
Improving the OCL Semantics Definition by Applying
Dynamic Meta Modeling and Design Patterns

Juan Martín Chiaradía 1 Claudia Pons 1,2

1 LIFIA – Facultad de Informática, Universidad Nacional de La Plata
2 CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas)

La Plata, Buenos Aires, Argentina
{jmchiara,cpons}@sol.info.unlp.edu.ar

Abstract. OCL is a standard specification language, which will probably be
supported by most software modeling tools in the near future. Hence, it is
important to OCL to have a solid formal foundation, for its syntax and its
semantic definition. Currently, OCL is being formalized by metamodels
expressed in MOF, complemented by well formedness rules written in the own
OCL. This recursive definition not only brings about formal problems, but also
puts obstacles in language understanding. On the other hand, the OCL
semantics metamodel presents quality weaknesses due to the fact that certain
object-oriented design rules (patterns) were not obeyed in their construction.
The aim of the proposal presented in this article is to improve the definition for
the OCL semantics metamodel by applying GoF patterns and the dynamic
metamodeling technique. Such proposal avoids circularity in OCL definition,
and increases its extensibility, legibility and accuracy.

Keywords: OCL; formal semantics; dynamic meta modeling; design patterns.

1 Introduction

OCL (Object Constraint Language) [8] is a formal specification language, easy to
read and write, accepted as a standard by the OMG (Object Management Group).
OCL permits to define syntactic and semantic restrictions upon models expressed in
graphic notations such as the UML [13], thus extending the expressive capacity of
such notations. In this way, diagrams complemented by OCL expressions are more
accurate and complete.

Both UML and OCL are defined by MOF (Meta Object Facility) [6], which is a meta-
language maintained by OMG whose aim is to allow for metamodel creation.
The OCL language has been formally defined through the following documents:
� a MOF (meta) model that defines its abstract syntax.
� a MOF (meta) model that describes its semantic domains.
� a set of MOF classes that specify the OCL semantic (meaning), i.e. the

connection between the syntactic constructions and the semantic domain.
It is known that the object-oriented models, due to their proximity to reality, transmit
an intuitive meaning, easy to be perceived by their readers; however, when the design
of such models is not adequate, intuition disappears, and models become difficult to
understand. This unfavorable situation is observed in some parts of the OCL 2.0
standard specification [8]. The reason why this occurs may be the non-application (or
inadequate application) of some well-known design patterns. Although in the abstract
syntax definition the result obtained is clear and accurate, in the semantic definition
several questions arise that hamper language understanding. We believe that this lack

of “self- explaining” observed in [8] is due to an erroneous selection of the design
patterns used in the design of the semantics metamodel.

Working towards the solution to this problem, we propose to create a clearer and
simpler alternative definition for the OCL semantics. For that purpose, GoF patterns
[4] will be applied to the design presented in the standard specification document [8].
Our hypothesis is that pattern application will contribute to improve legibility,
extensibility and accuracy of OCL definition.

To provide an adequate context to the reading of this proposal, in Section 2 we
present a summary of the current OCL semantics [8]. Then, in Section 3, we propose
a new definition for the OCL semantics, based on the Visitor pattern application [4]
upon the semantics metamodels; we also use the technique known as Dynamic Meta
Modelling (DMM) [2] [5] to achieve an accurate specification of the semantics, but
keeping clarity, and communicating concepts in a more intuitive manner. Finally, in
Section 4, we present conclusions and future works.

2 OCL Specification Overview

OCL expression is defined in [8] as "an expression that can be evaluated in a given
environment" and it states that “evaluation of the expression yields a value". Taking it
into account, the ‘meaning’ (semantics) of an OCL expression can be defined as the
value yielded by its evaluation in a given environment. In order to specify this
semantics, [8] proposes the structure illustrated in figure 1.

Figure 1: Overview of packages in the UML-based semantics

Figure 2 shows the overview of the AbstractSintax package, which defines the
abstract syntax of OCL as a hierarchy of meta classes. In the other hand, Evaluations
package defines the semantics of these expressions using also a hierarchy of meta
classes where each one represents an evaluation of a particular kind of expression (see
figure 3). The idea behind this representation is that each evaluation yields a result in
a given environment, therefore, the semantics evaluation of an expression in a specific
environment is given by associating each evaluation instance to an expression model
(see figure 4).

