
Use of OCL in a Model Assessment Framework:

An experience report

Joanna Chimiak–Opoka, Chris Lenz

Quality Engineering Research Group
Institute of Computer Science, University of Innsbruck

Technikerstrasse 21a, A–6020 Innsbruck
joanna.opoka@uibk.ac.at

Abstract. In a model assessment framework different quality aspects
can be examined. In our approach we consider consistency and perceived
semantic quality. The former can be supported by constraints and the
later by queries. Consistency can be checked automatically, while for
the semantic quality the human judgement is necessary. For constraint
and query definitions the utilisation of a query language was necessary.
We present a case study that evaluates the expressiveness of the Object
Constraint Language (OCL) in the context of our approach. We focus
on typical queries required by our methodology and we showed how they
can be formulated in OCL. To take full advantage of the language’s
expressiveness, we utilise new features of OCL 2.0. Based on our exam-
ination we decided to use OCL in our analysis tool and we designed an
architecture based on Eclipse Modeling Framework Technology.

1 Introduction

The necessity of model maintenance is growing together with the increasing size
of models used in real applications. The importance of integration grows with
the size and the number of designed models. The aspect of integration becomes
crucial if the modelling environment is not homogeneous, i.e., it has to be dealt
with diverse modelling tools and even with diverse notations. Such a situation is
common if various aspects of the same system have to be described. For example
in the domain of enterprise architecture modelling, for the description of business
processes and technical infrastructure different tools and notations can be used.

If additionally the models are large scale models with hundreds or thousands
of elements they might very likely contain inconsistencies and gaps. Quality
assurance of these models can not be done by pure manual inspection or review
but requires tool assistance to support model assessment.

We have developed a framework that is dedicated to both the integration and
the assessment of models. To support the former we designed a modular archi-
tecture with a generic repository as a central point, with a common meta model
and consistency checks. For the latter we defined a mechanism for information
retrieval, namely queries of different types. In our entire approach we focus on
the static analysis of models.

The languages for expressing constraints and queries over models are an im-
portant part of the model assessment process. Depending on their expressiveness
it is possible to cover a wider or a narrower range of constraints and to retrieve
more or less information from models.

One of the components of our heterogeneous tool environment for model
assessment [1] is a generic analysis tool supporting queries over the model re-
pository. Therefore, we started our case study on Object Constraint Language
(OCL, [2,3]). In our study we want to examine all types of queries required
by our methodology [4]. The OCL 2.0 provides a new definition and querying
mechanisms which extend the expressiveness of this language. As described in
[5,6], previous versions of OCL (1.x) were not expressive enough to define all
of the operations required by relational algebra (RA) and were not adequate
query languages (QLs). The main deficit of previous versions was the absence of
the tuples concept. In the current version of OCL, tuples are already supported.
Thus all primitive operators [7] needed to obtain full expressiveness of a QL,
namely Union, Difference, Product, Select and Project, can be expressed. This
fact encouraged us to use OCL within our framework.

The remainder of the paper is structured as follows. In the next section
we give a brief introduction to our methodology. Then, we present exemplary
models (section 3.1) on which the case study from section 3.2 relies. In section 4
we present a design of our analysis module and finally, in the last section we
draw a conclusion.

2 Model Assessment Framework

In this section, the methodology developed within the MedFlow project [4,1]
is briefly described. A broader description of the methodology developed for
systematic model assessment can be found in [4]. The architecture of our tool
and the technologies and standards used for its implementation were described in
[1]. The design based on the Eclipse Modeling Framework with a generic analysis
tool is described in section 4.

As depicted in Fig. 1 at the topmost level of our architecture three compo-
nents can be distinguished: a modelling environment, a model data repository,
and an analysis tool. In this section, only the main ideas related to OCL appli-
cation within our framework, which are necessary to understand the examples
presented in section 3.2, are described.

