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Abstract We report on the results of a long-term project to formalize
the semantics of OCL 2.0 in Higher-order Logic (HOL). The ultimate goal
of the project is to provide a formalized, machine-checked semantic basis
for a theorem proving environment for OCL (as an example for an object-
oriented specification formalism) which is as faithful as possible to the
original informal semantics. We report on various (minor) inconsisten-
cies of the OCL semantics, discuss the more recent attempt to align the
OCL semantics with UML 2.0 and suggest several extensions which make,
in our view, OCL semantics more fit for future extensions towards pro-
gram verifications and specification refinement, which are, in our view,
necessary to make OCL more fit for future extensions.

1 Introduction

In research communities, UML/OCL has attracted interest for various reasons:
1. it is a formalism with a “programming language face,” which is perhaps

easier to adopt by software developers notoriously hostile to mathematical
notation,

2. it puts forward the idea of an object-oriented specification formalism, turning
objects and inheritance into the center of the modeling technique, and

3. it provides in many respects a “core language” for object-oriented modeling
which makes it a good target for research of object-oriented semantics.

Item 1 refers not only to syntax, but also to semantics: OCL semantics comprises
the notion of undefinedness to model exceptional computations abstractly; this
is deeply integrated into the logics and presents a particular challenge to deduc-
tive systems. Further, especially item 2 makes OCL rather different from logical
languages such as first-order logics (FOL), higher-order logics (HOL), set theory
and derived specification formalisms such as Z [29,3] or VDM, which, following a
long platonic tradition in logics, start with the notion of values and then model
(hierarchies of) relations over them. On the other hand, this remarkably different
perspective makes OCL semantics (and object-oriented specification as a whole)
difficult; numerous luke-warm attempts to integrate object-orientation into spec-
ification formalisms, such as VDM++ or Object-Z, report—among many useful
things—on this particular difficulty. Comparing OCL with the two related ap-
proaches JML and Spec#, the main difference is that OCL attempts to abstract



from concrete object-oriented programming languages, while JML and Spec#
are designed as annotation-languages for them. This also holds for the UML Ac-
tion package, which provides a deliberately abstract programming notation for
“methods” associated to operations in class diagrams.

These three essentials motivated a long-term project to formalize the seman-
tics of OCL 2.0 using HOL, leading to the proof environment HOL-OCL built on
top of Isabelle/HOL [1,6]. The ultimate goal of the project is to provide cal-
culi and automated proof support for reasoning over OCL formulae based on
rules derived from this formalized semantics. This paves the way for proving the
consistency of specifications, the proof-obligations resulting from specification
refinements as well as the correctness of the transition to executable code. In
this paper, we will present a by-product of this line of research: namely various
formalization problems that we found or that we foresee when heading for an
integrated verification method ranging from specifications to programming code.
Extending earlier work [4], we report on a substantially larger range of problems
and put it into perspective to recent developments of the OCL semantics.

2 Methodology: “Strong” Formal Semantics

In this section, we describe the foundations, the relevant techniques and the
benefits of the methodology underlying HOL-OCL. This methodology boils down
to provide a “strong,” i.e., machine-checked and conservative, formalization of
the standard’s “Semantics” chapter [24, Appendix A]. The question may arise
why this original formalization is not adequate for our goals. There are two
reasons:
The fundamental reason results from the fact that [24, Appendix A] is based

on naive set theory and an informal notion of “model.” It assumes a universe
for values and objects and algebras over it without any concern of existence
and consistency. This paper-and-pencil semantics cannot be strongly for-
malized in this form, neither in an untyped set theory like Isabelle/ZF or a
typed set theory residing in Isabelle/HOL. Since OCL is a typed language at
the end, and since we wanted to have type-issues handled by the Isabelle
type-checker and not inside the logic representation, it seems more natural
to opt for a typed meta-language (like HOL).

The technical reason is a consequence of our design choice to represent the
types of OCL expressions one-to-one by HOL types (i.e., the map is injective)
such that only well-typed OCL formulae exist in the semantic representation
in HOL. Consequently, all well-formedness-related side-conditions are unnec-
essary in calculi. Together with the fact that the Isabelle/HOL library can
be re-used to a certain extent, this greatly improves the practicability of
our approach. Technically speaking, our representation is a so-called shallow
embedding without an explicit datatype for syntax and an explicit semantic
interpretation function I mapping syntactic terms to a semantic domain.



