
Sugar for OCL

Jörn Guy Süß

Information Technology and Electrical Engineering
The University of Queensland, St. Lucia, 4072, Australia

jgsuess@itee.uq.edu.au

Abstract. Examples of OCL use often do not exceed a few lines. Larger
examples are rare, because the concrete syntax of OCL is verbose and
based exclusively on ASCII encoding. This makes it easy to edit OCL
in any environment, but hard to layout in a readable manner. A minor
issue like presentation affects use in a major way. This paper proposes
three shorthand notations, or syntactic sugars, for laying out OCL in
the Latex, HTML, and Unicode encoding systems. To avoid splitting
the available OCL source code base any further, flavours are convertible
via the base syntax. To allow benefit across the community, the repre-
sentations are OCL version-independent. To support recognisability, the
representations are visually very similar. To simplify reuse, definitions
are based on POSIX regular expressions and Unicode.

1 Introduction

While OCL today offers an substantial number of tools, its adoption as an indus-
try standard is still limited. Usage issues due to language semantics and tooling,
like the lack of modularisation, non-deterministic evaluation, the missing and in-
sufficiently formalized transitive closure operation and collection flattening have
been addressed successfully in the past[2,?] and seem to consolidate. OCL’s con-
crete syntax still seems to be an impediment:

Working with a UN-CEFACT group on the metamodel for the business lan-
guage UMM[8], which is formalized as a UML profile, I had to introduce the
workgroup to the use of OCL. It turned out that even simple examples quickly
filled the whiteboard. Points of emphasis were hard to make, due to the expansive
syntax. Thus I resorted to short symbols, borrowed from math, logic or impro-
vised in the process, but made clear that these were not standard compliant.
After collecting the workshop notes, I found that most participants had adopted
the shortened ad-hoc syntax and that those that had used it, had generally tried
out more and different formalisation solutions, and hence come up with better
ones on average, then those that had used the standard syntax.

After this experience, I applied the shorthand to the OCL contained in my
work of creating a UML Profile for small-scale enterprise integration, to save
print space. Section 4 shows two Well-formedness Rules from the UML 1.4.2

http://www.itee.uq.edu.au/
mailto:jgsuess@itee.uq.edu.au

standard. I then showed parts of the work to some colleagues who had previously
criticised OCL as ‘to bulky’ and ‘not mathematical’, to find increased acceptance,
purely because of a syntactic sugar.

Trying to apply this encouraging result, some underlying challenges and re-
quirements surfaced. Foremost, OCL is not a single language, which conforms
to a single grammar or meta-model, but a collection of languages with an over-
lapping concrete syntax. The published grammar in the UML 1.4.2 standard for
example cannot be directly converted into an LALR1 parser[12], which prompts
several dialects. The OCL 2.0 standard, although a great improvement, only
contains a non-normative concrete syntax section. Consequently, the use of a
parser to analyse source code is not very promising. Most OCL tools however
adhere to keyword and syntax conventions laid down in OCL 1.6 and to the
standard library of collection functions shown there. This proposal thus uses
OCL token patterns, rather than full parser analysis. This allows its applica-
tion even to unstructured or broken OCL code, which broadens applicability
and robustness of the approach. A technically and semantically viable form to
specify such ‘approximate matches’ is the use of regular expressions (REs). REs
are an established means to parse constructs from a token stream and have been
formalized, standardized and implemented to the degree of commoditisation.

The overall approach involves three steps: Determining what to abbreviate,
choosing a set of glyphs or symbols as abbreviations, which is both intuitive and
available within the different technical systems used to display and print OCL,
and determining how to find matching constructs. The paper is structured as
follows. The next section introduces the abbreviation syntax, treating both the
keyword selection and glyph system. Section 3 describes the portable technical
specification using REs, and section 5 investigates related approaches. Section 6
presents an outlook.

2 Abbreviating OCL

An abbreviation is a mapping from the range of OCL texts using keywords to
the domain of OCL texts using symbols. In section 2.1, we choose a common
symbol set for the domain and discuss some typeface conventions. The subse-
quent sections 2.2 to 2.7 discuss the range of abbreviations for structural parts,
collections, enumerations types, simple and collection operations, followed, each
arguing for the choice of symbol used. As a guideline symbols are introduced for
OCL constructs that are mandatory, like the structural parts, or used frequently,
like the zero-arity collection operations. Some operations are given shorter tex-
tual names. Each section finishes with a summary table.

