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Abstract. The metamodeling framework MOFLON combines MOF 2.0,
OCL 2.0 and graph transformations to generate sophisticated metamodel
implementations. In this paper we describe the role of OCL in MOFLON.
Furthermore, we present a set of constraints which corrects, completes
and improves MOF 2.0 for the application as graph schema language.

1 Introduction

Nowadays, model driven software development is mostly realized by the applica-
tion of the Unified Modeling Language (UML) [Obj05b]. Although UML satisfies
many popular needs, sometimes domain specific languages are required to meet
special concerns. Domain specific languages can be designed using the Meta Ob-
ject Facility (MOF) [Obj06]. In its latest version 2.0, MOF offers constructs for
the modeling of static structures, which in its original purpose should be used to
describe the abstract syntax of modeling languages. Such a model of a modeling
language (called metamodel) can be used to build an editor for the application
of the modeled language. The datamodel of the editor can be generated from
the language’s metamodel [Dir02].

The generated metamodel reflects the abstract syntax of the modeled lan-
guage which could only lead to a static datamodel. Additionally, the MOF com-
pliant metamodel can be enriched by constraints formulated in the Object Con-
straint Language (OCL) [Obj05a]. From such a combination of MOF and OCL,
metamodels with an additional constraint evaluation mechanism can be gener-
ated. The constraint evaluation offers a more precise verification of the static
semantics and can be used to build an analysis component on top of an editor’s
datamodel.

The MOFLON framework [AKRS06] extends this approach by the appli-
cation of story driven modeling [Zün01]. The combination of MOF, OCL and
graph transformation allows the generation of very sophisticated metamodels
which are far more than just a simple datamodel. Due to the specification of be-
havior by graph transformations, the generated metamodel can cover all actions
that are based on the datamodel. Thus, the additional environment of the gener-
ated metamodel, for instance an editor GUI, may consist of just a tight, straight



forward implementation to instantiate the generated metamodel. Due to the fact
that any logic related code is generated from a copious specification, we achieve
a high degree of flexibility and maintainability. The combination of MOF, OCL
and graph transformations offers the possibility to generate metamodels, which
contain code to analyze metamodel instances as well as code to transform meta-
model instances. The combination of analysis and transformation capabilities
additionally provides the opportunity to specify transformations that correct
metamodel instances in case of a failed analysis (by so-called repair actions), or
in other words to transform the model if OCL constraints are violated.

Figure 1 gives an overview of the architecture of MOFLON. In the center of
MOFLON, there is a MOF 2.0 metamodel which was created by a bootstrapping
process. Beside MOF, OCL plays an important part in MOFLON. In the follow-
ing we will concentrate on the relevance of OCL inside the MOFLON framework.
Section 2 presents a scenario in which MOFLON and especially OCL as part
of MOFLON can be applied in a very useful manner. Section 3 introduces a
set of OCL constraints which we need to complete MOF 2.0 for the application
as graph schema language. Finally we end up with a conclusion and a short
overview about future work in section 4.
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Fig. 1. Architecture of MOFLON

2 Application of MOFLON and OCL

One major problem of the model-based software and system developement is
the surveilance of modeling guidelines which are indispensable in projects of a
bigger size. The mere identification and formulation of design guidelines is a



problem which has to be handled manually without tool support. Opposed to
that, the surveilance of the adherence to the formulated guidelines could be au-
tomated in the general case. In fact, the automation of the surveilance is in many
cases mandatory just due the pure number and variety of the guidelines. Beside
the automated surveilance and the automated identification and localization of
modeling errors, the application of automated repair actions is a very desirable
task [SDG+06]. As an example, we will demonstrate how MOFLON and espe-
cially OCL as part of MOFLON can help to generate code for the automated
surveilance of design guidelines.

Figure 2 shows a very simple Matlab/Simulink model with a subsystem that
is connected to a sink and a source through signals. The ports of the subsystem
are named in adherence to a fictitious naming convention which demands that
names of in-ports end with the suffix in. First of all, the automatic surveilance
of this modeling guideline requires a metamodel of Matlab/Simulink. A very
simplified metamodel of Matlab/Simulink is depicted in Figure 3.

