
Sharing OCL Constraints by Using Web Rules

Milan Milanović1, Dragan Gašević2, Adrian Giurca3,

Gerd Wagner3, and Vladan Devedžić1

1 FON-School of Business Administration, University of Belgrade, Serbia
milan@milanovic.org, devedzic@etf.bg.ac.yu

2 School of Computing and Information Systems, Athabasca University, Canada

dgasevic@acm.org
3 Institute of Informatics, Brandenburg Technical University at Cottbus, Germany

Giurca@tu-cottbus.de, G.Wagner@tu-cottbus.de

Abstract. This paper presents an MDE-based approach to interchanging rules
between the Object Constraint Language (OCL) and REWERSE I1 Rule Mar-
kup Language (R2ML). The R2ML tends to be a standard rule markup lan-
guage by following up the W3C initiative for Rule Interchange Format (RIF).
The main benefit of this approach is that the transformations between languages

are completely based on the languages’ abstract syntax (i.e., metamodels) and
in this way we keep the focus on the language concepts rather than on technical
issues caused by different concrete syntax. In the current implementation, we
have supported translation of the OCL invariants into the R2ML integrity rules.
While most of the OCL expression could be represented in the R2ML and other
rule languages, we have also identified that collection operators could only be
partially supported in other rule languages (e.g., SWRL).

1. Introduction

The Unified Modeling Language (UML) [31] presents a de-facto standard for model-

ing object-oriented systems. In the UML, various model elements like classes or state

machines can be annotated by logical constraints defined by using the Object Con-

straint Language (OCL). In this way, UML models constrained by OCL expressions

are more accurate and complete. The OCL is today used in a number of tools, and it is

accepted as a standard by the OMG (Object Management Group); it can be also used

to define constraints on MOF (Meta Object Facility)-based metamodels [20]. The
OCL 2.0 specification [24] explicitly defines a concrete and an abstract syntax of the

language, i.e., a MOF-based metamodel and a textual concrete syntax.

In the research community, there have been a lot of efforts to enable sharing UML

models with other languages. One such effort is to share UML models and ontologies,

and thus enable the reconciliation of the Semantic Web and software engineering

communities [5][7][10]. However, none of the present efforts have so far considered

the problem of sharing OCL constraints with other types of constraint or rule lan-

guages such as Semantic Web Rule Language [13], F-Logic, or Jess. This has a con-

sequence that one can not translate OCL constraints defined on UML models into, for

example, corresponding constraints defined over OWL ontologies.

2

Nevertheless, the W3C consortium started an initiative called Rule Interchange

Format (RIF) [11], which tries to define a standard for sharing rules. That is, RIF

should be expressive enough, so that it can represent concepts of various rule lan-

guages. Besides RIF, one should also develop a (two-way) transformation between

RIF and any rule language that should be shared by using RIF. Currently, there is no

official submission to RIF, but the RuleML [12] and the REWERSE I1 Rule Markup

Language (R2ML) [32] are two well-known RIF proposals.

In this paper, we propose transformations between the R2ML and OCL to enable
interchanging OCL rules with other rule languages via R2ML. However, we want our

solution to be completely based on the abstract syntax of both languages, unlike other

similar approaches proposed in the context of rule interchange [30] that mainly focus

on a concrete syntax without efficient mechanisms to check whether the implemented

transformations are valid w.r.t. the abstract syntax. In this paper, we propose using

Model-Driven Engineering (MDE) principles and model transformations to address

this issue. This means that we have to provide a two way mapping between the OCL

and R2ML. The main benefit of such an approach is that we can actually map OCL

constraints into all other rule languages (e.g., SWRL, Jess, F-Logic, and Prolog) that

have mappings defined with R2ML. In our previous work [18], we defined technical

requirements for fully implementation of this approach, while in this paper we focus

on the details of the mappings between OCL and R2ML constructs. The mappings
between the OCL and R2ML include those OCL constructs which are interchangeable

with other rule languages, i.e., we have defined mappings of such OCL expressions

that could be represented in rule languages for which we have already defined map-

pings.

2. Motivation

In order to motivate sharing rules expressed in the OCL and R2ML, let us consider

the following UML model from Fig. 1 that represents an excerpt from the EU-Rent

Vocabulary Business Context. EU-Rent is a car rental company owned by EU-

Corporation and it is used as an example in the Semantics of Business Vocabulary and

Business Rules (SBVR) standard [28]. At the UML class Person, there is a following

OCL invariant defined: a barred driver is a person known to EU-Rent as a driver who

has at least 3 bad experiences. This invariant is in a UML note attached to the Person

class and shown on the UML diagram from Fig. 1.