It is easy to see how Evaluations package replicates the hierarchy of the abstract
syntax. We believe that this duplication is unnecessary and yields to disadvantages
such as low legibility of the meta model and inefficiency in the development of
automatics tools based on this semantics. We will expand this in the next section.

Figure 2: AbstractSyntax package overview

Figure 3: Evaluations package overview

Figure 4: Semantics Evaluation of an expression.

3 Semantics evaluation through “Visitor” pattern and DMM

In this section we define a meta class named OclEvaluator to give semantic meaning
to syntax expressions by associating them with its corresponding value. In this way,
OclEvaluator works as a bridge between AbstractSyntax and Values packages (see
figure 5).

Figure 5: OCL meta model using the Visitor

In order to evaluate an expression, the OclEvaluator uses an evaluation environment
called EvalEnvironment following the classic strategy used in semantic definition of
programming languages (examples of this approach can be found in [3] and [10]). An
expressions evaluation depends on its evaluation environment as well as its syntax
structure.

The OclExpression structure is not likely to change, and several operations might be
defined (e.g. refactoring operations, semantics evaluation, code generation operations,
etc.). Consequently, we consider that it is more appropriate to avoid polluting the
static structure with these operations and then to apply the Visitor pattern [4], in order
to keep it simple and clear (See figure 6).

Figure 6: Evaluation metamodel using the Visitor pattern.

In addition, we believe that the best way to understand the semantics evaluation is by
showing the evaluation process itself. By using only class diagrams to reflect the
semantics evaluation, it is hard (or almost impossible) to reveal the latter process,
because of the static nature inherent to these diagrams. Furthermore, to completely
understand all the process it is necessary to pay attention to the constraints established
on these diagrams. In [8], these constrains are written in OCL with two negatives
outcomes:

• The expressibility and simplicity obtained from the use of UML in the
semantics metamodel over the math one is lost because of the necessity of be
aware of the constraints to fully understand the semantic.

• The constraints are written in OCL, so that the semantics of OCL is defined
in terms of OCL itself! If someone didn’t understand OCL, they would
neither understand these constraints.

Consequently, with the aim of a simple, precise and clear explanation, in this section
we use sequence diagrams to visualize the distinct steps throughout the semantics
evaluation of expressions. This approach is known as Dynamic Meta Modelling
(DMM) [2] [5], and has been used in the semantics specification of UML elements
(such as State Machines and Collaborations), but its use in OCL specification has not
been explored before.

Performs the
semantics evaluation
of an OCL expression

3.1 Semantics of a LetExp

The evaluation of a LetExp proposed in [8] is shown in figure 7. The diagram shows
how the evaluation encapsulates the result value and the evaluation environment,
although neither the evaluation method nor structural constraints are specified on this
diagram.

Figure 7: Standard UML based semantic evaluation of a LetExp.

Therefore a simple analysis of the last diagram doesn’t give us too much information
about the semantics of a LetExp; it only gives us information about the static structure
of the elements implied in this evaluation. In order to fully understand the previous
diagram, we must study its well formed rules [8].

As we previously established, these constraints have the disadvantage that they are
written in OCL, which clearly becomes an obstacle for those who give their first steps
in OCL.

The appendix A of [7] presents the maths model of the OCL semantics (see figure 8).
Taking it into account, we can translate this algorithm under the applicative order
reduction into a sequence diagram (see figure 9).

A context for evaluation is given by an environment � = (�, �) consisting of a system
state � and a variable assignment �: Vart � � (t). A system state � provides access to
the set of currently existing objects, their attribute values, and association links between
objects. A variable assignment � maps variable names to values.
Let Env be the set of environments � = (�, �). The semantics of a LetExp is a function
�[e]:Env � �(t) that is defined as follows.

Figure 8: Maths semantics of LetExp

As a first step of evaluation, we evaluate the init expression (, signals 4 and

5) to extend the evaluation environment with the latter evaluation (,
signals 6, 7 and 8). Then, we evaluate the in expression in the new environment, and
the value returned by this is the result of the whole LetExp evaluation

(, signals 9, 10 and 11). Note that the internal
environment modification were propagated outside the LetExp evaluation, we saved
the environment at the beginning of the evaluation process to recover it when the
evaluation is finished (signals 2 and 12).