In the following, we present our meta-language HOL and the underlying conser-
vative methodology in more detail. We outline the shallow representation and
show its equivalence to [24, Appendix A].

2.1 Higher-order Logic

Higher-order Logic (HOL) [8,2] is a classical logic with equality enriched by total
parametrically polymorphic higher-order functions. It is more expressive than
first-order logic, e.g., induction schemes can be expressed inside the logic. Prag-
matically, HOL can be viewed as a combination of a typed functional program-
ming language like SML or Haskell extended by logical quantifiers.

HOL is based on the typed λ-calculus—i.e., the terms of HOL are λ-expressions.
Types of terms may be built from type variables (like α, β, . . . , optionally anno-
tated by Haskell-like type classes as in α :: order or α :: bot) or type constructors
(like bool or nat). Type constructors may have arguments (as in α list or α set).
The type constructor for the function space ⇒ is written infix: α ⇒ β; multi-
ple applications like τ1 ⇒ (. . . ⇒ (τn ⇒ τn+1) . . .) have the alternative syntax
[τ1, . . . , τn] ⇒ τn+1. HOL is centered around the extensional logical equality
_ = _ with type [α, α] ⇒ bool, where bool is the fundamental logical type. We
use infix notation: instead of (_ = _) E1 E2 we write E1 = E2. The logical con-
nectives _∧_, _∨_, _ → _ of HOL have type [bool,bool] ⇒ bool, ¬_ has type
bool ⇒ bool. The quantifiers ∀_._ and ∃_._ have type [α ⇒ bool] ⇒ bool.
The quantifiers may range over types of higher order, i.e., functions or sets.

The type discipline rules out paradoxes such as Russel’s paradox in untyped
set theory. Sets of type α set can be defined isomorphic to functions of type
α ⇒ bool; the definition of the elementhood _ ∈ _, the set comprehension
{_._}, _ ∪_ and _ ∩_ is then standard.

The modules of larger logical systems built on top of HOL are Isabelle the-
ories. Among many other constructs, they contain type and constant declara-
tions as well as axioms. Since stating arbitrary axioms in a theory is extremely
error-prone and should be avoided, only very limited forms of axioms should be
admitted and the side-conditions (both syntactical and semantical) checked by
machine. These fixed blocks of declarations and axioms described by a syntactic
scheme are called conservative theory extensions since any extended theory is
consistent (“has models”) provided the original theory was. Most prominent in
the literature are constant definition and type definition. For example, a con-
stant definition consists of a declaration declaring constant c of type τ and the
(well-typed) axiom of the form: c = E with the side-condition that c has not
been previously declared, E does neither contain free variables nor c (no recur-
sion). A further side-condition forbids type variables in the types of constants
in E that do not occur in the type τ . As a whole, a constant definition can be
seen as an “abbreviation,” which makes the conservativity of the construction
plausible (see [10] for details). The idea of an “abbreviation” is also applied to
the conservative type definition of a type (α1, . . . , αn)T from a set {x | P (x)}.

The entire Isabelle/HOL library, including typed set theory, well-founded re-
cursion theory, number theory and theories for data-structures like pairs, type



sums and lists is built on top of the HOL core-language by conservative definitions
and derived rules. This methodology is also applied to HOL-OCL.

2.2 Formal Semantics Preliminaries in HOL

In OCL, the notion of explicit undefinedness plays a fundamental role, both for
the logical and non-logical expressions:

Some expressions will, when evaluated, have an undefined value. For
instance, typecasting with oclAsType() to a type that the object does
not support or getting the ->first() element of an empty collection
will result in undefined. (OCL Specification [24], page 15)

Thus, concepts like definedness and strictness play a major role in the OCL. We
use a type class bot to specify the class of all types that contain the undefinedness
element ⊥. For all types in this class, we define a combinator strictify by:

strictify f x ≡ if x = ⊥ then⊥ else f x

with type (α :: bot ⇒ β :: bot) ⇒ α ⇒ β. The operator strictify yields a strict
version of an arbitrary function f .

Further, we use the type constructor τ⊥ that assigns to each type τ a type
lifted by ⊥. Per construction, each type τ⊥ is in fact in the type class bot. The
function x_y : α → α⊥ denotes the injection, the function p_q : α⊥ → α its
inverse for defined values.