Modelling

Environment
←→

Model Data

Repository
←→

Analysis

Tool

Fig. 1. Base components of our framework

The main assumption in our framework is that all designed models are based
on a common meta model. Based on the meta model, the constraints for mo-
delling tools are provided and the structure of the common central repository
of model elements is generated. User models can be imported into the repo-
sitory from modelling tools via adapters. The usage of a common meta model
is crucial for model integration in a heterogeneous modelling environment with
diverse notations and modelling tools.

Within our framework we consider two types of OCL expressions: constraints
and queries, both defined at the meta model level and evaluated over user models.
Constraints are related to modelling and extend the specification of models.
The aim of using constraints is to support model consistency in an early mo-
delling phase. They can be checked automatically each time model elements are
saved to the repository or on demand. The expressions used for ensuring syn-
tactical correctness are called checks (compare section 3.2). Queries are related
to the analysis phase and provide aggregated information on sets of model el-
ements. The analysis by means of queries support semantic quality of models.
As stated in [8], semantic quality belongs to the social layer and needs to be
judged by humans. Our framework supports the user in the judgement process
by providing mechanisms for information retrieval. Moreover, we can only eval-
uate the perceived semantic quality comparing user knowledge of the considered
domain with his interpretation of models [8] or in our case the results obtained
by query evaluations. Both aspects of semantic quality examination — validity

and completeness — can be supported by queries. In the first case we check if
all model elements are relevant to the domain. This can be achieved by listing
all instances of a given meta model element and human inspection of their rel-
evance. In the second case we look for elements from the domain in the model
data repository.

We classify the constraints and queries in four categories (see examples in
section 3.2):

Primitive query is the simplest query, which takes as arguments OCL Primi-
tive Types or MOF Classes.

Check is a special kind of primitive query which returns a Boolean value. It is
considered as a constraint for a model or, in particular case, as an invariant
for a classifier.

Compound query is a query which aggregates results of primitive queries.
The arguments of the query are collections. For a given collection the Carte-
sian Product is built and for each of its element a given primitive query is
evaluated. The result is of Set(TupleType) type.

Complementary query is a query evaluated over the result of a given com-
pound query. All other queries are evaluated over a set of model elements.
The query can use checks and primitive queries for result calculation.

All types of queries and checks can be evaluated on demand in different scopes
selected by a user. We distinguish two types of scopes, namely an evaluation and
an initiation scope. The evaluation scope (Fig. 2.a) determines, over what content

the query will be interpreted, and the initiation scope (Fig. 2.b), how the query
is called.

evaluation scope initiation scope

repository
<

model
∨

diagram

>

single
<

global

>

a) b)

Fig. 2. The classification of scopes

Furthermore in both scopes we distinguish modes. In the evaluation scope
we distinguish three modes:

Repository mode — the complete set of model elements is considered, i.e., a
given expression is evaluated over the content of the repository.

Model mode — only a single user model is considered, e.g. in a running mo-
delling tool on a local machine or model of a predefined type (filtered from
the repository). This mode can be used if the queries do not need to be
evaluated in the context of the complete set of elements (e.g. checks).

Diagram mode — only one diagram is considered. The usage of this mode is
similar to the model mode.

The repository mode is typical for queries in the analysis phase. The ad-
vantage of the model and the diagram mode is the possibility of making fast
evaluation and ongoing corrections during the modelling phase.

In the initiation scope we consider two different modes, both can be evaluated
in any evaluation scope.

Single (element) mode — only queries related to a given element can be
activated. This mode enables fine granular analysis of models.

Global mode — all queries can be activated. This mode enables global analysis
of models.

An analysis module for our methodology should be generic enough to enable
both the definition and interpretation of arbitrary queries. In section 3.2, we
examine the expressiveness of OCL and evaluate the possibility of its usage in
the analysis module.

3 Case study

In this section the case study from the MedFlow project is presented. At first
(section 3.1) the excerpt of the domain in question, in form of meta and user

models, is presented. Then examples of queries are presented (section 3.2) and
their analysis within our framework is conducted (section 3.3).