Fig. 2. Example of a design guideline in Matlab/Simulink

The metamodel covers only the elements which are necessary for the sur-
veilance of the mentioned design guideline. Blocks can be connected with each
other through Ports and Signals. A Signal connects exactly two ports, one in-
port and one out-port. All these elements are named elements. At this point,
OCL can be used in its original purpose to add precision by stating for instance
that a Port can either refer to a Signal as outSignal or inSignal. Such a specifi-
cation can only be used for code generation of static datamodels.

Additionally, MOFLON provides the feature to specify behavior using story
driven modeling. Figure 4 shows the specification of the method checkGuideline
which is intended to check if the mentioned design guideline is kept on a Sub-
system. The behavior of the method is visually specified by a combination of
activity diagrams and graph transformation rules. There is one graph transfor-
mation rule per activity (called story in this context). The transformation rule in
the first story of Figure 4 matches all signals which are connected to an in-port
of the subsystem the method is called on. Since only the ports which violate the
mentioned design guideline should be handled by the transformation, the match-
ing has to be controlled in such a way that only those ports are matched whose



Fig. 3. Simplified metamodel of Matlab/Simulink

name do not end with the demanded suffix. At this point, we would also like
to adopt OCL to be able to formulate constraints for the matching of attribute
values which are more powerful than just a simple evaluation of attribute values.
In general, OCL can also be used to determine the set of matched objects as a
textual alternativ to complex graphical notations.

Considering the example, the violation of the design guideline is detected by
an OCL constraint which checks whether the name of the port ends with the
demanded suffix. In cases where such a match is found, the control flow of the
activity diagram activates the second story in which an adequate repair action is
formulated. An adequate repair action for the mentioned guideline is to set the
name of the port to the name of its connected signal followed by the demanded
suffix. Again, this manipulation1 can be expressed by an OCL expression. The
long term aim is to generate fully functional code for OCL constraints in the
metamodel as well as for the OCL constraints in graph transformations. The
outlined scenario is work in progress. Currently, MOFLON is able to generate
JMI compliant metamodels enriched with code for the evaluation of invariants
and code for the execution of SDM transformations.

Beside the integration of OCL into the matching and manipulation of the
transformation rules and the application of OCL as constraint language for MOF,
there is a third and very basic aspect how OCL is involved into the MOFLON
approach. Since MOFLON applies MOF 2.0 as graph schema language, the static
semantics of MOF are essential. They are the precondition for a proper appli-
cation of OCL as mentioned before. Considering the graph transformation rules
in Figure 4, the attribute name is used in the context of the class Port. An
analysis which determines, if such a usage is possible has to be able to query all

1 The manipulation of the attribute is indicated by the font color (green).



Fig. 4. OCL in graph transformations

inherited attributes of a class. The determination of inherited elements is part
of the static semantics of MOF 2.0. In fact, the determination is formulated by
an OCL constraint. Thus, the correct and complete static semantics are crucial
for the complete integration of OCL in MOFLON. Therefore, in the following,
this third aspect is described in detail.

3 Semantic completion of MOF 2.0 with OCL

As mentioned before in the context of Figure 1, MOF 2.0 is the central element of
MOFLON. MOF 2.0 acts as metamodeling language for the static semantics of
languages specified in MOFLON as well as schema language for the application
of graph transformations. As such, the correct and precise semantics of MOF
2.0 are essential.

MOF 2.0 as the metametamodel of OMG’s four-level metamodeling hierar-
chy is self describing. This means, that the static semantics of MOF 2.0 are
basically described by MOF 2.0 metamodels but also additionally enhanced by
OCL constraints and natural human language. The metamodels describing MOF
2.0 can be used to generate code for the basic features of MOF. Basic features
comprise fundamental correlations like for instance the fact that associations are
connected with classifiers through association ends. Such a correlation can be
expressed by the metamodeling capabilities of MOF itself. But advanced and
in many cases very important facts like the fact that only binary associations
are allowed respectively in other words the number of association ends of one
association has to be exactly two, can only be expressed with OCL.

The importance of OCL constraints can also be pointed out by considering
the example of inheritance. The metamodel of MOF 2.0 only states that a classi-



fier can be generalized by a classifier. The fact that the generalization hierarchy
has to be free of cycles can only be stated with OCL. Without the evaluation
of OCL constraints, regardless of their implementation as hand written or fully
generated code, a MOF 2.0 editor would be able to create arbitrary (e.g. cyclic)
generalization dependencies. Although the importance of OCL constraints for
the correct and complete static semantics of MOF 2.0 is often neglected, it has
to attract careful attention for the purpose of applying MOF 2.0 as schema
language for graph transformations.