On the expression level, lifting combinators defining the distribution of con-
texts or environments (see below) are defined as follows:

lift0 f ≡ λ τ. f of type α ⇒ Vτ (α) ,

lift1 f ≡ λ X τ. f(X τ) of type (α ⇒ β) ⇒ Vτ (α) ⇒ Vτ (β) , and
lift2 f ≡ λ X Y τ. f(X τ)(Y τ) of type ([α, β] ⇒ γ) ⇒ [Vτ (α), Vτ (β)] ⇒ Vτ (γ) .

where Vτ (α) is a synonym for τ ⇒ α. The types of these combinators reflect
their purpose: they “lift” operations from HOL to semantic functions that are
operations on contexts.

2.3 Textbook vs. Combinator Style Semantics of Operations
In HOL-OCL, we use a combinator-style presentation of the semantic functions
rather than a textbook-style presentation as used in the OCL standard, both for
reasons of conciseness as well as accessibility to advanced techniques of automatic
generation of library theorems [5]. In combinator style as used in the HOL-OCL
libraries, for example, the constant 1, the unary operation not _, and the binary
operation _ + _ are represented by the following constant definitions:

1 ≡ lift0(x1y)
not _ ≡ lift1(strictify(x_y ◦ (¬_) ◦ p_q)
_ + _ ≡ lift2(strictify(λ x. strictify(λ y. xpxq + pyqy)))



where _◦_ denotes function composition. We use overloading here: the _+_ on
the left-hand side of the last definition has type [Vτ (int⊥), Vτ (int⊥)] ⇒ Vτ (int⊥)
(where Vτ (int⊥) is the HOL equivalent to the OCL type Integer), while the _+_
on the right-hand-side has type [int, int] ⇒ int. This definition directly translates
the idea that _ + _ in HOL-OCL is the strictified version of the “mathematical”
_ + _ lifted over contexts.

The question arises why this definition is equivalent to the formalized ver-
sion of the semantics given in the standard. The OCL 2.0 standard presents a
definition scheme for all strict basic operations by just one example. For the
+-operator on integers, [24, page A-11] presents this definition as:

I(+)(i1, i2) =

{
i1 + i2 if i1 6= ⊥ and i2 6= ⊥ ,

⊥ otherwise.

This semantic function for basic operations is integrated in the more general
semantic interpretation function for OCL expressions like

Let Env be the set of environments τ = (σ, β). The semantics of an
expression e ∈ Exprt is a function IJeK : Env → I(t) that is defined as
follows.
iv. IJw(e1, . . . en)Kτ = I(w)(τ)

(
IJe1K(τ), . . . , IJenK(τ)

)
(OCL Specification [24], page A-26, definition A.30)

Here, τ refers to the environment (in the sense of the standard), i.e., a pair
consisting of a map β assigning variable symbols to values and a pair σ of system
states.

There are two more semantic interpretation functions; one concerned with
path expressions (i.e., attribute and navigation expressions [24, Definitions A.21],
and one concerning the interpretation of pre and postconditions τ � P which is
used in two different variants.

To show the equivalence of the two formalization styles, we re-introduce a
kind of “explicit semantic function” IJEKτ into our shallow embedding as a
syntactic marker, i.e., by stating the identity:

IJxK ≡ x with type α ⇒ α .

For the addition over Integer, we prove the following theorem that explicitly
states that our defined operator is an instance of the informal definition scheme
in the standard:

IJX + Y Kτ =

{
xpIJXKτq + pIJY Kτqy if IJXKτ 6= ⊥ and IJY Kτ 6= ⊥,

⊥ otherwise .

The proof in HOL-OCL is simple and canonical: it consists of the unfolding of
all combinator definitions and the syntactic marker I. The combinators are just
abbreviations of re-occurring patterns in the textbook style definitions.

In the following, we summarize the differences between the OCL standards
textbook definitions and our combinator-style approach:



1. The standard [24, chapter A] assumes an “untyped set of values and objects”
as semantic universe of discourse. Since we reuse the types from the HOL-
library to give Booleans, Integers and Reals a semantics, meta-expressions
like {true, false} ∪ {⊥} used in the standard are simply illegal in our inter-
pretation. This makes the injections x_y and projections p_q necessary.

2. The semantic functions in the standard are split into I(x), IJeKτ , IAttJeKτ
and τ � P . Since we aim at a shallow embedding (which ultimately sup-
presses the semantic interpretation function), we prefer to fuse all these
semantic functions into one.