3.1 Modelling of clinical processes

In the subsequent sections, parts of a meta model designed within the MedFlow

project and exemplary user models are presented. The meta model is used as
a base for check and query definitions, the user models as a base for check
and query evaluations (section 3.2). For our study we used a tool dedicated for
OCL compilation, namely the OCL Environment (OCLE, [9]). In this tool, OCL
expressions can be compiled and evaluated for single instances or for an entire
project. The models and all queries were implemented in the OCLE version 2.0.
We stress the fact that the used OCL syntax is the one implemented in the
OCLE.

Meta model The aim of the MedFlow project was the optimisation of clinical
processes. Within the project, we developed a meta model of the clinical pro-
cesses domain. Fig. 3 shows a fragment of the meta model (the complete meta
model can be found in [4]).

Fig. 3. Part of the MedFlow’s meta model

In the meta model excerpt we can distinguish two main classes: Information

and LogicalTool. LogicalTool is an abstract class with two subclasses: ITBasedSystem

and PaperBasedSystem. Information can be saved in LogicalTool, expressed by an as-
sociation providedByTool. LogicalTool can use another LogicalTool, what is expressed
by the association uses. This simplified meta model is used as a base for the check
and query definitions in section 3.2.

User models Based on an meta model (c.f. the previous section) user mo-
dels are created. In our case study, we used the simplified meta model and two
exemplary user models presented in Fig. 4.

In the first user model (Fig. 4.1) four instances of Information and four in-
stances of LogicalTool are defined. The instances of Information have diverse persis-
tence levels (low, medium, high) and instances of LogicalTool are of diverse type (IT–

(1) (2)

Fig. 4. Exemplary user models: (1) instances of classes Information, LogicalTool
and associations between them, (2) hierarchy of instances of LogicalTool

and paper–based). An Information can be saved in a LogicalTool if the LogicalTool

is a medium (c.f. Example 2). There are four association links between instances
of Information and instances of LogicalTool. In the second user model (Fig. 4.2) the
hierarchical dependencies between four instances of LogicalTool are defined. These
simplified user models are used as a base for the check and query evaluations in
the next section.

3.2 Definition and evaluation of checks and queries

In this section, we present typical checks and queries. All definitions conform
to the MedFlow meta model (Fig. 3) and their results are evaluated over the
exemplary user models (Fig. 4). The examples are based on a representative
selection of all types of checks and queries used within our framework for model
assessment.

In the examples the checks and queries are defined in natural language and
inspected manually. The corresponding listings are expressed in OCL 2.0 and
automatically evaluated in OCLE version 2.0.

If not stated divers, definitions (def) and invariants (inv) are defined and
evaluated in the context of Information (context Information) and based on
the diagram depicted in Fig. 4.1. This context is added for technical reasons
to enable easier compilation of OCL expressions. The definitions themselves are
not context dependent (no reference of self is used within them).

Primitive query A primitive query can return a value of primitive type (except
the Boolean type), class type or collection type. The construction of a primitive
query is similar to the below defined examples for checks, thus we do not provide
additional examples.

Check The simplest concept for information retrieval is a check. It is a function
with a set of objects as a domain.

In Example 1 and Listing 1, the check is defined and evaluated. It checks if
there exists an association between a given Information and a given LogicalTool.

Example 1. (theCheck)
Definition: Is a given information saved in a given logical tool?

Evaluation for XLI and KIS: no.

Listing 1 (theCheck)
Definition:

1 def : l e t

theCheck (i : Information , l t : LogicalTool)
3 = i . providedByTool−>i n t e r s e c t i o n (Set{ l t})−>notEmpty ()

Evaluation:

1 def :
l e t ob j In f o = Information . a l l I n s t a n c e s

3 −>s e l e c t (name=”X−ray lung image ”)
−>any (t rue)

5 l e t objLTool = LogicalTool . a l l I n s t a n c e s
−>s e l e c t (name=”Hosp i ta l Information System ”)

7 −>any (t rue)
l e t theCheckResult = theCheck (ob j In fo , objLTool)

9 −− Se l e c t ion : Boolean = f a l s e

Predefined check Checks can be used to express some well–formedness rules.
Such checks should be defined during the meta modelling phase and are called
predefined checks.