Figure 9: Sequence diagrama of a LetExp evaluation.

3.2 Semantics of IterateExp

The semantics evaluation of an IterateExp as is expressed in [8] is shown in figure 10.
Once again we have the problem that the chart doesn’t express too much about the
semantics evaluation process and we have to appeal to the well formedness rules
established on this diagram [8]; without these constraints we would be unable to
completely understand the semantic process of an IterateExp.

Figure 10: Standard UML based semantic evaluation of an IterateExp.

Even worse, such constraints try to explain how IterateExp works but lacks of
correctness due to the fact that the IterateExp is defined in terms of a ForAllExp wich
is itself defined in terms of IterateExp, as follows:

The environment of any sub evaluation is the same environment as the one from its
previous sub evaluation, taking into account the bindings of the iterator variables, plus
the result variable which is bound to the result value of the last sub evaluation.

context IterateExpEval inv:

let SS: Integer = source.value->size()

in if iterators->size() = 1

then Sequence{2..SS}->forAll(i:Integer | bodyEvals-
>at(i).environment = bodyEvals->at(i-1).environment-
>replace(NameValueBinding(iterators->at(1).varName,
source.value->asSequence()->at(i)))-
>replace(NameValueBinding(result.varName,bodyEvals->at(i-
1).resultValue)))

else -- iterators->size() = 2

Sequence{2..SS*SS}->forAll(i: Integer | bodyEvals-
>at(i).environment = bodyEvals->at(i-1).environment->replace(
NameValueBinding(iterators->at(1).varName,source-
>asSequence()->at(i.div(SS) + 1)))->replace(
NameValueBinding(iterators->at(2).varName,source.value-
>asSequence()->at(i.mod(SS))))->replace(
NameValueBinding(result.varName,bodyEvals->at(i-
1).resultValue)))

endif

Although an IterateExp is more complicated than a LetExp, without a previous OCL
knowledge, it is almost impossible to understand these constraints, and with the
proper knowledge of the language, the reading and comprehensiveness of these
constraints is a hard task to do.

As we have done whit the LetExp, we use the math semantics of the IterateExp as
guidance for showing this process through a sequence diagram. A summary of the
math semantics is shown in figure 11 (see Appendix A of [7] for the full version),
while figure 12 and figure 13 display the semantics expressed via sequence diagrams.

Figure 11: Maths semantics of IterateExp

Figura 12: IterateExp semantics as sequence diagram.

IterateExp evaluation can be seen as follows:

The first sub evaluation will start with an environment in which the result variable is
bound to the init expression of the variable declaration in which it is defined

(, signals 1 to 8 in figure 12); then we proceed to evaluate
the body with all iterator variables bound to the different combinations of the source

(figure 11). The iterators binding (in
) is done by CombinationGenerator (signals

13, 14 and 15 in figure 13), under a ‘depth first search’ strategy. This strategy
determines the number of sub evaluations over the body (
in ; signals 17 and 18 in figure 13); as last
step, these sub evaluations will update the result variable
(,signals 19, 20 and 21 in figure 13).

 Once again we save the environment at the beginning of the evaluation process and,
after recovered the value bound to the result variable (signals 22 and 23 in figure 12),
we restore the initial environment.

Figure 13: Body Evaluation of an IterateExp.

With this approach, each meta-class belonging to the Domain package will be
replaced with a sequence diagram which states the concrete semantics and evaluation
process of the corresponding syntactic construction.

4 Conclusion and Future Works

OCL is an object property specification language, which is rigorous but simple and
easy to use. Therefore, it becomes a very interesting option for the development of

code verification and derivation tools. To exploit all its potential, it is fundamental
that OCL has a solid formal foundation for both its syntax and its semantic
definitions. The OCL standard is formalized by metamodels expressed in MOF,
complemented by well formedness rules written in the own OCL. This circular
definition not only gives rise to formal problems [11], but also puts obstacles in
language understandings. Additionally, we think that the use of (static) meta-classes
to express the OCL semantics was a wrong choice, because of the dynamic nature of
semantics evaluation which requires a dynamic (meta) modeling tool.