3. The environment τ in the sense of the standard is a pair of a variable map
and a pair of pre and post state. The variable map is superfluous in a shallow
embedding (binding is treated by using higher-order abstract syntax), our
contexts τ just consist of the state pair.

Of course, this presentation here covers only one aspect of the compliance of the
HOL-OCL semantics to the standard for a tiny portion of the language; for an
in-depth discussion for the complete language, the reader is referred to [6].

2.4 The Benefits of a “Strong” Formal Semantics

Our strong formalization of [24, Appendix A] has the following benefits:
A Consistency Guarantee. Since all definitions in our formal semantics are

conservative and all rules are derived, the consistency of HOL-OCL is reduced
to the consistency of HOL for the entire language.

A Technical Basis for a Proof-Environment. Based on the derived rules,
control programs (i.e., tactics) implement automated reasoning over OCL
formulae; together with a compiler for class diagrams, this results in a gen-
eral proof environment called HOL-OCL. Its correctness is reduced to the
correctness a (well-known) HOL theorem proving system.

Proofs for Requirement Compliance. The OCL standard contains a collec-
tion of formal requirements in its mandatory part with no established link
to the informative part [24, Appendix A]. We provide formal proofs for the
compliance of our OCL semantics with these requirements (see [6] for details).

Formalization Experience. Since our semantics is machine-checked, we can
easily change definitions and check properties of them allowing for increased
knowledge of the language as a whole.

3 The Past

OMG standards are developed in an open process by the OMG (Object Manage-
ment Group) leading to a variety of (intermediate) “standardization” documents.
Especially for UML and OCL, which have a long history. OCL was introduced as
an OMG specification language as additional document [22] completing the UML
1.1 standard [23]. In later releases of the UML standards of the version 1.x series
the OCL standard was a chapter of the UML specification, e.g., [25, Chapt. 6].



All the different versions of OCL 1.x are very close to each other, contain-
ing mainly an informal motivation of the indented use and semantics1 of OCL
together with a formal grammar of its concrete syntax. Understandably, these
past version of the standard lacked many desirable features, e.g., the use of
OCL was mainly limited to annotate class diagrams, no abstract syntax was in-
cluded. Moreover, reading the OCL 1.x standards leaves more questions open
than it answers. These shortcomings and open questions, like the handling of
undefinedness, or recursion, were discussed [28,21,14,9] in academia and this
discussions clearly fertilized the development towards OCL 2.0. Especially the
work of Richters [27] in developing a formal semantics served as formal under-
pinning of the OCL 2.0 development. It was a major break-through in the process
of defining a formal semantics for OCL . Many problems, like the handling of
undefinedness, were clarified during the OCL 2.0 standardization process, some
questions however, like the handling of recursion, are still unsolved.

4 The Present

4.1 The OCL 2.0 Standard

In this section, we give a brief overview of the chapters of the standard that are
related with the semantics of OCL 2.0: first, the OCL standard is divided into
normative parts and informative, i.e., not normative, parts. The semantics of
the standard appears in the following chapters of [24]:
Chapter 7 “OCL Language Description”: This informative chapter moti-

vates the use of OCL and introduces it informally, mostly by examples.
Chapter 10 “Semantics Described using UML”: This normative chapter

describes the “semantics” of OCL using the UML itself. Merely an under-
specified “evaluation” environment is presented.

Chapter 11 “The OCL Standard Library”: This normative chapter is, in
our opinion, the best source of the normative part of the standard describ-
ing the intended semantics of OCL. It describes the semantics of the OCL
expressions as requirements they must fulfill.

Appendix A “Semantics”: This informative appendix, based on [27] , de-
fines the syntax and semantics of OCL formally in a textbook style paper-
and-pencil notion.

We see the semantic foundations of the standard critical for several reasons:
1. The normative part of the standard does not contain a formal semantics of

the language.
2. The consistency and completeness of the formal semantics given in “Ap-

pendix A” is not checked formally.
3. There is no proof, neither formal nor informal, that the formal semantics

given in the informative “Appendix A” satisfies the requirements given in
the normative chapter 10.