2.1 Glyph System, Font and Typography

OCL source code intended for reading currently appears in two contexts: As
specification text in documents and as part of (UML) models. The notation
must cater to these contexts. Academics tend to use the Latex typesetting com-
piler to author specification documents; in the industrial context Microsoft Word
dominates. In addition, specifications are occasionally rendered as HTML doc-
uments. Modelling tools these days are either based on Java or directly on the
Windows operating system. We thus have to define abbreviations for two glyph
systems: Latex and Unicode1.

To present OCL more like a formula and less like a program, the notation
uses a proportional serif font, like ‘Times’, to typeset all text. This saves space
compared with a fixed-width typewriter font. However, serif fonts often do not
provide math symbols, so switching of fonts may be necessary. In Microsoft
Word for example, the ‘Times New Roman’ font supplies ASCII glyphs and a
few symbols, while the ‘MS PMincho’ font supplies the complete Unicode 1.4
Mathematical Operators[5] glyph range from hexadecimal 2200-22FF.

The summary tables in the following section give the literal OCL token that is
to be replaced, the Unicode abbreviation, symbol number and font, and the Latex
code and package, if required. To allow a large degree of portability, the Latex
symbols are derived from the mapping of ISO 8879:1986 entities to Latex by
Vidar Bronken Gundersen, Rune Mathisen[14]. The leftmost column shows the
required latex package or mode. The following sections suggest certain frequently
used parts of OCL for abbreviation.

2.2 Structural Parts

OCL source code breaks into packages, which contain context statements holding
invariants, definitions or pre- and post-conditions. This structure is abbreviated
as follows: Open and closed boxes define the boundaries of a package. The closed
box symbol further alludes to the symbol for the end of a mathematical proof.
The copyright symbol represents a context. The Greek lowercase lambda repre-
sents the ‘let’ abstraction, as in lambda calculus. Global definitions (‘def’) are
shown as a plus in a box, as they add derived features to the context. The three
state restricting stereotypes – invariant, and pre- and post- condition – use a
graphic metaphor of a program flow from top to bottom: A rhombus symbol
represents an invariant. The symbol alludes to the fact that invariants have to
hold before and after a change in the system. The rhombus widens, as invariant
conditions are broken and narrows again, as they are restored. Pre- and Post-
conditions appear as guards before (above) and after (below) the body of the
method, contained in the box. The ‘self’-reference of the instance is shown as an
arrow reverting to its origin. The summary can be found in Table 1.
1 Unicode is usable in HTML 4.01, Microsoft Word, the Windows operating system

and the Java Virtual Machine.

Syntax
Unicode Latex
abbrev. Code Font Code Package

package � 25A1 T \square amssymb

endpackage 25A0 T \block Isoent

context © 00A9 T \copyright -

inv ♦ 25CA T \diamond mathmode

let λ 03BB T \lambda mathmode

def � 229E M \boxplus amssymb

pre 2552 T \boxDr Isoent

post 2558 T \boxUr Isoent

self � 21BB M \circlearrowright amssymb

Table 1. Structural Parts

2.3 Collections

Definition constraints increase the power of OCL through modularisation. This
also leads to the usual challenges encountered in object-oriented programming
languages [6]. Although the definition of type signatures is optional in OCL,
explicit types are an invaluable aid in discovering errors and their use should be
encouraged. To this end the lengthy syntax for collection types is abbreviated
using three types of braces, common for sets in mathematics, lists in functional
programming languages and bags in the Zed[3] notation. The same notation can
also be used to express construction of a collection within OCL body text. The
summary is found in Table 2.

Syntax
Unicode Latex
abbrev. Code Font Code Package

Set(X) {X} 007B / 007D T \{ / \} mathmode

Sequence(X) [X] 005B / 005D T [] mathmode

Bag(X) 〈X〉 3008 / 3009 M \langle / \rangle mathmode

Table 2. Collections

2.4 Enumerations

Metamodels, like that of the UML, contain enumerations, which often have long
names to provide clarity, like VisibilityKind or ChangeableKind. The OCL syn-
tax requires that an enumeration value be declared with the full type and value
identifier. With long names, this takes up a lot of space. In fact, within the UML
standard’s own OCL well-formedness rules the type-name is generally left out.
We adopt this simplification and use a typewriter font to mark the enumeration

value as something extraneous to the model. This convention is obviously re-
stricted to models, in which the labels representing the enumeration values are
unique. Otherwise a mechanism is needed, which, if provided with the context,
returns the intended value to the replacement mechanism.