Since MOFLON is developed by applying a bootstrapping process, the im-
portance of a correct MOF 2.0 specification increases even more. We started our
bootstrapping process with a simplified MOF 2.0 metamodel and a JMI compli-
ant code generator (MOMoC [Bic04]). Based on the generated metamodel, we
built an graphical editor and used this editor to improve the simplified MOF 2.0
metamodel of the editor. But even with the complete metamodel the editor does
not prevent cyclic generalization dependencies, for instance. The bootstrapping
process can only lead to an editor which reflects the complete static semantics
of MOF 2.0 if the code generation also generates evaluation code for OCL con-
straints. Since, the metamodel consists of MOF and OCL, the bootstrapping can
only be finished if both parts are reflected in the generated code. This can only
be achieved if both parts are in a state which allows the application of a code
generator. Hence, we had to analyze the MOF 2.0 specification for specification
errors and impreciseness to be able to formulate a set of OCL constraints which
formalizes MOF 2.0 up to a degree that is required for the application of graph
transformations.

An application of a validation tool for syntax and type checking like done in
[BGG04] for the UML 2 Superstructure might act as a basis. But since we are
primarily interested in detecting impreciseness and specification leaks, an auto-
mated validation is not sufficient as imprecise semantics can be expressed even by
proper and accurate constraints. Thus, we focused on a careful manual analysis
to concentrate on semantical errors instead of detecting syntactical errors by the
application of an OCL validater. Syntactical errors will at least be detected when
we finish the bootstrapping process by the integration of generated evaluation
code.

The result of our analysis is a set of OCL constraints which corrects and
completes MOF 2.0 for the application as graph transformation language. The
complete set of constraints cannot be presented in this paper. It is completely
available at [Rea05]. In the following we provide information on the constraint
set by introducing the error categories with some exemplary errors and the orga-
nization of the constraint set. The presented errors should provide an impression
of the kind of errors that are part of the MOF 2.0 specification.

The presented examples refer to [Obj03] respectively [Obj04] where men-
tioned. In fact, both documents are not the latest available specifications, but
since the combination of the presented corrections and improvements with the
referred specification forms a complete and consistent specification a continuous
adaption to the actual OMG documents does not seem reasonable to us. Never-



theless, a spot check of some selected errors leads to the result that some minor
issues are fixed but major errors still exist.

3.1 Syntactical errors

The first and most obvious category of errors is the category of syntactical errors.
Syntactical errors are more or less trivial to detect since they arise from a wrong
usage of OCL. An automatic analysis would have been able to find such errors
as well. In the following we will give some examples of typical syntactical errors
in the MOF specification, apart from mere typos.

The cause of many errors is the wrong usage of OCL methods like, for
instance, the application of the method includes with a collection passed as
parameter instead of a single object (see [Obj04], p. 79). Another represen-
tative error is demonstrated by the application of squared brackets to access
elements by their index: forAll(i|op.ownedParameter[i].type.conformsTo(...))
(see [Obj03], p. 149). Sometimes methods are used in a wrong context like the
concatenation of strings by applying the method union (which should be applied
to collections) instead of applying the method concat. Beside those obvious syn-
tactical errors there are methods which are specified but never used (bestVisi-
bility, see [Obj03], p. 93). Of course, this can hardly be considered as error, but
at least it might confuse the reader of the specification.

3.2 Semantical errors

The category of semantical errors covers errors that are caused by any other
reason than just the wrong application of OCL syntax. That may also comprise
automatically detectable errors like wrong navigation in the metamodel. The
navigation association.owningAssociation in the context of the class Property
(see [Obj04], p. 131) for instance, is not possible. In fact, each of both association
ends could be used to start navigation but a combination of both is not possible
since both address the same class.

Another annoying but quite common kind of errors are wrong derivation
rules. Some attributes of the metaclasses are derived by an OCL constraint.
Those derived attributes are usually quite important, like for instance the de-
rived set inheritedMember. It specifies all elements inherited from the general
classifiers. The derivation rule for inheritedMember uses the specified method
hasVisibilityOf which in turn also uses the attribute inheritedMember in its
specification (see [Obj04], p. 85).