In Example 2 and Listing 2 a predefined check is defined and evaluated.

Example 2. (thePredefinedCheck)
Definition: An information can be saved only in logical tools which are mediums.

Evaluation: is fulfilled for all instances.

Predefined checks can be expressed in the form of invariants and checked for
all instances of the context class by calling the function check UML models for

errors in the OCLE tool.

Listing 2 (thePredefinedCheck)
Definition:

1 inv : s e l f . providedByTool−>f o rA l l (l t | l t . isMedium=t rue)

Evaluation check UML models for errors:

- Model appears to be correct according to the selected rules.

Compound query In order to aggregate information collected with single
queries, we can build a compound query. The collections of elements, used as
arguments, can be build in different manners, we can use all instances or a subset
of them.

Example 3 and Listing 3 depict the results of the compound query with the
check defined in Example 1 and Listing 1, applied for all instances of Information
and LogicalTool. In Example 3, the result is presented in form of a table while
in the Listing 3 it is presented as a set of tuples.

Example 3. (theCompoundQuery)
Definition:

Evaluate theCheck for all instances of Information and LogicalTool classes.

Evaluation:
Information \ Logical Tool KIS PACS PN Cal

XR no no no no
XLI no yes yes no
XWI no yes no no
XDF yes no no no

Listing 3 (theCompoundQuery)
Definition:

1 def : l e t

theCompoundQuery(InfC : Set (Information) , LToolC : Set (LogicalTool)) :
3 Set (TupleType(

i : Information ,
5 l t : LogicalTool ,

r : Boolean)) =
7 InfC−>c o l l e c t (i n f o | LToolC−>c o l l e c t (l t o o l |

Tuple {
9 i : Information = info ,

l t : LogicalTool = l t o o l ,
11 r : Boolean = theCheck (in fo , l t o o l)

}))−> asSet ()

Evaluation:

def :
2 l e t theCompoundQueryResult =

theCompoundQuery(Information . a l l I n s t anc e s , LogicalTool . a l l I n s t an c e s)
4 /∗

Se l e c t ion : Set (Tuple (i : Information , l t : LogicalTool , r : Boolean)) = Set {
6 Tuple{ XDF , PN , f a l s e } , Tuple{ XDF , PACS , f a l s e } ,

Tuple{ XDF , Cal , f a l s e } , Tuple{ XDF , KIS , true } ,
8 Tuple{ XR , PN , f a l s e } , Tuple{ XR , PACS , f a l s e } ,

Tuple{ XR , Cal , f a l s e } , Tuple{ XR , KIS , f a l s e } ,
10 Tuple{ XWI , PN , f a l s e } , Tuple{ XWI , PACS , true } ,

Tuple{ XWI , Cal , f a l s e } , Tuple{ XWI , KIS , f a l s e } ,
12 Tuple{ XLI , PN , true } , Tuple{ XLI , PACS , true } ,

Tuple{ XLI , Cal , f a l s e } , Tuple{ XLI , KIS , f a l s e }
14 } ∗/

Filtering We can additionally apply filters before or after evaluating the result
of a given compound query.

The filtered compound query presented in Example 4 and Listing 4 is eva-
luated only for instances of Information and LogicalTool classes, which fulfil addi-
tional constraints.

Example 4. (theFilteredCompoundQuery)
Definition:

Evaluate theCheck for instances of Information, which have the persistence attribute

set to medium or high and instances of LogicalTool, which have the attribute isMedium

equal to true.