2.5 Simple Object Operations

Many simple operators have equivalent mathematical symbols, such as the basic
Boolean operators, absolute value function and string concatenation.

Syntax
Unicode Latex
abbrev. Code Font Code package

<> 6= 2260 T \not= mathmode

and
V

22C0 M \wedge mathmode

or
W

22C1 M \vee mathmode

not ¬ 00AC T \lnot mathmode

implies ⇒ 21D2 M \Rightarrow mathmode

.abs(x) |x| 007C T \vert x \vert mathmode

.concat(x) &(x) 0026 T \&(x)

Table 3. Simple Object Operations

2.6 Collection Operations

Different types of arrows distinguish collection operations without parameters
from those with parameters. Zero-arity operations are represented by a hook
arrow, and leave out the following brace; all other operations are shown with a
regular arrow with parameters inside the brace. To shorten the Latex notation
further, the operation name is shown atop, rather than behind, the arrow in
those notations.

Syntax
Unicode Latex
abbrev. Code Font Code package

->x() ←↩x 21A9 M \atop{x}{\hookleftarrow} mathmode

->x(y) →x(y) 2192 T \atop{x}{\rightarrow}(y) mathmode

Table 4. Simple Object Operations

Collection Operation Names The following operations from the areas of set
theory and predicate logic, functional programming and list manipulation, and
relational-calculus are used frequently in the definition of well-formedness rules.

The operations for set-theory use customary mathematical symbols. Only
the abbreviation for symmetricDifference is a composition. The two last opera-
tions -‘excluding’ and ‘including’ - use an exclamation mark to indicate that the
collection on which the operation is invoked is ‘changed’.

Syntax
Unicode Latex
abbrev. Code Font Code package

union
S

22C3 M \cup mathmode

intersection
T

22C2 M \cap mathmode

symmetricDifference
S
−

T
mathmode

isEmpty ∅ 2205 M \emptyset mathmode

includes ∈ 2208 M \in mathmode

excludes /∈ 2209 M \not\in mathmode

forAll ∀ 2200 M \forall mathmode

exists ∃ 2203 M \exists mathmode

excluding ⊂! 2282 M \subset mathmode

including ⊃! 2283 M \supset mathmode

Table 5. Collection Operation Names

The ‘select’, ’collect’ and ‘iterate’ operations are equivalents of basic opera-
tions from the field of functional programming. The operation ‘select’ also ap-
pears in the Relational calculus, where it is abbreviated as the lowercase Greek
letter sigma. This convention is also used here.

Syntax
Unicode Latex
abbrev. Code Font Code package

select σ 03C3 T \sigma Mathmode

collect map T Mathmode

iterate fold T

Table 6. Collection Operation Types

The ‘count’, ‘one’, ‘isUnique’ and ‘sum’ operations often occur in contexts
were cardinalities need to be enforced, like in database modelling. The question
mark used for the first three is meant to indicate that these are query operations,
which either query a variable (infix use) or a Boolean property (postfix use).

Syntax
Unicode Latex
abbrev. Code Font Code package

count |?| 007C T \vert ? \vert mathmode

one |1|? 007C T \vert 1 \vert ? mathmode

isUnique key?

sum
P

2211 T \sum mathmode

Table 7. Database and cardinality operations

Sequence operations are common when building constraints on access struc-
tures and in functional programming. The ‘any’ function is renamed, as it intro-
duces non-determinism, which probably deserves greater recognition.

Syntax
Unicode Latex
abbrev. Code Font Code package

append / 22B2 M \triangleleft mathmode

prepend . 22B3 M \triangleright mathmode

subsequence sub T mathmode

at # T # mathmode

any rnd! T

Table 8. Sequence and list operations

2.7 Types, Casts and States

Multiple inheritance and def ined additional attributes and operations often re-
quire the use of type operators in OCL programs. Unfortunately, the type op-
erators are relatively unwieldy, making it harder to write type-safe operations.
We abbreviate the type and kind concepts with Greek lowercase letters Tau and
Kappa, followed by a question mark for a predicate and an exclamation mark
for a cast. Similarly, the state and creation predicates are shown as a Greek
lowercase sigma (end of sentence variant) and nu. These are shown in Table 9.

