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Abstract. OCL is a standard specification language, which will probably be 
supported by most software modeling tools in the near future. Hence, it is 
important to OCL to have a solid formal foundation, for its syntax and its 
semantic definition. Currently, OCL is being formalized by metamodels 
expressed in MOF, complemented by well formedness rules written in the own 
OCL. This recursive definition not only brings about formal problems, but also 
puts obstacles in language understanding. On the other hand, the OCL 
semantics metamodel presents quality weaknesses due to the fact that certain 
object-oriented design rules (patterns) were not obeyed in their construction. 
The aim of the proposal presented in this article is to improve the definition for 
the OCL semantics metamodel by applying GoF patterns and the dynamic 
metamodeling technique. Such proposal avoids circularity in OCL definition, 
and increases its extensibility, legibility and accuracy. 
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1 Introduction 

OCL (Object Constraint Language) [8] is a formal specification language, easy to 
read and write, accepted as a standard by the OMG (Object Management Group). 
OCL permits to define syntactic and semantic restrictions upon models expressed in 
graphic notations such as the UML [13], thus extending the expressive capacity of 
such notations. In this way, diagrams complemented by OCL expressions are more 
accurate and complete. 

Both UML and OCL are defined by MOF (Meta Object Facility) [6], which is a meta-
language maintained by OMG whose aim is to allow for metamodel creation.  
The OCL language has been formally defined through the following documents: 
� a MOF (meta) model that defines its abstract syntax. 
� a MOF (meta) model that describes its semantic domains. 
� a set of MOF classes that specify the OCL semantic (meaning), i.e. the 

connection between the syntactic constructions and the semantic domain. 
It is known that the object-oriented models, due to their proximity to reality, transmit 
an intuitive meaning, easy to be perceived by their readers; however, when the design 
of such models is not adequate, intuition disappears, and models become difficult to 
understand.  This unfavorable situation is observed in some parts of the OCL 2.0 
standard specification [8]. The reason why this occurs may be the non-application (or 
inadequate application) of some well-known design patterns. Although in the abstract 
syntax definition the result obtained is clear and accurate, in the semantic definition 
several questions arise that hamper language understanding. We believe that this lack 



of “self- explaining” observed in [8] is due to an erroneous selection of the design 
patterns used in the design of the semantics metamodel. 

Working towards the solution to this problem, we propose to create a clearer and 
simpler alternative definition for the OCL semantics. For that purpose, GoF patterns 
[4] will be applied to the design presented in the standard specification document [8]. 
Our hypothesis is that pattern application will contribute to improve legibility, 
extensibility and accuracy of OCL definition.  

To provide an adequate context to the reading of this proposal, in Section 2 we 
present a summary of the current OCL semantics [8]. Then, in Section 3, we propose 
a new definition for the OCL semantics, based on the Visitor pattern application [4] 
upon the semantics metamodels; we also use the technique known as Dynamic Meta 
Modelling (DMM) [2] [5] to achieve an accurate  specification of the semantics, but 
keeping clarity, and communicating concepts in a more intuitive manner.  Finally, in 
Section 4, we present conclusions and future works. 

2  OCL Specification Overview 

OCL expression is defined in [8] as "an expression that can be evaluated in a given 
environment" and it states that “evaluation of the expression yields a value". Taking it 
into account, the ‘meaning’ (semantics) of an OCL expression can be defined as the 
value yielded by its evaluation in a given environment. In order to specify this 
semantics, [8] proposes the structure illustrated in figure 1. 

 

Figure 1:  Overview of packages in the UML-based semantics 

Figure 2 shows the overview of the AbstractSintax package, which defines the 
abstract syntax of OCL as a hierarchy of meta classes. In the other hand, Evaluations 
package defines the semantics of these expressions using also a hierarchy of meta 
classes where each one represents an evaluation of a particular kind of expression (see 
figure 3). The idea behind this representation is that each evaluation yields a result in 
a given environment, therefore, the semantics evaluation of an expression in a specific 
environment is given by associating each evaluation instance to an expression model 
(see figure 4). 

It is easy to see how Evaluations package replicates the hierarchy of the abstract 
syntax. We believe that this duplication is unnecessary and yields to disadvantages 
such as low legibility of the meta model and inefficiency in the development of 
automatics tools based on this semantics. We will expand this in the next section. 



 
Figure 2: AbstractSyntax package overview 

 

Figure 3: Evaluations package overview 

 

Figure 4: Semantics Evaluation of an expression. 

3  Semantics evaluation through “Visitor” pattern and DMM 

In this section we define a meta class named OclEvaluator to give semantic meaning 
to syntax expressions by associating them with its corresponding value. In this way, 
OclEvaluator works as a bridge between AbstractSyntax and Values packages (see 
figure 5).   