In fact, such an error would also be detected by an analysis tool whereas
the following error is not that obvious and could only be detected by a human
analysis. The derived attribute importedMember determines the named elements
that are (transitively) imported from several namespaces into the importing
namespace. Both kinds of import (package import and element import) have a
visibility to determine whether the elements imported via a certain import will
be exported from the importing namespace or not. In other words, the visibility
of an import can be used to control the transitivity of the import. Thus, the



derivation rule for importedMember has to take the visibilities of the involved
import relationships into account, which it does not (see [Obj03], p. 143).

There are also errors in form of specification leaks that arise from the complex
package structure. The method conformsTo of the metaclass Classifier for in-
stance is defined in the package Generalizations. The central package of the UML
Infrastructure respectively MOF is the package Constructs which reuses several
packages except the Generalizations package. Thus, the method conformsTo is
not available in MOF although it is used. Beside the constraints that are wrong,
the specification is also vitiated by bad namings and by missing constraints like
for instance a constraint that prevents a namespace from importing itself.

3.3 Customizations and Improvements

A chance for customization and improvement does not necessarily require an
error. On the one hand customizations and improvements contribute to a clear
and consistent specification by clarifying complex and confusing constraints. On
the other hand, additional constraints improve the completeness of the specifica-
tion by handling special cases as well as optional and implicit demands. In fact,
some actually correct constraints can be combined to a single constraint like for
instance the two invariants for the determination of a named element’s qualified
name (see [Obj03], p.78).

Beside such trivial improvements there are also improvements with an im-
portant impact on the complete specification like exemplarily described in the
following. As mentioned before, there are two kinds of import. First of all there is
the commonly known package import that adds all the elements of the imported
namespace with visibility set to public to the importing namespace. Second, there
is the element import that adds only a single element with visibility set to public
to the importing namespace. So obviously, the package import is just a shortcut
notation for element imports on each element of the imported namespace and as
such, both variants should be exchangeable (see [Obj03], p.145). But a problem
arises due to the transitivity of the imports since an element import can use
alias names for the imported element in the importing namespace. Thus, the
constraints which determine the elements of a namespace must be able to query
the alias name of an imported element. Without the loss of transitivity, this can
only be achieved by extending the metaclass ElementImport by an attribute to
determine previous element imports.

Indeed, a lot of modifications have to be made to take such extensive changes
into account but without doing so, the specification would neither be correct nor
consistent. Not all improvements contribute to the correctness of the specifica-
tion. We propose also constraints whose adherence is not necessary but desirable.
There are also situations that are implied by other situations. Such implications
can also be expressed via OCL constraints. Therefore, we had to introduce sev-
eral categories and levels of errors which are described in the following.



3.4 Categorization

The complete set of constraints we propose for a correct and consistent specifica-
tion of MOF 2.0 can be found at [Rea05] in form of several tables. In the following
we describe the classifications we made. The classifications are all reflected in
the tables. All constraints are formulated in OCL 2.0.

First of all, the constraints are classified based on their error category. Ad-
ditionally it is indicated whether the constraint is an existing constraint of the
specification or an proposed extension. Table 1 summarizes the several cate-
gories.

Description Shortcut Number

Existing constraint is correct2 ok 1

Existing constraint ...3

... is syntactical wrong. SYN 2

... is semantical wrong or problematic. SEM 3

... can or has to be customized. CUS 4

Proposed constraint ...4

... solves syntactical error. SYN 5

... solves semantical errors or problems. SEM 6

... improves or customizes. CUS 7

... adds additional precision. +SEM 8

... adds an additional customization. +CUS 9

Table 1. Categorization of constraints regarding their kind of error.

As mentioned before, not every constraint has to be met for a correct meta-
model instance. For some constraints, the adherence of the metamodel instances
to the constraint is just desirable but not necessary. Therefore, we had to intro-
duce a second categorization which is orthogonal to the categorization introduced
first. We categorize the constraints into three different types of constraints. Table
2 introduces the three types of constraints.

Type of constraint Shortcut

Mandatory for valid metamodel instances. mand.

Optional for valid metamodel instances though useful opt.