3 Mapping Mechanism and Strategy

In order for the approach to work, the keywords and syntactic constructs out-
lined in the previous section cannot be used as variable names, as REs are not
aware of the context of occurrence. As all abbreviation patterns are disjunct,
the mappings are bijective. Thus, the concrete syntax notation can be used as a
pivot to translate, for example, Latex representation to HTML representation.
Each mapping is set up as a set of RE search-and-replace pairs.

Syntax
Unicode Latex
abbrev. Code Font Code package

oclIsKindOf(X) κ? 03BA T \kappa ?(X) mathmode

oclIsTypeOf(X) τ? 03C4 T \tau ?(X) mathmode

oclAsType(X) τ ! 03A4 T \tau !(X) mathmode

oclInState(X) ς? 03C3 T \varsigma ?(X) mathmode

oclIsNew() ν? 03BD T \nu? mathmode

Table 9. Types, Casts and States

3.1 Unicode

Translation between concrete syntax and Unicode does not have any issues.
Since both glyph systems do not allow font information, the abbreviation of
enumerations cannot be performed.

3.2 HTML

HTML 4.01 is used as the translation target standard. Translation from con-
crete syntax to HTML uses the numeric codes for Unicode entities. To express
enumerations, the HTML ‘code’ tag is used. The advantage of this tag is that it
is less presentation oriented, and hence less likely to be affected by presentation
mechanisms like Cascading Style Sheets. The abbreviation of enumerations must
be specifically fashioned for each meta-model. The HTML syntax does not use
the Math-ML standard. Math-ML is intended for the exchange and presenta-
tion of mathematical equations, while OCL is a computer language. The HTML
syntax also does not use textual entities, although they could be mapped in an
additional step.

For the mapping from concrete syntax, the text is first converted to HTML
without any change, then, the regular expression are applied. In order to work on
the encoded text, the regular expression also have to be encoded to use HTML
conventions. For all textual matches, the result is identical. The only clashes
with the HTML syntax arise for the equality (‘<>’) and collection operation
tokens (‘->’), which use the entities < and > instead.

For the mapping to concrete syntax, the process is reversed. First, the ab-
breviations are expanded to regular HTML, than HTML is converted back to
concrete syntax.

3.3 Latex

Latex 2e and the ISO entity package with its transitive dependencies are the basis
for the Latex mapping. All glyphs used in the abbreviations described above are

available in math mode. Thus, the OCL source code is translated to be included
in a ‘displaymath’ environment. This allows simplified later editing of documents,
because symbols do not have to be escaped. Further, it enables simple line num-
bering, using the ‘equation’ environment. Latex command syntax does not clash
with OCL syntax, as the backslash character is not allowed in any identifiers;
It is in the ‘inhibitedChar’ character set of the OCL 1.6 grammar[11]. Like in
the case of Unicode, the translation from concrete syntax is straightforward. It
can be reversed easily, after any additional latex formatting, like additional line
breaks, has been removed.

3.4 Implementation

The translation is implemented as a Java class, which is based on the Java Reg-
ular expression facility, which provides an implementation based on the POSIX
standard. The Microsoft .Net runtime also provides a regular expression engine.
The translation tables described above are laid down in comma separated value
files based on the ASCII character set. Unicode characters are abbreviated us-
ing the character escape mechanism. The Java class is provided with an input
stream, encoding and direction, and provides an output stream. The class only
applies the regular expression specified. If special processing steps are required,
as is the case with HTML, the class is wrapped up with an additional layer,
which provides the processing. In this implementation, a utility class from the
Java version of the W3C HTMLTidy project is used to perform the encoding.

4 Examples and Savings

As stated in the introduction, the examples below were taken from the UML
1.4.2 standard. Obviously, the quality of the notation cannot be assessed by a
simple count of original and reformatted glyphs. In our experience, page space
required to fit all of the UML’s WFRs was reduced about a quarter, while legi-
bility seemed improved. This observation is obviously subjective. Especially the
question, whether and when the advantage of brevity offsets the additional learn-
ing cost for the notation in novice users, probably cannot be decided without a
larger work-efficiency study based on sound methods of organisational or didactic
psychology.

On the examples below, it is worth noting, that in the layout of the UML
standard, the WFRs take up 9 and 10 lines respectively. To allow a fairer compar-
ison, the original source was reformatted not to break the page margin. Access
space in the pretty printed version was used to convey logical structure of the
statement.