In this article, we elaborate an alternative definition for the OCL semantics. This
proposal re-uses the OCL syntax metamodel, re-designs the OCL semantics
metamodel by applying the ‘Visitor’ design pattern, and finally defines the relation
between syntax and semantics through UML collaboration diagrams adhering to the
DMM approach. In this way, circularity on the OCL definition is avoided, and
intuitive communication is increased. Besides, the OCL math semantics was used as a
foundation and guidance for the semantics definition. Although math semantics could
be tedious and hard to understand, and demands users with more academic
background, we showed that it could be translated into sequence diagrams offering a
more readable and simple semantics metamodel.

On the other hand, the adequate performance of the tools supporting OCL [12] [1]
strongly depends on the quality of language definition. To count on a well-defined
syntax and semantics will result in benefits for such tools. Also, it is almost
straightforward to translate this semantics into a programming language such as Java,
because of the proximity between sequence diagrams and programming languages.

Finally, the application of the visitor pattern makes it easier the creation of new
functionality over the OCL syntax structure and its integration into the CASE tool to
get a powerful one. For example, concerning model transformations, it is possible to
define OCL constraints transformations by adding a new “ visitor” for the OCL syntax
hierarchy. In this sense, we are working on the redefinition of the ePlatero evaluator
[9] following the proposal presented in this article in order to analyze the potential
advantages regarding the different indicators, such as reliability, efficiency,
modifiability, etc.

References

[1] Akehurst David: “ OCL 2.0 – Implementing the Standard for Multiple Metamodels” - URL:
http://www.cs.kent.ac.uk/projects/ocl/Documents/OCL%202.0%20-
%20Implementing%20the%20Standard.pdf

[2] Engels, G., Hausmann, J.H., Heckel, R., Sauer, S.: “ Dynamic meta modeling: A graphical
approach to the operational semantics of behavioral diagrams in uml”. In Evans, A., Kent,
S., Selic, B., eds.: UML 2000, York, UK, October 2-6, 2000, Proceedings. Volume 1939 of
LNCS, Springer (2000) 323–337

[3] Hennessy, M.: “ The Semantics of Programming Languages: An elementary introduction
using structural operational semantics”. J Wiley&Sons. England. 1990.

 [4] Gamma, E. Helm, R. Johnson, R. and Vlissides, J.: “ Design Patterns, Elements of Reusable
Object-Oriented Software”. Addison-Wesley Publishing Company, 1995.

[5] Hausmann, J.H.: “ Dynamic Meta Modeling. A Semantics Description Technique for Visual
Modeling Languages” PhD thesis, Universit¨at Paderborn, Germany (2005)

[6] Meta Object Facility MOF 2.0. OMG Adopted Specification ptc/2003-10-04.
URL:www.omg.org

[7] OCL 2.0.– OMG draft Specification /ptc/03-10-14. URL: www.omg.org/docs/ptc/03-
10-14.pdf

[8] OCL 2.0 Specification ptc/2005-06-06. URL:www.omg.org

[9] Pons, Claudia, R.Giandini, G. Pérez, P. Pesce, V.Becker, J. Longinotti, J.Cengia. “ Precise
Assistant for the Modeling Process in an Environment with Refinement Orientation” In
"UML Modeling Languages and Applications: UML 2004 Satellite Activities". Lecture
Notes in Computer Sciefnce number 3297. Springer-Verlag. 2004. ISBN: 3-540-25081-6

[10] Reynolds, John C.: “ Theories of Programming Languages” Cambridge University Press.

[11] Tchertchago Alexei: “ Analysis of the Metamodel Semantics for OCL” . URL:
http://www.hwswworld.com/downloads/9_28_05_e/Cherchago-thesis.pdf

[12] Richters Mark and Gogolla Martin. “ OCL-Syntax, Semantics and Tools” in Advances in
Object Modelling with the OCL Lecture Notes in Computer Science 2263. Springer. (2001).

[13] UML 2.0. The Unified Modeling Language Superstructure version 2.0 – OMG Final
Adopted Specification.. http://www.omg.org. August 2003. URL:www.omg.org