 

Figure 5: OCL meta model using the Visitor 

In order to evaluate an expression, the OclEvaluator uses an evaluation environment 
called EvalEnvironment following the classic strategy used in semantic definition of 
programming languages (examples of this approach can be found in [3] and [10]). An 
expressions evaluation depends on its evaluation environment as well as its syntax 
structure. 

The OclExpression structure is not likely to change, and several operations might be 
defined (e.g. refactoring operations, semantics evaluation, code generation operations, 
etc.). Consequently, we consider that it is more appropriate to avoid polluting the 
static structure with these operations and then to apply the Visitor pattern [4], in order 
to keep it simple and clear (See figure 6). 

 

Figure 6: Evaluation metamodel using the Visitor pattern. 

In addition, we believe that the best way to understand the semantics evaluation is by 
showing the evaluation process itself. By using only class diagrams to reflect the 
semantics evaluation, it is hard (or almost impossible) to reveal the latter process, 
because of the static nature inherent to these diagrams. Furthermore, to completely 
understand all the process it is necessary to pay attention to the constraints established 
on these diagrams. In [8], these constrains are written in OCL with two negatives 
outcomes: 

• The expressibility and simplicity obtained from the use of UML in the 
semantics metamodel over the math one is lost because of the necessity of be 
aware of the constraints to fully understand the semantic. 

• The constraints are written in OCL, so that the semantics of OCL is defined 
in terms of OCL itself! If someone didn’t understand OCL, they would 
neither understand these constraints. 

Consequently, with the aim of a simple, precise and clear explanation, in this section 
we use sequence diagrams to visualize the distinct steps throughout the semantics 
evaluation of expressions. This approach is known as Dynamic Meta Modelling 
(DMM) [2] [5], and has been used in the semantics specification of UML elements 
(such as State Machines and Collaborations), but its use in OCL specification has not 
been explored before. 

Performs the 
semantics evaluation 
of an OCL expression 



3.1  Semantics of a LetExp 

The evaluation of a LetExp proposed in [8] is shown in figure 7. The diagram shows 
how the evaluation encapsulates the result value and the evaluation environment, 
although neither the evaluation method nor structural constraints are specified on this 
diagram. 

 

Figure 7: Standard UML based semantic evaluation of a LetExp. 

Therefore a simple analysis of the last diagram doesn’t give us too much information 
about the semantics of a LetExp; it only gives us information about the static structure 
of the elements implied in this evaluation. In order to fully understand the previous 
diagram, we must study its well formed rules [8]. 

As we previously established, these constraints have the disadvantage that they are 
written in OCL, which clearly becomes an obstacle for those who give their first steps 
in OCL. 

The appendix A of [7] presents the maths model of the OCL semantics (see figure 8). 
Taking it into account, we can translate this algorithm under the applicative order 
reduction into a sequence diagram (see figure 9). 
 

A context for evaluation is given by an environment � = (�, �) consisting of a system 
state � and a variable assignment �: Vart  � � (t). A system state � provides access to 
the set of currently existing objects, their attribute values, and association links between 
objects. A variable assignment � maps variable names to values. 
Let Env be the set of environments � = (�, �). The semantics of a LetExp is a function 
�[e]:Env � �(t) that is defined as follows. 

 
Figure 8: Maths semantics of LetExp 

As a first step of evaluation, we evaluate the init expression ( , signals 4 and 

5) to extend the evaluation environment with the latter evaluation ( , 
signals 6, 7 and 8). Then, we evaluate the in expression in the new environment, and 
the value returned by this is the result of the whole LetExp evaluation 



( , signals 9, 10 and 11). Note that the internal 
environment modification were propagated outside the LetExp evaluation, we saved 
the environment at the beginning of the evaluation process to recover it when the 
evaluation is finished (signals 2 and 12). 
 

 
Figure 9: Sequence diagrama of a LetExp evaluation. 

3.2 Semantics of IterateExp 

The semantics evaluation of an IterateExp as is expressed in [8] is shown in figure 10. 
Once again we have the problem that the chart doesn’t express too much about the 
semantics evaluation process and we have to appeal to the well formedness rules 
established on this diagram [8]; without these constraints we would be unable to 
completely understand the semantic process of an IterateExp. 
 



 

Figure 10: Standard UML based semantic evaluation of an IterateExp. 

Even worse, such constraints try to explain how IterateExp works but lacks of 
correctness due to the fact that the IterateExp is defined  in terms of a ForAllExp wich 
is itself defined in terms of  IterateExp, as follows: 

The environment of any sub evaluation is the same environment as the one from its 
previous sub evaluation, taking into account the bindings of the iterator variables, plus 
the result variable which is bound to the result value of the last sub evaluation. 