1 A good overview of the different usages of the word “semantics” is given in [15].



Nevertheless, we think the OCL standard [24] (“ptc/03-10-14”) is mature enough
to serve as a basis for a machine-checked semantics and formal tools support.
More recent versions, especially (“ptc/06-05-01”), are an ad-hoc attempt to
align OCL 2.0 to the UML 2.0 and represent a considerable step back with re-
spect to consistency and potential for formal semantics. Nevertheless, all issues
addressed in this paper are also valid for “ptc/06-05-01”.

In the remainder of this section, we will explain some selected problems;
our choice focuses on semantical problems which, among others, are caused by
inconsistencies or missing concepts in the standard document.

4.2 Implies

Recall that the OCL logic is based on a strong Kleene Logic. Consequently, most
operators of the logical type like _ and _ are explicitly stated exceptions from
the “operations are strict”-principle. In this section, we will discuss the implies
operation in more detail. Its semantic is defined in the standard as follows:
1. [24, Chapter 11] requires the following specification of implies:

context Boolean :: implies (b: Boolean ): Boolean
post: (not self) or (self and b)

2. [24, Appendix A] defines the b1 implies b2 by a truth table:
b1 � b2 false true ⊥

false true true true
true false true ⊥
⊥ ⊥ true‡ ⊥

While we were checking the consistency of the formal semantics [24, Chapter A]
with the normative requirements [24, Chapter 11], we detected an inconsistency:
calculating the truth table for the definitions of implies given in the normative
part one would expect ⊥ instead of true on the position marked with an ‡. This
inconsistency could be changed either by changing the truth tables [24, Chapter
A] or by changing the requirements [24, Chapter 11] to:

context Boolean :: implies (b: Boolean ): Boolean
post: (not self) or b

which represents the “classical definition” of implication.
Whereas different variants for implications for three-valued logics are consid-

ered in the literature [13,16], an analysis of the consequences for proof calculi
reveals some bad surprises. For example, consider the usual assumption rear-
rangement rules valid in the “classical definition”:

((X or Y ) implies Z) = (X implies Z) and(Y implies Z)
((X and Y ) implies Z) = (X implies (Y implies Z))

X implies (Y implies Z) = Y implies (X implies Z)

which do not hold for the standard’s definition of the implication. Although the
choice made in the normative part of the standards is feasible, in the light of



these dramatic algebraic deficiencies, we qualify it as glitch from the deduction
point of view and suggest to apply the definition used in the appendix.

4.3 Smashed Datatypes

The OCL standard defines all operations as strict, i.e., the evaluation of an
operation is undefined if one of its argument is undefined. Nevertheless, there are
two important exceptions to this rule: the logical connectives and the collection
constructors. Whereas for the logical connectives this exception is stated both in
the normative part [24, Chapter 11] and in the informative part [24, Appendix A],
for the collection constructors this is only explained in the informative part [24,
Appendix A]. The normative part of the standard does not cover this issue.

In the literature, sets with strict constructors are called smashed. Such smashed
set types often occur in semantics for programming languages, e.g., SML. In a
language with semantic domains providing ⊥-elements, the question arises how
they are treated in type constructors like product, sum, list or sets. Two extremes
are known in the literature; for products, for example, we can have:

(⊥, X) 6= ⊥ {a,⊥, b} 6= ⊥ . . .

or:

(⊥, X) = ⊥ {a,⊥, b} = ⊥ . . .

The latter variant is called smashed product and smashed set. The normative
chapters make no clear decision here. We strongly opt for a smashed collection
semantics, based on two reasons:
1. OCL tends to define its constructs towards executablility and proximity to

object-oriented programming languages such as Java, and more important
2. OCL with non-smashed collection semantics leads to very complicated logical

calculi. Just consider the rule

self.OclIsDefined()

self->forAll(e | e.OclIsDefined())

which only holds for a smashed semantics. Without such rules, reasoning
over navigations, i.e., collections, always requires a proof of the definedness
of all elements of a navigation.

To study the effects of a non-smashed collection semantics on formal reasoning,
we provide a separate configuration of HOL-OCL, details can be found in [6].

4.4 Overloading and Late Binding

The concept of method-overloading is not yet fully supported by OCL. We be-
lieve, this is more or less due to some accidental circumstances:



1. The UML standard [25, chapter 4.4.1] requires that operation names are
unique within the same namespace. In particular, subclasses may not over-
write inherited operations. Albeit, the UML standard allows one to (explic-
itly) overwrite methods, i.e., implementations of operations.