Given the great diversity of rule concepts and existing rule languages, the R2ML

metamodel consists of overlapping metamodels for the following types of rules: inte-

grity, derivation, reaction, and production rules. This means, we first have to decide to

what type of R2ML rules we should transform the above OCL constraint. Having in

mind the nature of the OCL invariant above, which defines that something must be
true for all instances of that type at any time, we actually should transform the above

rule into an R2ML integrity rule, or more specifically an alethic integrity rule (see

more details about notion of R2ML integrity rules in Sect. 4.1) [32]. In general, we

can say that an OCL invariant, which is universally quantified formula over a set of

objects corresponding to the context in a form of an alethic integrity rule (necessity),

 3

can be translated to an R2ML rule. Due to the nature of the OCL invariants, it has to

be translated onto the R2ML integrity rule. In Fig. 2, we show the OCL invariant

from Fig. 1 in the R2ML XML-based concrete syntax. This R2ML alethic rule has a

universally quantified formula as its constraint, while this universally quantified for-

mula is an implication which is obtained from the OCL implies element. Mappings

between the OCL invariant shown in Fig. 1 and the R2ML rule shown in Fig. 2, will

be explained in detail in Sect. 4.3.

Fig. 1. OCL invariant and its corresponding UML class Person in the UML class diagram

Once we transform the OCL invariant into an R2ML alethic integrity rule, we can

further transform it onto all other rule languages supporting integrity rules by exploit-

ing the existing transformations for R2ML [26] (e.g., SWRL [18]). However, we
should mention here that we have supported only those OCL constructs which can be

translated into other rule languages (see Sect. 4.3 for details).

From the above facts, it is obvious that in both examples we use the concrete syntax

of the languages

(i.e., OCL and

R2ML). However, a

language is usually

defined by its ab-

stract syntax (i.e.,

metamodel), while

concrete (visual or
textual) syntax is

employed to

represent physically

rules. Thus, defining

and implementing

mappings between

languages should be

done on the level of

their abstract syntax,

as this actually al-

<r2ml:AlethicIntegrityRule>

 <!--Namespace definitions are omitted to reduce the size of this example-->

 <r2ml:constraint>

 <r2ml:UniversallyQuantifiedFormula>

 <r2ml:ObjectVariable r2ml:name="person" r2ml:classID="ex:Person"/>

 <r2ml:Implication>

 <r2ml:antecedent>

 <r2ml:DatatypePredicateAtom

 r2ml:datatypePredicateID="swrlb:greaterThan">

 <r2ml:dataArguments>

 <r2ml:DatatypeFunctionTerm r2ml:datatypeFunctionID="fn:count">

 <r2ml:dataArguments>

 <r2ml:AttributeFunctionTerm

 r2ml:attributeID="ex:badExperience">

 <r2ml:contextArgument>

 <r2ml:ObjectVariable r2ml:name="person"

 r2ml:classID="ex:Person"/>

 </r2ml:contextArgument>

 </r2ml:AttributeFunctionTerm>

 </r2ml:dataArguments>

 </r2ml:DatatypeFunctionTerm>

 <r2ml:TypedLiteral r2ml:lexicalValue="3"

 r2ml:datatypeID="xs:integer"/>

 </r2ml:dataArguments>

 </r2ml:DatatypePredicateAtom>

 </r2ml:antecedent>

 <r2ml:consequent>

 <r2ml:ObjectClassificationAtom r2ml:classID="ex:BarredDriver">

 <r2ml:ObjectVariable r2ml:name="person" r2ml:classID="ex:Person"/>

 </r2ml:ObjectClassificationAtom>

 </r2ml:consequent>

 </r2ml:Implication>

 </r2ml:UniversallyQuantifiedFormula>

 </r2ml:constraint>

</r2ml:AlethicIntegrityRule>

Fig. 2. An R2ML (alethic) integrity rule equivalent to the OCL inva-

riant from Fig. 1

4

lows us to focus on mappings between language constructs, rather than on the imple-

mentation details of their concrete syntax. Being driven by this approach, in the rest

of the paper, we describe mappings between R2ML and OCL on the level of their

abstract syntax, and yet bridge the gap between R2ML and OCL’s abstract and con-

crete syntax by using MDE principles.

3. Model Transformations for Rules

In this section, we summarize transformation chain used to implement mappings

between two languages, while the detailed discussion on the technical requirements is

given in [18]. The first step (see Fig. 3) is between OCL rules (invariants) represented

in the OCL concrete syntax (i.e., in the EBNF technical space) and models compliant

with the OCL metamodel (in the MOF technical space) [24]. In the second step, the

MOF-based OCL rules obtained (i.e., OCL models) are transformed to R2ML models

compliant with the R2ML metamodel. In the third step, R2ML models are trans-
formed into the XML models (i.e., instances of the XML metamodel) by using trans-

formations that we created in our previous work for bridging between the R2ML

abstract and concrete syntax [19]. Finally, in the fourth step, such XML models (from

the MOF technical space) are serialized into the R2ML XML format (compliant with

the R2ML XML Schema) by using the ATL XML Extractor tool.

Having in mind all the above transformations, we have the core of the solution that

is based on abstract syntax, but we actually can transform between OCL invariants

and R2ML XML-based rules.

Fig. 3. The transformation scenario between OCL and R2ML

4. Mappings between R2ML and OCL

In this section, we first describe the parts of the R2ML abstract syntax relevant for
representing OCL rules. We then describe the OCL abstract syntax, and finally, map-

pings between R2ML and OCL in detail.

 5

4.1 R2ML Abstract Syntax

The R2ML metamodel is defined by using the MOF metamodeling language.