Evaluation:
Information \ Logical Tool KIS PACS PN

XLI no yes yes
XWI no yes no
XDF yes no no

The definition of theFilteredCompoundQuery presented in Listing 4 uses the
result theCompoundQuery from Listing 3. Like in the previous section, the result
(theFilteredCompoundQueryResult) is presented as a set of tuples.

Listing 4 (theFilteredCompoundQuery)
Definition:

def : l e t

2 theFilteredCompoundQuery () = theCompoundQueryResult−>s e l e c t (t |
(t . i . p e r s i s t en c e=#medium or t . i . p e r s i s t e n c e=#high)

4 and t . l t . isMedium = t rue)

Evaluation:

def :
2 l e t theFilteredCompoundQueryResult = theFilteredCompoundQuery ()

/∗
4 Se l e c t ion : Set (Tuple (i : Information , l t : LogicalTool , r : Boolean))= Set {

Tuple{ XDF , PN , f a l s e } , Tuple{ XDF , KIS , true } ,
6 Tuple{ XDF , PACS , f a l s e } , Tuple{ XWI , PN , f a l s e } ,

Tuple{ XWI , KIS , f a l s e } , Tuple{ XWI , PACS , true } ,
8 Tuple{ XLI , PN , true } , Tuple{ XLI , KIS , f a l s e } ,

Tuple{ XLI , PACS , true } } ∗/

Collecting Elements can be collected according to specific properties (e.g. values
of slots, existing links). In the example below we collect elements according to
the element hierarchy (c.f. Fig. 4.2). We do not construct a complete definition
of a compound query, we only demonstrate how to create a collection using a
recursive OCL function.

Example 5. (theCollection)
Definition:
Collect all LogicalTools used by a given LogicalTool.
Evaluation for KIS: {PN, Cal, PACS}

Listing 5 (theCollection)
Definition:

1 context LogicalTool

def : l e t

3 getUsedTools (t : LogicalTool) : Set (LogicalTool)
= t . uses−>c o l l e c t (x | getUsedTools (x))−>asSet()−>union (t . use s)

Evaluation:

def :
2 l e t objLTool = LogicalTool . a l l I n s t a n c e s

−>s e l e c t (name=”Hosp i ta l Information System ”)
4 −>any(t rue)

l e t LToolC = getUsedTools (objLTool)
6 −−− Se l e c t ion : Set (LogicalTool) = Set{ PN , Cal , PACS }

Complementary query After the evaluation of a compound query, comple-
mentary queries can be evaluated over the obtained result.

In Example 6, a complementary query is defined and evaluated.

Example 6. (theComplementaryQuery)
Definition:
Which instances of LogicalTool are use to save Information objects with persistence level

medium.

Evaluation:
{PACS, PN}

The OCL expression presented below depicts one of the possible ways to
express this complementary query. The condition in line 4 corresponds to the
filtering condition and the remaining conditions correspond to the iteration over
the result of the compound query.

Listing 6 (theComplementaryQuery)
Definition:

def : l e t

2 theComplementaryQuery : Collection (LogicalTool) =
LogicalTool . a l l I n s t a n c e s ()

4 −>s e l e c t (l t o o l | theCompoundQueryResult
−>s e l e c t (t | (t . i . p e r s i s t en c e = #medium) and

6 (t . l t = l t o o l and t . r = t rue))−>notEmpty ())

Evaluation:

def :
2 l e t theComplementaryQueryResult = theComplementaryQuery

−− Se l e c t ion : Co l l e c t ion (LogicalTool)= Set { PACS , PN }

One can notice that the usage of compound queries does not simplify OCL
expressions for complementary queries. The complementary query defined in
Example 6 can be expressed based on the result of the previously defined com-
pound query (theCompoundQueryResult) as in Listing 6 or without any def-
inition as in Listing 7. The results in both listings, 6 and 7, are equal. The

expression in Listing 7 seems to be easier and does not depend on any other
definitions.