2. The OCL standard [24, chapter 7.3.41] restricts the use of the precondition
and postcondition declarations to operations or other behavioral features.
Sadly, all OCL tools we know of do not support the specification of precon-
ditions and postconditions for methods.

3. While the OCL standard speaks in several places of operation calls, it does
not give an hints how operation overloading should be resolved, neither
does it explain in detail concepts like operation (method) calls or opera-
tion (method) invocations.

Bringing these items together, one has to conclude that operation overloading,
and thus late-binding, is underspecified, or even not supported in OCL. Nev-
ertheless, we think that overwriting inherited operations or methods is a very
important feature of object-orientation and should be supported by the OCL:
since operation calls can occur in OCL constraints, their meaning depends on the
semantics of operation invocation. Thus we provide the theoretical foundations
for supporting late-binding (and thus overloading of operations) within HOL-
OCL [6], nevertheless a concrete syntax for specifying this has to be worked out.
As simple workarounds, one can ignore the well-formedness constraint of UML
for operations that requires operation names to be unique within one namespace.
This is what most case-tools do.

Since the UML definition expresses in several places a clear preference for
overloading operations, we suggest to extend the current OCL standard by a
late-binding semantics of method invocation. We are aware that checks for con-
servativity will impose restrictions on invocations here to be discussed in sub-
section 4.6.

4.5 Equalities

Historically, object-oriented systems are equipped with a variety of different
“equalities” [18]. Answering the question whether two objects are equal is not
so obvious. For example, are two objects equal only if their object identifiers are
equal (are they the same object�) or are two objects equal if their values are
equal? Whereas in traditional specification formalisms the equality is defined
over values, the most basic equality over objects is the reference equality or
identity equality, which is also the kind of equality that is usually provided as a
default, i.e., “built-in,” equality in object-oriented programming languages. Thus
there is a fundamental difference between values and objects.

This situation, i.e., which role do references play within OCL, is not clearly
stated in the OCL standard. ([6] gives a detailed discussion of this topic) and
we will only discuss in this paper the consequences of taking undefinedness, e.g.,
values and references can be undefined, into account. Further, the well-known
equivalence properties need to be generalized, e.g., symmetry (x = y ⇒ y = x)
is generalized to quasi-symmetry (x = y ⇒ y = x for x and y being defined).



Naturally, we can apply the concept of strictness to an equality operator: an
equality operator is called strict equality if it evaluates to undefined whenever
one of its arguments is undefined, i.e., if the following properties hold:

(o .= ⊥) = ⊥ , (⊥ .= o) = ⊥ , and (⊥ .= ⊥) = ⊥ .

In contrast, an equality operator is called a strong equality if it satisfies the
property: (⊥ , ⊥) = T.

The OCL standard defines equality as the strict equality over values [24,
Sec. A.2.2], and since objects are values, and object identifiers are not distin-
guished from object values [24, Definition A.10] we chose the strict equality
_ .= _ as the default OCL equality within HOL-OCL. Nevertheless, several in-
teresting properties, like being quasi-reflexive, quasi-symmetric, quasi-transitive
and quasi-substitutive only hold for the strong equality (even potentially unde-
fined values can be substituted). Therefore, the strong equality is of outstanding
importance for deduction.

Also, consider for example the following operation specification:

context C::m(a: Integer ): Integer
post: result = 5 div a

What is the semantics of this operation given that the precondition does not
rule out a=0? If the standard strict equality is used this results in an inconsis-
tent specification. If the strong equality is used this operation simple returns
undefined when called with an argument of 0. Depending on the circumstances,
both may be reasonable. Thus we suggest to extend OCL with a strong equality
operation.

4.6 Recursion

The OCL standard vaguely requires that recursions should always be terminating
to rule out problems with divergent operation invocations:

The right-hand-side of this definition may refer to operations being de-
fined (i.e., the definition may be recursive) as long as the recursion is
not infinite. (OCL Specification [24], page paragraph 7.5.2, pp.16)

and also:

For a well-defined semantics, we need to make sure that there is no
infinite recursion resulting from an expansion of the operation call. A
strict solution that can be statically checked is to forbid any occurrences
[. . . ]. However, allowing recursive operation calls considerably adds to
the expressiveness of OCL. We therefore allow recursive invocations as
long as the recursion is finite. Unfortunately, this property is generally
undecidable. (OCL Specification [24], page A-31)



Unfortunately, in a proof-environment we have to be substantially more spe-
cific than this. Furthermore, HOL-OCL is designed to live with the open-world
assumption, i.e., with the potential extensibility of object universes, as a de-
fault; further restrictions such as finalizations of class diagrams or a limitation
to Liskov’s Principle [20] may be added on top, but the system in itself does not
require them. This has the consequence that even in the following example:
context C::m(a1:T1 ,... , an:Tn): Integer

post: result = if a1.p()
then 1 + self.m(a1.q() ,... , an)
else 0 endif

the termination for the invocation self.m(a1.q(),...,an) is fundamentally
unknown (even if p and q are known and terminating): a potential overriding
may destroy the termination of this recursive scheme.