R2ML supports four kinds of rules, namely, integrity rules, derivation rules, produc-

tion rules, and reaction rules. R2ML covers almost all of the use case requirements of

RIF [11]. Although OCL can represent both integrity constraints and derivation rules,

we only describe R2ML integrity rules here. An integrity rule, also known as (integri-

ty) constraint, consists of a constraint assertion, which is a sentence in a logical lan-

guage such as first-order predicate logic or OCL (see Fig. 4). The R2ML framework

supports two kinds of integrity rules: the alethic and deontic ones. An alethic integrity
rule can be expressed by a phrase, such as “it is necessarily the case that” and a deon-

tic one can be expressed by phrases, such as “it is obligatory that” or “it should be the

case that.”

The corresponding LogicalFormula must have no free variables, that is, all the va-

riables from this formula must be quantified. R2ML defines the general concept of

LogicalFormula (see Fig. 5) that can be Conjunction, Disjunction, NegationAsFai-

lure, StrongNegation, and Implication. The

concept of a QuantifiedFormula is essential for

R2ML integrity rules, and it subsumes existen-

tially quantified formulas and universally quan-

tified formulas. Fig. 5 also contains elements

such as AtLeastQuantifiedFormula, AtMost-

QuantifiedFormula, and AtLeastAndAtMost-

QuantifiedFormula for defining cardinality

constraints with R2ML rules. Atoms are basic constituents of formulas in R2ML, and

they together with formulas correspond to the boolean OCL expressions. Atoms are

compatible with all important concepts of UML and OCL. R2ML distinguishes object
atoms, data atoms, and generic atoms.

Fig. 5. The concept of a logical formula in R2ML

Terms are the basic constituents of atoms, which can be viewed as a first-order

predicate-logic-based version of the OCL metamodel fragment of non-Boolean OCL

expressions. Similarly to atoms, the R2ML language distinguishes between object
terms, data terms and generic terms. We here describe only data terms due to the size

limit, while object and generic atoms are defined in a similar way. A DataTerm is a

DataLiteral, DataVariable, or DataFunctionTerm that can be DataOperationTerm,

AttributeFunctionTerm, and DatatypeFunctionTerm (see Fig. 6).

Fig. 4. The metamodel of integrity rules

6

Fig. 6. R2ML Data Terms

A DataOperationTerm is formed with the help of a contextArgument, a user-

defined operation, and an ordered collection of arguments. The AttributeFunction-

Term corresponds to a datatype attribute in a UML class model. DatatypeFunction-

Term is represented with datatypeFunction and dataArguments. DataVariable stands

for plain data types, while DataLiteral can be PlainLiteral and TypedLiteral with

some datatype.

4.2 OCL Abstract Syntax

The OCL metamodel (i.e., abstract syntax for OCL version 2.0) is also defined by

using MOF [24]. In this abstract syntax, a number of meta-classes from the UML 2.0

metamodel are imported [31]. The OCL metamodel is divided into several packages:
the Types package describes the concepts that define the type system of OCL. It

shows the types predefined in OCL as well as the types that are deduced from the

UML models; the Expressions package describes the structure of OCL expressions;

and the EnhancedOCL1 package that we have added to the standard OCL metamodel

to represent invariant constructs that are not supported in the standard OCL.

The Expressions package defines kinds of OCL expressions. An overview of the

inheritance relationships between all classes defined in the package is shown in Fig. 7.

The basic structure of the package consists of the OCL metamodel classes such as

OclExpression that is an abstract superclass for all OCL expressions; and Feature–

CallExp that is superclass for the OperationCallExp and PropertyCallExp classes.

OperationCallExp represents an operation defined on a Classifier, while Property–

CallExp models a reference to an Attribute of a Classifier defined in a UML model.

1 We are very grateful to Mr. Mariano Belaunde for his generous help in defining the Enhance-

dOCL package.

 7

Fig. 7. The basic structure of expressions in the OCL metamodel

Since the standard specification of the OCL metamodel [24] does not contain sup-

port for OCL invariants, we introduced the EnhancedOCL package. This package

contains the Invariant class, as a subclass of the OclModuleElement class (see Fig. 8,

white classes are from the UML metamodel, white gray colored ones are from the

standard OCL metamodel and dark gray are classes that we have defined).

Fig. 8. Elements of the EnhancedOCL package in the OCL metamodel

OclModuleElement represents a superclass for following elements: OCL invariant

elements (represented with the Invariant class); OCL operations and properties, i.e.,

“def” elements (represented with the abstract class OclFeature) that are represented

with classes OclOperation and OclProperty, respectively; and OCL derivation rules,

i.e., "derive" elements (represented with class DeriveOclModuleElement).

OclModuleElement contains a definition of an invariant context that is represented

with the OclContextDefinition class. In addition, the OclModule class is introduced to

8

represent a basic class in an OCL model, and it contains other OclModuleElements.

We also added the OperatorCallExp class into the standard expression package of the

OCL metamodel to represent operation call expressions that use operators, and it

inherits OperationCallExp class. We had to do this in order to be able to develop the

OCL parser that fully covers all OCL constructs. Due the limited size for this paper,

we do not show these classes and their relations.

