) = name
| get_name (P r im i t i v e {name , . . . }) = name

are sometimes preferable to pattern matching constructs since they are more
stable under extensions; on the other hand, representing patterns only as selector
and test functions, is feasible, but tedious and in itself very lengthy and error-
prone. Thus, finding a suitable balance of re-usability and conciseness in each
situation is the key for success.

We have been very pleased by the degree of abstraction and re-usability that
has been achieved in the code generator by using the sml functor concept. To
our knowledge, this is the first time that it had been applied to the concept
of cartridges, which allows for a type-safe and aspect-oriented way to describe
the compilation process. For example, the sml-structure containing the code
generator for C# with SecureUML is constructed by the functor application:

1 s t r u c t u r e CSharpSecure_Gcg
= GCG_Core (SecureUML_Cartr idge (CSharp_Cart r idge (Base_Car t r i dge)) ,

ComponentUML(Base_Car t r i dge)) ;

which just represents it as a combination of the various compilation aspects.

Building a Toolchain. Our toolchain depends on a common xmi format for
exchanging uml/ocl models. This has been the key for re-using work of other
research groups in the field. However, in practice, each tool uses slightly different
variants of the underlying meta-model, and thus different xmi variants. Full
exchangeability of xmi files between different tools (and versions thereof) is still
more a dream than reality. On the other hand, by having an infrastructure
based on a general xml parser and pattern matching-based conversions between
an imported xmi and the internal su4sml model repository, it turned out to be
a fairly easy routine task to adapt to various xmi dialects. Such adaptions had
been necessary several times during the lifetime of our project and could be
realized usually in one day of programming work and turned out to be easier in
practice than, developing and maintaining appropriate xslt-transformations.

References

1. W. Ahrendt, T. Baar, B. Beckert, R. Bubel, M. Giese, R. Hähnle, W. Menzel,
W. Mostowski, A. Roth, S. Schlager, and P. H. Schmitt. The KeY tool. Software
and System Modeling, 4:32–54, 2005.

2. D. Basin, J. Doser, and T. Lodderstedt. Model driven security: from uml models
to access control infrastructures. acm Transactions on Software Engineering and
Methodology, 15(1), 2006.

3. A. D. Brucker, J. Doser, and B. Wolff. A model transformation semantics and
analysis methodology for SecureUML. In O. Nierstrasz, J. Whittle, D. Harel, and
G. Reggio, eds., MoDELS 2006, no. 4199 in lncs, pp. 306–320. Springer, 2006.

4. A. D. Brucker and B. Wolff. The hol-ocl book. Tech. Rep. 525, eth Zürich, 2006.
5. A. D. Brucker and B. Wolff. A package for extensible object-oriented data models

with an application to imp++ . In A. Roychoudhury and Z. Yang, eds., SVV 2006,
Computing Research Repository (CoRR). 2006.

6. J. Jürjens. Secure Systems Development with uml . Springer, 2004.
7. T. F. Melham. A package for inductive relation definitions in hol. In M. Archer,

J. J. Joyce, K. N. Levitt, and P. J. Windley, eds., The hol Theorem Proving System
and its Applications, pp. 350–357. ieee Computer Society Press, 1992.

8. T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/hol—A Proof Assistant for
Higher-Order Logic, lncs , vol. 2283. Springer, 2002.

9. uml 2.0 ocl specification. 2003. ptc/2003-10-14.
10. omg Unified Modeling Language Specification. 2003. formal/03-03-01.
11. L. C. Paulson. ml for the Working Programmer. Cambridge Press, 1996.
12. R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based access

control models. Computer, 29(2):38–47, 1996.
13. J. Warmer and A. Kleppe. The Object Constraint Language: Getting Your Models

Ready for mda . Addison-Wesley, 2nd ed., 2003.
14. J. Woodcock and J. Davies. Using Z: Specification, Refinement, and Proof. Prentice

Hall International Series in Computer Science. Prentice Hall, 1996.

	An MDA Framework Supporting OCL
	 Achim D. Brucker, Jürgen Doser, and Burkhart Wolff
	1 Introduction
	2 Our Framework: An Overview
	2.1 Background
	2.2 The Toolchain

	3 The Model Repository: su4sml
	4 A Template-Based Code Generator
	5 A su4sml-based Datatype Package for HOL-OCL
	6 SecureUML Support
	6.1 SecureUML Support in the Model Repository
	6.2 SecureUML Support in the Code Generator
	6.3 SecureUML Support for HOL-OCL

	7 Conclusion
	7.1 Related Work
	7.2 Lessons Learned