Implicit constraint impl.

Table 2. Types of constraints regarding their role in the specification.

Constraints of type mand. have to be met for valid metamodel instances. If
one single constraint of type mand. is broken the complete metamodel instance
is invalid. Whereas constraints of type opt. do not contribute to the correctness



of the metamodel instances at all. A metamodel instance can be valid, although
some or even all optional constraints are broken, as long as all mandatory con-
straints are met. But, the adherence to all optional constraints leads to useful
metamodel instances without senseless constructs like for instance a namespace
importing itself.

Beside these two quite obvious types, there is a third type i.e. the implicit
constraints. An implicit constraint does not contribute to the correctness of
metamodel instances as well. It indicates whether a metamodel instance con-
tains constructs that are not explicitly drawn in the diagram but are implied
by other constructs. For instance, considering the subsetting of association ends,
the uniqueness of association ends which determines if multi-valued association
ends may contain duplicates or not, is subject of implicit constraints. If one as-
sociation end subsets another association end which is unique, it is implied that
the subsetting association end is also unique. If it is mentioned in the diagram
that the subsetting association end may contain duplicates, it indeed never will
contain duplicates since the subsetted association end prevents such a situation
by its uniqueness. Such implied correlations can be detected by OCL constraints.

Considering an editor which is build on top of a metamodel that is enriched by
constraints of all three types, during evaluation, a violated mandatory constraint
would rise an error message, a violated optional constraint would rise a warning
message, whereas a violated implicit constraint would just cause an information
message. That is how the constraint set will be integrated into MOFLON.

Concept "Ownership" Concept "Multiplicity"

Scope "importedMember"

Scope "nestedPackage"

Concept "Operation" Concept "PackageMerge" Concept "Constraint"

Scope "Distinguishability"
Concept "Association"

Scope "Specialization"

Concept "Property"

Scope "General"

Scope "Subsetting"

Scope "Composition" Scope "Composition"

Scope "General"

Scope "Factory"

Concept "Specialization"

Scope "inheritedMember"

Scope "Redefinition"

Scope "General"

Scope "(Qualified) Name"

Scope "Import"

Scope "Visibility"

Concept "Namespace"

Fig. 5. Concepts and scopes of constraints

For a better structuring, the tables are separated according to their concept
and the scope they cover. The constraints are grouped into concepts like for
instance Association or Namespace. Those concepts do not map onto a pack-
age structure. They just group several constraints that contribute to the real-
ization of the concept they are grouped into independent from their context.
Constraints of the concept Association for instance are taken from the context



Core::Constructs::Association as well as from Core::Constructs::Property. Con-
cepts are divided in several scopes to achieve a more flexible structure since some
scopes contribute to more than just one concept. Figure 5 shows the complete
set of concepts and scopes.

All in all, 90 constraints have been analyzed. As a result, 48 constraints (53%)
have been considered free of any errors and 42 constraints (47%) were erroneous.
Our constraint set provides 101 improvements in form of 86 OCL constraints.
One half (51) of the improvements refer to existing constraints. The other half
(50) improves the specification additionally. Fig. 6 shows the absolute numbers
of constraints distributed over the categories of Table 1. The y-axis indicates the
number of the category, the x-axis represents the number of occurrences in the
proposed constraint set.

Fig. 6. Occurrences of errors grouped by their category

4 Conclusion and Future Work

The presented set of OCL constraints is the result of an intensive analysis of
the semantics of MOF 2.0 as a whole. It is the result of a manual analysis since
we are primarily interested in a semantical consistent version of MOF 2.0 for
the application as graph schema language. We will use this set of constraints
to complete the bootstrapping process of MOFLON. Therefore, we had to in-
tegrate a OCL 2.0 parser and code generator. After an evaluation of available
and appropriate tools we decided to integrate the Dresden OCL toolkit [LO04].
Since the OCL code generator component is still work in progress we are only
able to generate evaluation code for a simple subset of the constraints. After
an adaptation of the constraints to the capabilities of the code generation we
will generate an analysis component for the MOFLON framework which checks
edited metamodels to their full compliance to MOF 2.0. The current integration
of the toolkit is based on the provided integration interfaces. The long term aim is



to exchange the toolkit’s model repository (MDR) with a integrated metamodel
that is generated with MOFLON.
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