4.3 Conceptual mappings between OCL and R2ML

In order to share rules between OCL and R2ML, we have defined isomorphic map-

pings between certain constructs of OCL and R2ML on the level of their abstract

syntax. Every OCL invariant which is in the form of an OCL implies is mapped to an

R2ML AlethicIntegrityRule whose constraint is a UniversallyQuantifiedFormula,

while its formula is an Implication mapped from an OCL implies element. Besides

OCL implies expression, we have supported all other OCL expression that can be

written in invariants. We further expand the mappings between OCL and R2ML to

specify mappings between elements that are part of OCL and R2ML expressions. In

Table 1, we give an excerpt of the mappings that we defined between both languages

metamodels. The complete mappings between the R2ML and OCL metamodels con-

tain 37 rules. In the rest of this subsection, we describe the mappings of the main
OCL expressions, which could be used in invariants, into the R2ML. As an illustra-

tion, we refer to the EU-Rent case study shown in Fig. 1. (N.B. every OCL invariant

expression is defined in the context of a UML Class such as context RentalCar).

 OCL attribute (e.g., self.age), which is represented in the OCL metamodel as

OperatorCallExp, is mapped into an R2ML AttributionAtom, which consists of an
object term as “subject” and a data term as “value“. For example, startDate(r1,

sd), where startDate is an attribute, r1 is an object term (subject), and sd is a data

term (data value). Note that the AttributionAtom, as well as all other R2ML atoms,

inherit the Atom class shown in Fig. 5.

 OCL operation call, which is represented in the OCL metamodel as Operation-

CallExp, is mapped:

 to R2ML DataOperationTerm, if the operation call returns a primitive OCL

datatype. The DataOperationTerm refers to a non-state-changing user-de-

fined Operation and consists of a list of data or object arguments and an ob-

ject term as a context argument. The result of an Operation is a data term

(value). An example of a DataOperationTerm is x.getAge(), which returns

the age of a car x. The DataOperationTerm corresponds to a Java path ex-

pression calling an operation which returns a datatype as result (e.g., int).

 to R2ML ObjectOperationTerm, if the operation call returns an object. The
ObjectOperationTerm refer to a non-state-changing operation. The ObjectO-

perationTerm may have data terms and object terms as operation arguments

and is evaluated to an object. For example, the expression x.getLastRental(),
which returns the last rental of a rental car, is an object operation term,

where getLastRental() denotes an operation and x is the context argument

(see Fig. 1). The ObjectOperationTerm corresponds to a Java path expres-

sion calling an operation which returns an object as result.

 9

 A UML association is navigated in the OCL by using its opposite association end

(in the OCL metamodel, this is represented with PropertyCallExp). If the maximal

multiplicity of the association end is 1 (i.e., cases “0..1” or “1”), then the value of

this expression is an object, and such an expression is mapped into an R2ML Re-

ferencePropertyFunctionTerm. The R2ML ReferencePropertyFunctionTerm is a

function, which returns the value of an association end for a given object. For ex-

ample, the expression x.pickupBranch, where pickupBranch is an association end

name of a Branch in the association between classes Rental and Branch (see Fig.

1) is a reference property function term, where x is an object term and pickup-

Branch is a reference property. However, if the multiplicity of the association end

is more than one (“*”), then the navigation will result in a Set, and such an expres-

sion is mapped into an R2ML AttributeFunctionTerm (with “set“ as the type cate-
gory). The AttributeFunctionTerm refers to an attribute and an object term as a

context argument. For example, the expression x.reservationDate is an attribute

function term, where x is an object term and reservationDate is an attribute of

class Rental. When the association is adorned with {ordered}, the navigation re-

sults in an OrderedSet and in this case the AttributeFunctionTerms type category

is “orderedSet.” For two other kinds of collections (Bag and Sequence), the Attri-

buteFunctionTerm has corresponding type categories.

 OCL collections may have a large number of predefined collections operations

on them (e.g., the size operation, which returns the number of elements in a collec-

tion, or the isEmpty operation, which returns true if the collection is empty or false

otherwise). These operation calls (represented in the OCL metamodel with Opera-

tionCallExp) are mapped into the R2ML DatatypePredicateAtoms, in the case

when on the left side of the equality operator is collection operation call and on

the right side is any other OCL expression (e.g., badExpirience->size()=1). The

operation calls are also mapped into the R2ML DatatypePredicateAtoms, in the

case when a collection operation call on an association end (with multiplicity more

than one) is evaluated to a boolean value (e.g., badExpirience->isEmpty). The Da-

tatypePredicateAtom describes a relation between several data terms, using a data

predicate which represents a SWRL built-in function [13] that is translated from
the operation on a collection. For example, self.badExpirience->isEmpty() is

translated into an R2ML DatatypePredicateAtom where „swrlb:empty“ is data

predicate and self is an AttributeFunctionTerm (with the Person class as an object

term) with “bag“ as the type category. In the case of the notEmpty operation, the

DataTypePredicateAtom is negated (with the property isNegated, which is set to

true). However, in case when the collection operation call is used in an expression

with comparison operators to some other evaluated expression (e.g.,

self.badExperience->size()>3), the collection operation call is mapped into an

R2ML DatatypeFunctionTerm, where the collection operation call is translated in-

to the (XPath) datatype function. We have made this decision because comparison

operators (other than equality) are mapped into DatatypePredicateAtoms whose

arguments must be terms. For example, the OCL size operation is translated into

the XPath count operation. Besides this, we have also a special case when the col-

lection operation call returns just one element, but not the entire collection (e.g.,

the first operation), in which case the operation call is mapped into an R2ML Ob-

jectOperationTerm.