Listing 7 (theComplementaryQueryBis)
Definition:

1 LogicalTool . a l l I n s t a n c e s
−>c o l l e c t (l t o o l | Information . a l l I n s t a n c e s

3 −>s e l e c t (i | i . p e r s i s t e n c e=#medium) . providedByTool)−>asSet ()

At this point, the question why compound queries are useful for complemen-
tary queries may arise. Let us explain our motivation for the usage of the first
variant. In our prototype for the MedFlow project we have a common repository
for all models. To evaluate a compound query we have to gather information
from the repository, which can be located on a remote server. If we define a
complementary query based on the result of the compound query, then the eval-
uation is faster, otherwise for the evaluation of a complementary query we again
need to gather information from the repository. Moreover, we can evaluate more
complementary queries over the same compound query without further connec-
tion to the repository. The second reason for using the variant with compound
queries is the modified presentation of the results of complementary queries.
With some additional effort the result can be presented as a set of elements in
form of highlighted elements in the result of compound query (c.f. Example 7).

Example 7. (theComplementaryQuery)
Evaluation: {PACS,PN}
Persistence \ Logical Tool KIS PACS PN Cal

low 0 0 0 0
medium 0 2 1 0
high 1 0 0 0

3.3 Summary

We showed how to construct all types of checks and queries used in our frame-
work. The OCL 2.0 is expressive enough to be applied in our framework for
model assessment.

The models created in our framework are MOF compliant and as the OCL
supports the object oriented paradigm, it is easy to navigate through the ob-
ject structures and create checks (compare Example 1) and queries. The in-
variants can be used as consistency checks before saving models to the repo-
sitory (Example 2). Tuples provide useful mechanisms for the aggregation of
information of different types. Using tuples it is possible to evaluate the Carte-
sian Product of given sets, what was used within our compound queries con-
cept (Example 3). Using the select operation it is possible to filter collections.
The select operation can be applied either to the result of a compound query
(Example 4) or to a domain of it (for each argument separately). The first
manner enables the expression of more complex conditions (e.g. in the form
(e1.a1 = v1

1 ∧ e2.a1 = v1
2) ∨ (e1.a1 = v2

1 ∧ e2.a1 = v2
2), where ei denotes an

element i, aj an attribute j, and v
j

i some value). OCL does not have a built–in
operator for transitive closure, but it allows definitions of recursive functions. In
Listing 5 used tools are recursively collected in order to represent the transitive
closure of the relation defined by uses. Complementary queries can be expressed
in OCL in two different manners. The first is based on a previously defined com-
pound query and the second is a definition from scratch. The first one seems to
be easier to automate regarding query definition and results presentation.

4 Technical aspects

In the SQUAM project we continue development of the system for quality as-
sessment of models started in the MedFlow project [1]. In this section we present
redesigned architecture of our system which utilises the newest components de-
veloped within the Eclipse Modeling Framework (EMF1). The architecture pre-
sented below integrates three components of Eclipse Modeling Framework Tech-
nology (EMFT2), namely Connected Data Objects (CDO3), Object Constraint
Language (OCL4) and Query (QUERY5), to create a system with a central
model repository and a generic analysis tool. The architecture of the repository
and the management of checks and queries are described in subsequent sections.

4.1 Architecture

As mentioned above the design of the model data repository is based on the
EMF and some of the EMFT projects. EMF is a modelling framework and code

generation facility for building tools and other applications based on a structured

data model [10]. The model data repository uses EMF as the meta model, it can
save model instances of different EMF meta models (c.f. Fig. 5).

The architecture of the model data repository is based on the client–server
paradigm. The repository clients can connect to a relational database manage-
ment system via CDO, which provides multi user support. The connected clients
can search, load, save or create new EMF model instances of an arbitrary EMF
meta model. Moreover CDO provides a notification mechanism to keep connected
clients up to date on model changes.