In form of a pre-translation process, operation specifications with a limited
form of recursive invocations can be converted into a format that satisfies the
constraints of a finite family of constant definitions. These limited forms can be
listed as follows:

– calls to superclass operations, i.e., (self.asType(A)).m(x1,...,xn), or
– direct recursive well-founded invocations, i.e.,

(self.asType(C)).m(x1,...,xn) where the user specifies a “measure” or
a well-founded ordering which the system checks to be respected in all calls.

The first can be statically resolved, the latter is based on the theory of well-
founded orders and the well-founded recursor “wfrec” in Isabelle/HOL, and so
to speak an application of the standard HOL methodology to OCL.

Alternatively, in case of a finalized class, i.e., a class that cannot be further
extended by inheritance, late-binding can be can by replaced by the case-switch:

if self ->IsType(A) then S else if . . . else S′′

Summing up, conservativity implies that only limited forms of recursive invoca-
tions are admissible. In an open world (no class finalization so far), only opera-
tion invocations on objects can be treated, whose type has been fixed, in a closed
world (the class hierarchy has been finalized), an invocation can be expanded to
a case-switch considering the dynamic type of self over calls.

5 The Future

Future extensions will aim for allowing smooth transitions from specification to
code (“methods” implementing “operations” in the terminology of the standard).
There are various aspects of this global challenge, which are in parts already
discussed in research communities as well as in the standardization process.

5.1 Library Extensions
In more recent draft-versions of the standard, bounded versions of Integers were
suggested. If the purpose of these types is to allow a transition to implementation



languages, then we suggest to choose also a concrete machine arithmetic based
on a two’s complement model (as described in [11]; similar concrete definitions
for C++ are in preparation). These machine arithmetics are somewhat more
distant to mathematics (MaxInt + 1 = MinInt, all commutative ring properties
hold except a−a = 0, 0 ≤ abs(a) does not hold even for defined a, etc.) but close
to widely used implicit standards in microprocessor technology. Verification of
such transitions from mathematical integers to machine integers can be a real
concern in safety-critical applications. For a concrete proposal of a “strong”
formalization of the Java arithmetics, see [26].

It is conceivable to drop the standards limitation to finite collection types.
Infinite sets are clearly a very powerful and useful standard means which would
allow to explicitly use the infinite sets occurring implicitly in OCL (such as the set
of Integers), e.g., by quantifying over them. But there are also useful applications
for infinite sequences and bags: They pave the way for new forms of recursion.
A recursive method over an object-structure collecting the sequence of values of
an attribute does not necessarily have to terminate: semantics could be defined
via co-recursion. For code-generators, this means that lazy evaluation techniques
known from functional programming must be applied.

5.2 References and Referential Types

One way to view objects with attributes a1,. . . an of OCL types T1,. . . ,Tn are
tuples of type τ1 × . . . × τn where τi is the corresponding HOL type of Ti

2.
An object universe can therefore be constructed as the sum over all Cartesian
products representing objects. The state of a system is then a partial map from
object-id’s (oid’s) to the object universe.

We suggest one little change of this scheme: the oid should be encoded into the
Cartesian products as well, comparable to a “hidden attribute”: oid×τ1×. . .×τn,
and states should be restricted to contain only objects whose oid points to itself
in the state. This invariant is easy to implement by constructors in an object-
oriented programming language: just generate the fresh oid and store it in the
object. However, this slight change makes the logical equality _ , _ coincide
with the referential equality used in many programming languages—as long as
we are comparing objects within one state. This makes the formal model of
sets, for example, which implicitly uses this equality, much more realistic. This
extension of the object encoding scheme is called referential (object) universe
in [6].