10

 OCL equality operation between two association ends, which is represented in

the OCL metamodel with OperationCallExp, is mapped into an R2ML Referen-

cePropertyAtom. The ReferencePropertyAtom associates object terms as “sub-

jects” with other object terms as “objects.” For example, returnBranch(r1, rb),

where returnBranch is a reference property and r1 (subject) and rb (object) are

object terms. In the case of the inequality operator, the property isNegated of the

ReferencePropertyAtom is set to true. Note that translation of any negated OCL

expression (denoted with “not” operator) into an R2ML atom is done by setting

property isNegated of such atom to true.

 OCL oclIsKindOf(t) operator, which is a property that determines whether t is

either the direct type or one of the supertypes of an called object, is mapped into

an R2ML ObjectClassificationAtom. The ObjectClassificationAtom consists of a
class type (as “base type”) and an object term, variable, constant or function term.

ObjectClassificationAtom accommodates the concept of an OperationCallExp in

the OCL metamodel with a TypeExp argument (e.g., Rental(r1)).

 OCL implies operation, which is represented in the OCL metamodel as Opera-

tionCallExp, is mapped into an R2ML Implication. The R2ML Implication con-

sists of an antecedent (body) and a consequent (head), each of which consists of a

set of atoms.

 In R2ML, functions range over individuals, like in standard first-order predicate

logic. Since OCL allows function terms (such as navigation call expressions) to

range over sets (more precisely, collections) and because the current R2ML me-

tamodel does not support collections, the R2ML only captures a fragment of the

OCL collection expressions. This will be subject for the future work to allow set-

valued functions in the R2ML metamodel and then to provide a full support for

such OCL expressions.

 In the current implementation, we have partially supported following OCL collec-

tion operations: select, reject, includesAll, and forAll. Due to size of this paper
we do not describe mapping of every operation in detail. As an example, we may

say that the select operation (represented in the OCL metamodel as IteratorExp),

which specifies a subset of a collection, is mapped into an R2ML Conjunction of

an AttributionAtom and ExistentiallyQuantifiedFormula. The AttributionAtom

represents a mapping of an association end which is a collection, and the Existen-
tiallyQuantifiedFormula is mapped from the select’s boolean expression (also, ite-

rator variables are mapped into the R2ML GenericAtoms). Note that there a con-

straint here, that is, we have only supported the translation of the following select

construct: collection->select(v | boolean-expression-with-v), where v is called

iterator variable. When the select construct is evaluated, v iterates over the collec-

tion and the boolean-expression-with-v is evaluated for each v. The v variable is a

reference to the object from the collection and can be used to refer to the objects

themselves from the collection (e.g., self.employee->select(age>10)-

>notEmpty()). In a similar way, we have mapped other collection operations.

 OCL tuple type, which is used to compose several values and consists of named

parts and which is represented in the OCL metamodel with TupleLiteralExp, is

mapped into the R2ML ObjectDescriptionAtom. The ObjectDescriptionAtom re-

fers to a class as a base type and to zero or more classes as categories, and consists

of a number of property/term pairs (i.e., R2ML attribute data term pairs and refer-

 11

ence property object term pairs). Any instance of such atom refers to one particu-

lar object, that is referenced by an objectID, if it is not anonymous.

Using the mappings between OCL and R2ML presented in above and shown in

Table 1, we now illustrate the transformation process by using the example of the

OCL rule from Fig. 1 and its corresponding R2ML rule from Fig. 2. As we have al-

ready mentioned, the OCL invariants (Invariant elements from Fig. 8) are trans-

formed into R2ML integrity rules (AlethicIntegrityRule elements from Fig. 2). An

OCL Implies element (i.e., OperationCallExp class with name “implies”) is trans-

formed to an R2ML AlethicIntegrityRule (shown in Fig. 4) with UniversallyQuanti-

fiedFormula element as its constraint, where UniversallyQuantifiedFormula has an
Implication for its formula. The R2ML ObjectVariable in the R2ML Universally-

QuantifiedFormula element is obtained by transforming the contextual class (Class

element) from the OCL Invariant element (shown in Fig. 8). As it is shown in Table

1, an OCL operator call expression (OperatorCallExp element) which with name “=”,

is transformed into an R2ML AttributionAtom element, where the OCL OperatorCal-

lExp’s source element is transformed into the AttributionAtom’s attribute element

(i.e., Attribute class). The R2ML AttributionAtom’s dataValue element is obtained

from the OCL OperatorCallExp’s argument element. The OCL OperatorCallExp “>”

is transformed into an R2ML DatatypePredicateAtom, and an OCL OperationCal-

lExp, represents an operation call, is transformed into an R2ML DataOperationTerm,

if such an operation returns a data value, otherwise, it is transformed to an R2ML

ObjectOperationTerm.