The repository client integrates the EMFT projects, OCL and QUERY, to
specify and execute queries on EMF model elements. OCL component provides
an Application Programming Interface (API) for OCL expression syntax which
can be used to implement OCL queries and constraints. The QUERY compo-
nent facilitates the process of search, retrieval and update of model elements; it
provides an SQL like syntax.

1 http://www.eclipse.org/emf/
2 http://www.eclipse.org/emft/
3 http://www.eclipse.org/emft/projects/cdo/
4 http://www.eclipse.org/emft/projects/ocl/
5 http://www.eclipse.org/emft/projects/query/

http://www.eclipse.org/emf/
http://www.eclipse.org/emft/
http://www.eclipse.org/emft/projects/cdo/
http://www.eclipse.org/emft/projects/ocl/
http://www.eclipse.org/emft/projects/query/

The SQUAM tool family is based on the above described core functionalities
out of the EMF and EMFT projects. The repository client API (CDO, EMF,
OCL and QUERY) provides an access mechanism for other tools, mostly mo-
delling tools. The tree–based editors can be generated out of EMF meta model
definitions. The native editors are especially useful for the prototyping phase,
later on we plan to integrate some graphical editors to create model instances.
In the MedFlow prototype we integrated the MS Visio6 and MagicDraw7 mo-
delling tools. We plan to integrate these two modelling tools as well as editors
developed within the Graphical Modeling Framework (GMF8) with the SQUAM

tool family.

Fig. 5. The model data repository architecture design

For the analysis purposes we use the repository client which uses the OCL
component to make queries on the model instances. The management of checks
and queries is described in the subsequent section.

4.2 Checks and queries management

The OCL component provides mechanisms for check and query definitions and
evaluations. In our framework it should be possible to evaluate checks and queries
on demand, thus we need an OCL management system to store OCL expressions.
For this purpose we implement a checks and queries catalogue. The catalogue
enables users to evaluate OCL expressions in different modes (c.f. Fig. 2 in
section 2).

The meta model of the OCL management system is also modelled in EMF,
therefore the OCL expressions can also be saved in the model data repository in
the same manner as other model instances.

Fig. 6 illustrates the simplified meta model for the OCL management sys-
tem. The model data repository supports the storage of several meta models. To

6 http://office.microsoft.com/visio/
7 http://www.magicdraw.com/
8 GMF is a combination of the EMF and GEF (Graphical Editing Framework)

projects, http://www.eclipse.org/gmf/

http://office.microsoft.com/visio/
http://www.magicdraw.com/
http://www.eclipse.org/gmf/

Fig. 6. The meta model of the OCL management system

differentiate between queries specific to a given meta model we assign OCL ex-
pressions to a specific Bundle. The Bundle defines the type of the model instances
by specifying the meta model they have to conform to.

Further we consider queries, where each Query is placed in a particular
OCLContext. The context of the OCL expression enables the usage of the self

element. The context can also be NULL, it is useful for expressions without any
particular contexts. In the example listings presented in section 3.2, for all list-
ings except Listing 2 and Listing 5, NULL context can be used (these listings do
not use the self keyword and the definitions are not related to the particular
classifier). The Query element contains one OCLExpression.

We distinguish between a definition (Definition) and an evaluation (Evalu-
ation) of queries. Within one Definition the prior definitions can be used, e.g.
a compound query can use a primitive query (compare section 3.2). An OCL
expression in the Evaluation also uses definitions. The Definition is split into the
Check, Primitive, Compound and Complementary expressions. The Definition ele-
ments are elements which can be used as subroutines in other expressions and
the Evaluation elements are evaluated over an explicit data model, where the
OCLContext has to be set to an explicit instance of a model element.

The presented design is a proof of concept for the model data repository. Used
technologies and design allow easy extensions with additional features such as
dynamic load of new meta models, or an extended editor for the OCL manage-
ment system with OCL syntax check and compilation at design time.