Moreover, this extension also has advantages for programming languages used
for implementing methods (see IMP++ for example in [7], which also contains
a verification technique). For example, having a reference attribute in each ob-
ject greatly simplifies the semantic definition of a reference operator (like e.g.,
&x in C++, mapping the type of x to its reference type). Further, the assign-
ment operator assigning a reference to an attribute of type oid can then also
2 We ignore the complications resulting from extensible subtyping here; see [6] for

details



be realized easily. Referential universes also give a possible interpretation of the
“null-objects” mentioned in the recent versions of the standard “ptc/06-05-01”.

5.3 Frame-Properties

The OCL does not guarantee that an operation only modifies the path-expressions
mentioned in the postcondition, i.e., it allows arbitrary relations from pre states
to post states. For most applications this is too general: there must be a way
to express that parts of the state do not change during a system transition, i.e.,
to specify the frame properties of system transition. Thus we suggest to extend
OCL to specify the frame properties explicitly:

(S:Set( OclAny ))-> modifiedOnly (): Boolean

where S is a set of objects (i.e., a set of OclAny objects). This also allows recursive
operations to collect the set of objects that are potentially changed by a recursive
function. Obviously, similar to @pre the use of ->modifiedOnly() is restricted
to postconditions.

The definition of the semantics for ->modifiedOnly() based on the referen-
tial universe (see previous section) is straight-forward:

X->modifiedOnly() ≡ λ(τ, τ ′). x∀ i /∈
(
oidOf 8 pX(τ, τ ′)q

)
. τ i = τ ′ iy

where oidOf is just the projection of an object to its oid. By the projection, the
object set X represents a set of references to values in the store. All objects with
oid’s not occurring in the set are assumed to be unchanged; for oid’s occurring
in the set, nothing is specified. Thus, requiring Set{}->modifiedOnly() in a
postcondition of an operation allows for stating explicitly that an operation is a
query in the sense of the OCL standard, i.e., the isQuery property is true.

In contrast to frame properties in JML [19], which allow for specifying at-
tributes to be assignable or not, our mechanism is a semantic and not a syntactic
one that just forbids assignments to certain paths. This solves the alias problem:
Set{self.a}->modifiedOnly() is just equivalent to Set{self}->modifiedOnly()
iff self.a and Set{self} denote the same object.

6 Conclusion

In our view, there is the need to complement the UML/OCL standardization
process by continuous efforts to find a formal semantics.

Ideally, this should be a machine-checked semantics like [6] that might become
part of the standard document. As can be seen by similar standardization pro-
cesses (as, for example, the ISO standardization process of the Z language [17]),
such a “beau ideal” semantics has the advantage to turn UML into a real for-
mal method with its potential for high-quality analysis and verification tools.
The latter paves the way for light-weight approaches such as [12] for large-scale



industrial applications as well as more heavy-weight system verifications satis-
fying even EAL7 certification levels (“Formally Verified Design and Tested”) of
the Common Criteria international standard (ISO/IEC 15408).

It can be safely stated that in contrast to the wealth of informal papers on
OCL semantics, a machine-checked semantics results in a higher degree of com-
pleteness and perfection. Its main advantage is that it can be used to build an in-
tegrated semantics, covering data-oriented specification, behavioral specification
and programming-language like facets of the UML. Thus, different stakeholders
in the standardization process could provide an extension of their proposed UML
extension by an extension of the current version of the “beau ideal” semantics to
see if their proposed features are in fact consistent with the language. Building
such an integrated semantics by paper-and-pencil reasoning or by a design-by-
committee process is doomed to failure in the light of our experience.

On the other hand, each attempt to build a formal semantics also results in
a certain inflexibility—a lesson that can also be learned from the Z standardiza-
tion process. This holds to an even larger extent if the semantic representation
is machine-checked, requiring that at least representatives of the various stake-
holders have sufficient technical skills to handle the underlying theorem prover
technology. Similar to standardization efforts centered around a reference imple-
mentation, a slow-down of the process is inevitable the more features have been
added to the language.

Admittedly, starting the semantics formalization process too early can kill
the standardization process as a whole. Not starting it at all, or remaining in
a state where only partial approaches exist, will result in a huge inconsistent
piece of IT literature. Finding the right balance between informal requirements
capture and formalization efforts in the semantics and finding the right point
in time to make formal semantics more mandatory in the UML standardization
process will therefore be, in our view, crucial for the long-term success of the
UML in the future.
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