Table 1. An excerpt of mappings between the R2ML metamodel elements and the OCL meta-

model elements

R2ML metamodel OCL metamodel
RuleBase OclModule

AlethicIntegrityRule Invariant

Conjunction OperatorCallExp (name = 'and')

Implication OperationCallExp (name = 'implies')

AttributionAtom
OperatorCallExp (name = '=')

 source = PropertyCallExp (subject)

ObjectVariable VariableExp

ReferencePropertyFunctionTerm

PropertyCallExp

 referredProperty (name = 'property')

 source = VariableExp

ObjectOperationTerm CollectionOperationCallExp

DatatypePredicateAtom
OperatorCallExp (name = ">")

 source = OperationCallExp

DataOperationTerm OperationCallExp

5. Implementation Experience

In this section, we explain the transformation steps undertaken to transform between

OCL invariants and R2ML integrity rules. Here we refer to Fig. 3 from Section 3.3 in

order to position each specific transformation/step in this process of transformation.

As we have already mentioned in Section 3.3, the transformation process between

R2ML and OCL is split into four major steps.

12

Step 1. In this step, we bridge between the OCL (EBNF-based) concrete syntax
and the OCL abstract syntax (i.e., OCL metamodel). Because the OCL textual con-

crete syntax is located in the EBNF technical space, we need to create an instance of

the OCL metamodel (abstract syntax) in the MOF technical space. To do this, we first

use the EBNF injector, (see Fig. 3, step 1: EBNF injection), a part of the ATL toolkit,

and the OCL Lexer and Parser. We generated the OCL Parser and Lexer by using the

TCS (Textual Concrete Syntax) tools which are also part of the ATL toolkit [15]. TCS

represents domain specific language (DSL) for defining textual concrete syntax in

MDE. The OCL Parser automatically transforms OCL invariants like the one given in

Fig. 1 into the models conforming to the MOF-based OCL metamodel. Once we
created the OCL TCS and generated OCL Parser and Lexer based on it, the EBNF

injector takes for input the OCL metamodel, OCL code that we want to parse (as .ocl

textual file), generated OCL Lexer and Parser, and it returns a MOF-based OCL mod-

el as output. Once we inject OCL invariants into a MOF-based representation (OCL

Rule in Fig. 3), we can manipulate with them like with any other MOF-based model.

Step 2. This step is the core of our transformation between the OCL abstract syn-
tax (i.e., OCL metamodel) and the R2ML abstract syntax (Fig. 3, step 2). This trans-

formation step is fully based on the conceptual mappings between the elements of the

OCL and R2ML metamodel described in Section 4.2. The transformations between

the OCL metamodel and the R2ML metamodel are defined as a sequence of rules in

the ATL language (see Fig. 3, OCL2R2ML.atl and R2ML2OCL.atl).

Step 3. In order to serialize the R2ML model (from the MOF technical space) that
is obtained in the previous step into the R2ML XML concrete syntax (i.e., to the

XML technical space), we first need to use the R2ML2XML.atl transformation (Fig.

3, step 3) to get an XML model from R2ML model. After applying this transforma-
tion to the input R2ML model XML models are stored in the model repository

(R2ML rule - XML model from Fig. 3). The output XML model conforms to the

XML metamodel. Such XML model is serialized into the R2ML XML format in the

next step. [19] gives details about bridging the R2ML concrete and abstract syntax.

Step 4. The step is the XML extraction from the MOF technical space to the XML
technical space (Step 4 in Fig. 3). We transform the XML model (shown in Fig. 3)

which conforms to the MOF-based XML metamodel and is generated in step 3 to an

R2ML rule represented the R2ML XML concrete syntax, which is shown in Fig. 2.

An R2ML rule in the R2ML XML concrete syntax can be transformed into some

other language for which there is a translator defined with the R2ML language [27]

[25]. We have also defined the opposite transformations, from the XML metamodel

into the R2ML metamodel (XML2R2ML.atl in Fig. 3), and from the R2ML metamo-

del into the OCL metamodel (R2ML2OCL.atl in Fig. 3). As the ATL toolkit has the
XML Injector tool, that can transform an R2ML rule from the R2ML XML concrete

syntax into the XML metamodel (i.e., the MOF technical space), such an XML model

can then be transformed into an R2ML model by using the XML2R2ML.atl transfor-

mation. As well, by using the R2ML2OCL.atl transformation, we can transform that

R2ML model into the OCL model. The ATL toolkit has also the EBNF extractor tool

that can extract an OCL model (i.e., from the MOF technical space) into the OCL

concrete textual syntax by using the OCL TCS that we defined. In this way, we have

enabled a round-trip engineering between the R2ML general rule interchange lan-

guage and the OCL language).