 

context IterateExpEval inv:   

let SS: Integer = source.value->size() 

in if iterators->size() = 1  

then Sequence{2..SS}->forAll(i:Integer | bodyEvals-
>at(i).environment = bodyEvals->at(i-1).environment-
>replace(NameValueBinding(iterators->at(1).varName, 
source.value->asSequence()->at(i)))-
>replace(NameValueBinding(result.varName,bodyEvals->at(i-
1).resultValue ))) 

else -- iterators->size() = 2 

Sequence{2..SS*SS}->forAll(i: Integer | bodyEvals-
>at(i).environment = bodyEvals->at(i-1).environment->replace( 
NameValueBinding( iterators->at(1).varName,source-
>asSequence()->at(i.div(SS) + 1)))->replace( 
NameValueBinding( iterators->at(2).varName,source.value-
>asSequence()->at(i.mod(SS))))->replace( 
NameValueBinding(result.varName,bodyEvals->at(i-
1).resultValue ))) 

endif 

Although an IterateExp is more complicated than a LetExp, without a previous OCL 
knowledge, it is almost impossible to understand these constraints, and with the 
proper knowledge of the language, the reading and comprehensiveness of these 
constraints is a hard task to do. 

As we have done whit the LetExp, we use the math semantics of the IterateExp as 
guidance for showing this process through a sequence diagram. A summary of the 
math semantics is shown in figure 11 (see Appendix A of [7] for the full version), 
while figure 12 and figure 13 display the semantics expressed via sequence diagrams. 



 
 

Figure 11: Maths semantics of IterateExp 

 

Figura 12: IterateExp semantics as sequence diagram. 

IterateExp evaluation can be seen as follows: 

The first sub evaluation will start with an environment in which the result variable is 
bound to the init expression of the variable declaration in which it is defined 

( , signals 1 to 8 in figure 12); then we proceed to evaluate 
the body with all iterator variables bound to the different combinations of the source 

(figure 11). The iterators binding (  in 
) is done by CombinationGenerator (signals 



13, 14 and 15 in figure 13), under a ‘depth first search’ strategy. This strategy 
determines the number of sub evaluations over the body (  
in ; signals 17 and 18 in  figure 13 ); as last 
step, these sub evaluations will update the result variable 
( ,signals 19, 20 and 21 in figure 13). 

 Once again we save the environment at the beginning of the evaluation process and, 
after recovered the value bound to the result variable (signals 22 and 23 in figure 12), 
we restore the initial environment. 

  

Figure 13: Body Evaluation of an IterateExp. 

With this approach, each meta-class belonging to the Domain package will be 
replaced with a sequence diagram which states the concrete semantics and evaluation 
process of the corresponding syntactic construction. 

4 Conclusion and Future Works 

OCL is an object property specification language, which is rigorous but simple and 
easy to use. Therefore, it becomes a very interesting option for the development of 



code verification and derivation tools. To exploit all its potential, it is fundamental 
that OCL has a solid formal foundation for both its syntax and its semantic 
definitions. The OCL standard is formalized by metamodels expressed in MOF, 
complemented by well formedness rules written in the own OCL. This circular 
definition not only gives rise to formal problems [11], but also puts obstacles in 
language understandings. Additionally, we think that the use of (static) meta-classes 
to express the OCL semantics was a wrong choice, because of the dynamic nature of 
semantics evaluation which requires a dynamic (meta) modeling tool. 

In this article, we elaborate an alternative definition for the OCL semantics. This 
proposal re-uses the OCL syntax metamodel, re-designs the OCL semantics 
metamodel by applying the ‘Visitor’ design pattern, and finally defines the relation 
between syntax and semantics through UML collaboration diagrams adhering to the 
DMM approach. In this way, circularity on the OCL definition is avoided, and 
intuitive communication is increased. Besides, the OCL math semantics was used as a 
foundation and guidance for the semantics definition. Although math semantics could 
be tedious and hard to understand, and demands users with more academic 
background, we showed that it could be translated into sequence diagrams offering a 
more readable and simple semantics metamodel. 

On the other hand, the adequate performance of the tools supporting OCL [12] [1] 
strongly depends on the quality of language definition. To count on a well-defined 
syntax and semantics will result in benefits for such tools. Also, it is almost 
straightforward to translate this semantics into a programming language such as Java, 
because of the proximity between sequence diagrams and programming languages. 

Finally, the application of the visitor pattern makes it easier the creation of new 
functionality over the OCL syntax structure and its integration into the CASE tool to 
get a powerful one. For example, concerning model transformations, it is possible to 
define OCL constraints transformations by adding a new “ visitor” for the OCL syntax 
hierarchy.  In this sense, we are working on the redefinition of the ePlatero evaluator 
[9] following the proposal presented in this article in order to analyze the potential 
advantages regarding the different indicators, such as reliability, efficiency, 
modifiability, etc. 
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