4.5.3.10 Component [3] A Component may only have as residents DataTypes, Interfaces,

Classes, Associations, Dependencies, Constraints, Signals, DataValues, and Objects.

http://java.sun.com/j2se/1.4.2/docs/api/java/util/regex/Pattern.html
http://java.sun.com/j2se/1.4.2/docs/api/java/util/regex/Pattern.html
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemtextregularexpressions.asp
http://jtidy.sourceforge.net/multiproject/jtidyservlet/apidocs/org/w3c/tidy/servlet/util/HTMLEncode.html

�.allResidentElements
∀→(re | re.κ?(DataType) ∨ re.κ?(Interface) ∨ re.κ?(Class) ∨

re.κ?(Association) ∨ re.κ?(Dependency) ∨ re.κ?(Constraint) ∨ re.κ?(Signal) ∨
re.κ?(DataValue) ∨ re.κ?(Object))

self.allResidentElements->forAll(re |

re.oclIsKindOf(DataType) or re.oclIsKindOf(Interface) or

re.oclIsKindOf(Class) or re.oclIsKindOf(Association) or

re.oclIsKindOf(Dependency) or re.oclIsKindOf(Constraint) or

re.oclIsKindOf(Signal) or re.oclIsKindOf(DataValue) or

re.oclIsKindOf(Object))

4.10.3.4 Collaboration [1] All Classifiers and Associations of the ClassifierRoles and Associa-
tionRoles in the Collaboration must be included in the namespace owning the Collaboration.

�.allContents
∀→(e |

(e.κ?(ClassifierRole)⇒ �.namespace.allContents
∈→(e.τ !(ClassifierRole).base))∧

(e.κ? (AssociationRole)⇒ �.namespace.allContents
∈→(e.τ !(AssociationRole).base)))

self.allContents->forAll(e|(e.oclIsKindOf(ClassifierRole) implies

self.namespace.allContents->includes(e.oclAsType(ClassifierRole).base))

and (e.oclIsKindOf(AssociationRole) implies self.namespace.allContents

->includes (e.oclAsType(AssociationRole).base)))

5 Related Approaches

The Object-Z community uses a similar mechanism for dealing with different represen-
tations within the set of the Common Zed Tools (CZT)[10]. Here, a standard Unicode
representation is used as the pivotal representation of the Zed and Object-Z languages
to produce other renderings. However, that approach depends on a complete parse of
the source code. Also, Unicode encoded Zed sources are quite rare and latex representa-
tion is not easily convertible into it. The B language also offers a similar facility within
the jBTools suite[13], which allows conversion to HTML. However, in this suite, the
full complexity of the B language is restricted on input from concrete syntax in order
to allow conversion to an XML intermediate format known as B-XML. This is due to
the fact that the aim of the suite is to provide further services beyond presentation,
like type checkers and provers.

6 Summary and Outlook

In this paper we have shown how a flexible mechanism to abbreviate OCL concrete syn-
tax of different versions can be defined, used to transfer code between main areas of use
and flexibly implemented. Beyond this, the RE replacement approach could further be
used to remedy some shortcomings within the standard and fix tool incompatibilities.

In this context it acts much like a macro-processor would, transforming an con-
crete syntax with abbreviations into an expanded form. Three examples for such a

scenario would be a templating mechanism for transitive closures, the avoidance of
non-deterministic behaviour caused by the ‘any’ and ‘asSequence’ operations and fix-
ing parser incompatibilities. We will focus on the last two examples here.

6.1 Non-deterministic Behaviour

As OCL is an expression language, and makes intensive use of iterators, optimisation
options for its execution strongly depend on determinism of sub-expressions. Although
expressive in theory[2], the ‘any’, ‘asSequence’ and ‘iterate’ operations violate execu-
tion determinism. ‘any’ yields a (potentially different) element of a collection on each
execution. For this reason, the operation has been renamed ‘random’ in the above
listing. With a macro mechanism as explained in the preceding section, it would be
possible to replace the any operation with a deterministic variant specified (def ined)
in OCL. As a result, there would not be ambiguities in the computational semantics.
The ‘asSequence’ operation returns the content of a collection as a sequence. Order
is non-deterministic. Any order-dependent operations based on the resulting list may
hence yield different results. Here, the replacement mechanism could require the use of
a sorted operation, whose comparison predicate definition has to be provided by the
author. The predicate could be written to accept the most general type ‘OclAny’, and
then list case choices for each class for which a comparison is implemented. Finally, the
‘iterate’ operation is defined on collections, which leads to the same problem as indi-
cated for the ‘asSequence’ operation. With replacement, uses of iterate could generally
be restricted to be prefixed with a cast to a list, using the safe version of ‘asSequence’
previously outlined.