 13

6. Discussion

The transformations implemented between the OCL and R2ML abstract syntax com-

prise translation of the OCL invariants. However, we have yet not finalized the im-

plementation of all OCL iterator construct variations (e.g., select, forAll, and collect),

because those constructs do not exists in other rule languages, and thus R2ML. Our

current transformations do not support the full transformation of all UML class re-

lated elements (e.g., associations) to R2ML. In the future, we plan to support fully the

translation of all UML (core) model elements into the R2ML Vocabulary. This will

enable us to recognize property types in the OCL textual concrete syntax (e.g., when a
property is referenced via another property). With the currently implemented solution,

we can translate an OCL invariant from Fig. 1 into R2ML rule (see Fig. 2) and then

into some other language for which there is a transformation with R2ML already

defined. For example, we can translate that OCL invariant into a SWRL rule [13], as

we have defined transformations between SWRL and R2ML [18].

As we have shown in this paper, our transformations can translate OCL invariants

into the R2ML integrity rules. However, our OCL Parser also supports OCL deriva-

tion rules (i.e., "derive" expressions), and we plan to extend our transformations be-

tween OCL and R2ML to enable for the translation between OCL derive rules and

R2ML derivation rules. Generally, this will only require adding rules for translating

head of OCL derive rules, since their body expression is the same as in invariants

(and that is represented with the OclExpression element in the OCL metamodel).

Once we support derivation rules, it will be possible to translate OCL rules into F-
Logic, Jess, RuleML, which are supported by the present R2ML translators for deri-

vation rules [27].

We have tested our transformations between OCL and R2ML on 25 OCL invariant

examples which included all of the OCL expressions described in Sect. 4.3. Those

OCL invariants are collected from different sources such as EU Rent case study [9],

Warmer and Kleppe’ book [25], and Dresden OCL Toolkit (i.e., OCL test and demon-

stration constraints) [8]. All these OCL invariants are also translated to SWRL [13]

via R2ML. Note also that the complete source code of the transformations presented

can be found in the ATL Transformations Zoo [1] [2].

7. Conclusion

In this paper, we have shown how to transform rules between R2ML and OCL by

employing model transformation principles. We have mapped OCL invariants into the

R2ML integrity rules, and thus we enabled sharing OCL invariants with other rule

languages. In the current implementation, we support only OCLL invariants, but in

the next versions of our transformation, we plan to support other kinds of the OCL

constraints (i.e. derive, init, pre- and post- conditions), which we have already sup-
ported in the TCS-based parser and lexer for OCL. The mappings between R2ML and

OCL do not cover OCL collection operators completely, but just a basic ones (as it

has been shown in Sect. 4.3). We have made this decision since all of the OCL collec-

tion operations could not be represented in the R2ML, because the R2ML does not

support collection operators as OCL does. Note that the desing of the R2ML is based

14

on a hypothesis that most of web rule languages (e.g., F-Logic, Jess, JenaRules, ILOG

JRules, and JBoss Rules) do not have collection operators supported in OCL. The

transformation implementation is done by using the ATL (between OCL and R2ML,

and the R2ML MOF-based abstract syntax and R2ML XML schema) and the TCS

(between the OCL MOF-based abstract syntax and the OCL textual concrete syntax).

The solution presented in this paper represents the first practical example of ap-

proaching Web and Software engineering rule and constraints standards, after the

activities done in the ODM standardization [10]. To the best of our knowledge, there
is no available solution of mapping between Web rule languages and OCL, and thus

our solution represents an important contribution to the further reconciliation of the

software engineering and Web communities. We hope that our results will stimulate

collaborative research of the two communities, so that the designs of rule languages

(e.g., RIF) will integrate needs and best practices of both communities. For example,

in this paper, we demonstrated that the current Web rule languages (R2ML and RIF)

do not have support for advance OCL collection operators, and this could be an im-

portant input of the OCL community to the RIF standardization efforts. This could the

allow developers to leverage OCL when model Semantic Web applications.

A similar approach to ours is applied in the ODM specification [21] where the

(model) transformations between OWL and the languages such as UML, Topic Maps,

and ER models are defined on the level of their abstract syntax (i.e., metamodels).
Our solution goes one step further and demonstrates how to bridge between concrete

and abstract syntax of rule languages. Besides the obvious benefit of developing

transformations between rule languages on the level of abstract syntax, the use of

model transformations and languages such as ATL is more suitable than XSLT. Al-

though, in principle, we could use XSLT to map between abstract syntax thanks to

XMI in which all MOF-based metamodels can be stored, the available analysis of the

use of XSLT for sharing knowledge indicates that XSLT is hard to maintain where

modifications of input and output formats can completely invalidate previous versions

of XSLTs [14].

We are now in the phase of the evaluation of the results of the translation between

the OCL and R2ML languages, and potentials for sharing rules between OCL and
other rule languages via R2ML. In this paper, we just reflected on an exchange with

the SWRL language, while our subsequent analysis will fully explore this exchange

and exchange of OCL constraints with other relevant rule languages such as Jess,

Jena, and F-Logic. In our future publications, we are going to report on transforma-

tion implementation in more detail and evaluation results. We also plan to use this

approach to provide mappings between R2ML, Web services, and policy rule-based

languages (e.g., KAoS and Rei). This will enable modeling Web services and policies

by using MDE principles and will be a further reconciliation of Web research efforts

with MDE principles.