5 Conclusion

Our examination shows that the OCL is expressive enough to be applied as a
query language for model analysis. It is possible to define all types of checks and
queries required by our model assessment framework (section 3.2). There are
two other reasons for OCL usage within our framework. Firstly, there are more
and more tools supporting the OCL notation, also non–commercial tools (e.g.
OCL project within EMFT described in section 4 or tools presented in [11]).
The second reason ensues from the first: the knowledge of the notation is getting
broader among scientists and pragmatic modellers.

We presented a proof of concept for the model data repository created within
EMF and EMFT technologies. In the pesented architecture OCL queries for as-
sessment of models can be saved in the repository (section 4.2) and evaluated

on demand. Currently we are developing full support for the OCL management
system (section 4.2). We plan to carry out more case studies to determine more
requirements for model assessments queries and define patterns for query defi-
nitions.

Acknowledgement

We would like thank Dan Chiorean for the presentation of the OCLE tool at our
University and the later helpful tips for OCL expression implementation in the
OCLE. We would like to thank all of the people who reviewed our paper and
gave us constructive input, especially Frank Innerhofer–Oberperfler and both
reviewers. And at last but not least Ruth Breu, who supported us in our work.

References

1. Chimiak-Opoka, J., Giesinger, G., Innerhofer-Oberperfler, F., Tilg, B.: Tool–
supported systematic model assessment. Volume P–82 of Lecture Notes in In-
formatics (LNI)—Proceedings., Gesellschaft fuer Informatik (2006) 183–192

2. OMG: Object Constraint Language Specification, version 2.0 (2005)
3. Warmer, J., Kleppe, A.G.: The Object Constraint Language—Precise Modeling

with UML. first edn. (1999)
4. Breu, R., Chimiak-Opoka, J.: Towards systematic model assessment. In Akoka, J.,

et al., eds.: Perspectives in Conceptual Modeling: ER 2005 Workshops CAOIS, BP-
UML, CoMoGIS, eCOMO, and QoIS, Klagenfurt, Austria, October 24-28. Volume
3770 of Lecture Notes in Computer Science., Springer-Verlag (2005) 398–409

5. Akehurst, D.H., Bordbar, B.: On querying UML data models with OCL. In
Gogolla, M., Kobryn, C., eds.: UML. Volume 2185 of Lecture Notes in Computer
Science., Springer (2001) 91–103

6. Mandel, L., Cengarle, M.V.: On the expressive power of OCL. In Wing, J.M.,
Woodcock, J., Davies, J., eds.: World Congress on Formal Methods. Volume 1708
of Lecture Notes in Computer Science., Springer (1999) 854–874

7. Codd, E.F.: Relational completeness of data base sub-languages. Data Base Sys-
tems, Rustin(ed), Prentice-Hall publishers (1972)

8. Krogstie, J., Solvberg, A.: Quality of conceptual models. In: In-
formation systems engineering: Conceptual modeling in a quality per-
spective. Kompendiumforlaget, Trondheim, Norway (2000) 91–120 (avail-
able at http://www.idi.ntnu.no/∼krogstie/publications/2003/quality-book/b3-
quality.pdf, last checked 2006–08–29).

9. LCI team: Object constraint language environment (2005) Computer Science Re-
search Laboratory, ”BABES–BOLYAI” University, Romania.

10. Eclipse Foundation Inc.: Eclipse Modeling Framework homepage,
http://www.eclipse.org/emf (2006)

11. Baar, T., Chiorean, D., Correa, A.L., Gogolla, M., Hußmann, H., Patrascoiu, O.,
Schmitt, P.H., Warmer, J.: Tool support for OCL and related formalisms - needs
and trends. In Bruel, J.M., ed.: MoDELS Satellite Events. Volume 3844 of Lecture
Notes in Computer Science., Springer (2005) 1–9

~
http://www.eclipse.org/emf

	Use of OCL in a Model Assessment Framework: An experience report
	Joanna Chimiak--Opoka, Chris Lenz