6.2 Parser incompatibilities

OCLE of Babes-Bolyai University [4], the Dresden OCL Toolkit[9] and the Kent Mod-
elling Framework [1] are three major tool suites for OCL. Except for the Dresden
Toolkit, all of them use textual notation to interchange OCL and all use parsers with
slightly different grammars. The differences between those notations are often minor.
For example, OCLE uses an optional ‘model’ construct to denote the underlying model
in a file, while the Dresden toolkit insists that a specification should start with a
‘package’ statement. KMF does not expect any structural parts, but works with OCL
Expressions only. Such minor inconsistencies could be resolved with the same infras-
tructure used above to achieve the abbreviation markup.

References

1. David H. Akehurst and B. Bordbar. On querying UML data models with OCL.
In Martin Gogolla and Cris Kobryn, editors, UML 2001 - The Unified Modeling
Language. Modeling Languages, Concepts, and Tools. 4th International Conference,
Toronto, Canada, October 2001, Proceedings, volume 2185 of LNCS, pages 91–103.
Springer, 2001.

2. Thomas Baar. Non-deterministic constructs in OCL – what does any() mean. In
Proc. 12th SDL Forum, Grimstad, Norway, June 2005, volume 3530 of LNCS,
pages 32–46. Springer, 2005.

3. S. M. Brien and J. E. Nicholls. Z base standard. Technical Monograph PRG-107,
Oxford uiversity computingh Laboratory, November 1992. Accepted for standard-
ization under ISO/IEC JTC1/SC22.

4. Dan Chiorean, Mihai Pasca, Adrian Cârcu, Cristian Botiza, and Sorin Moldovan.
Ensuring UML models consistency using the OCL environment. Electr. Notes
Theor. Comput. Sci, 102:99–110, 2004.

5. Unicode Consortium. The Unicode Standard, Version 2.0. Addison Wesley Pub-
lisher, Reading, Mass., 1998.

6. Alexandre L. Correa and Cláudia Maria Lima Werner. Applying refactoring tech-
niques to UML/OCL models. In Thomas Baar, Alfred Strohmeier, Ana M. D.
Moreira, and Stephen J. Mellor, editors, UML, volume 3273 of Lecture Notes in
Computer Science, pages 173–187. Springer, 2004.

7. Mark Davis. Unicode regular expression guidelines. Unicode Technical Report 18,
The Unicode Consortium, P.O. Box 700519, San Jose, CA 95170-0519, USA, Phone:
+1-408-777-5870, Fax: +1-408-777-5082, E-mail: unicode-inc@unicode.org, 1999.

8. Birgit Hofreiter, Christian Huemer, and Werner Winiwarter. OCL-constraints for
UMM business collaborations. In Kurt Bauknecht, Martin Bichler, and Birgit
Pröll, editors, EC-Web, volume 3182 of Lecture Notes in Computer Science, pages
174–185. Springer, 2004.

9. Heinrich Hussmann, Birgit Demuth, and Frank Finger. Modular architecture for a
toolset supporting OCL. In Andy Evans, Stuart Kent, and Bran Selic, editors, Proc.
3rd International Conference on the Unified Modeling Language (UML), volume
1939 of LNCS, pages 278–293. Springer-Verlag, 2000.

10. Petra Malik and Mark Utting. CZT: A framework for Z tools. In ZB, pages 65–84,
2005.

11. Object Management Group (OMG). Unified Modeling Language Specification, Ver-
sion 1.4, September 2001. http://cgi.omg.org/docs/formal/01-09-67.pdf.

12. Bernhard Rumpe. <<java>>OCL based on new presentation of the OCL-syntax.
In Tony Clark and Jos Warmer, editors, Object Modeling with the OCL, volume
2263 of Lecture Notes in Computer Science, pages 189–212. Springer, 2002.

13. Bruno Tatibouet. The jBTools b-suite for JEdit, 12 2003.
14. Rune Mathisen Vidar Bronken Gundersen. ISO character entities and their LATEX

equivalents, 12 2001.

http://cgi.omg.org/docs/formal/01-09-67.pdf

	Sugar for OCL
	Jörn Guy Süß