8. References

1. ATL Scenario OCL to R2ML,
http://www.eclipse.org/m2m/atl/atlTransformations/#OCL2R2ML.

2. ATL Scenario: R2ML to OCL:
http://www.eclipse.org/m2m/atl/atlTransformations/#R2ML2OCL.

 15

3. ATL Scenario: R2ML to SWRL,
http://www.eclipse.org/m2m/atl/atlTransformations/#R2ML2SWRL.

4. ATLAS Transformation Lang. (ATL). http://www.sciences.univ-nantes.fr/lina/atl, 2006.

5. Baclawski, K., et al. “Extending the Unified Modeling Language for ontology develop-
ment,” Software and Systems Modeling, Vol. 1, No. 2, 2002, pp. 142-156.

6. Bézivin, J. “On the unification power of models,” Software and System Modeling, vol. 4,
no. 2, pp. 171-188, 2005.

7. Cranefield, S. “UML and the Semantic Web,” In Proc. of the Int’l Semantic Web Work.
Symp., Stanford University, CA, USA, 2001.

8. Dresden OCL Toolkit, http://dresden-ocl.sourceforge.net.

9. EU Rent Case Study, http://www.eurobizrules.org/ebrc2005/eurentcs.
10. Gašević, D., Djurić, D., Devedžić, V., Model Driven Architecture and Ontology Develop-

ment, Springer, Heidelberg-Berlin, 2006.
11. Ginsberg, A. “RIF Use Cases and Requirements,” W3C Working Draft,

http://www.w3.org/TR/rif-ucr/, 2006.
12. Hirtle, D., et al. “Schema Spec. of RuleML 0.91,” http://www.ruleml.org/spec/, 2006.
13. Horrocks, I., et al. “SWRL: A Semantic Web Rule Language Combining OWL and Ru-

leML,” W3C Member Submission, http://www.w3.org/Submission/SWRL, 2004.
14. Jovanović, J. & Gašević, D. “XML/XSLT-Based Knowledge Sharing,” Expert Systems

with Applications, vol. 29, no. 3, 2005, pp. 535-553, 2005.
15. Jouault, F., Bézivin, J., Kurtev, I., "TCS: Textual Concrete Syntax", In Proceedings of the

2nd AMMA/ATL Workshop ATLAS group (INRIA & LINA), Nantes, France, 2006.
16. Kurtev, I., Bézivin, J., & Aksit, M. “Technological Spaces: an Initial Appraisal,” In Pro-

ceedings of the CoopIS, DOA'2002 Federated Confs., Industrial track, Irvine, USA, 2002.

17. Miller, J. & Mukerji, J., Eds. “MDA Guide Version 1.0.1,” OMG Doc. omg/03-06-01,
http://www.omg.org/cgi-bin/doc?omg/03-06-01, 2003.

18. Milanović, M., et al. “On Interchanging between OWL/SWRL and UML/OCL,” In Proc. of
the 6th WSh on OCL for (Meta-)Models in Multiple Application Domains, pp. 81-95, 2006.

19. Milanović, M., et al. “Bridging Concrete and Abstract Syntax of Web Rule Languages", In
Proc. of the 1st Int’l Con. on Web Reasoning and Rule Systems, Innsbruck, Austria, 2007.

20. Meta Object Facility (MOF) Core, v2.0. OMG Document formal/06-01-01,
http://www.omg.org/cgi-bin/doc?formal/2006-01-01, 2006.

21. OMG Ontology Definition Metamodel (ODM), Sixth Revised Submission. OMG Docu-
ment ad/2006-05-01, http://www.omg.org/docs/ad/06-05-01.pdf, 2006.

22. MOF QVT Final Adopted Specification. OMG document 05-11-01,
http://www.omg.org/docs/ptc/05-11-01.pdf, 2005.

23. Meta Object Facility (MOF) 2.0 XMI Mapping Specification, v2.1. OMG Document for-

mal/2005-09-01, http://www.omg.org/cgi-bin/doc?formal/2005-09-01, 2005.
24. OMG Object Constraint Language, OMG Specification, Version 2.0, formal/06-05-01,

http://www.omg.org/docs/formal/06-05-01.pdf, 2006.
25. Warmer, J., Kleppe, A., The Object Constraint Language: Getting Your Models Ready for

MDA, Second Edition, Addison Wesley, 2003.
26. REWERSE I1 Rule Markup Language (R2ML). http://oxygen.informatik.tu-

cottbus.de/rewerse-i1/?q=node/6, 2006.

27. R2ML Translators. http://oxygen.informatik.tu-cottbus.de/rewerse-i1/?q=node/15, 2006.
28. OMG Semantics of Business Vocabulary and Business Rules (SBVR), Revised Submission

to BEI RFP br/2003-06-03, http://www.omg.org/docs/bei/05-08-01.pdf, 2005.
29. Seidewitz, E. “What Models Mean,” IEEE Software, vol., 20, no.5, pp. 26-32, 2003.
30. Translator from RuleML to Jess, http://www.ruleml.org/jess/, 2006.
31. OMG Unified Modeling Language 2.0, Docs. formal/05-07-04 & formal/05-07-05, 2005.
32. Wagner, G. et al. “A Usable Interchange Format for Rich Syntax Rules Integrating OCL,

RuleML and SWRL,” In Proc. of the WSh of Reasoning on the Web, Edinburgh, UK, 2006.

