
CQML+: Enhancements to CQML

Simone Röttger and Steffen Zschaler

Dresden University of Technology
Dresden, Germany

{Simone.Roettger, Steffen.Zschaler}@inf.tu-dresden.de

1 Introduction

In the last few years component-based software development has
achieved a great improvement in software engineering. Component
models can be found mainly for graphical user interfaces (JavaBeans
[12], ActiveX [2]) and server components (EJB [7], COM [10]). Us-
ing the component paradigm is well understood for independent
application development. In contrast, the reuse of existing com-
ponents is still difficult. For reusing components they need an ex-
act specification of their functional and non-functional properties.
The existing component models do not support this in a sufficient
manner. E.g., in EJB the deployment descriptor mainly supports
functional specification. There exist no concepts for handling all as-
pects of the component paradigm, in particular non-functional as-
pects. The COMQUAD-project1 has the goal to investigate such
concepts. COMQUAD develops a system architecture for support-
ing and a methodology for developing components with guaranteed
non-functional properties.

This paper gives an overview of issues involved in the specifica-
tion of non-functional properties in a component-based development.
It can be separated into the specification at development time and
the representation of non-functional properties at runtime. First, we
have to identify all non-functional requirements on the system and all
non-functional offers of the system. As part of the development pro-
cess these requirements have to be separated into offers and demands

1 COMponents with QUantitative properties and ADaptivity started on October
1, 2001 at Technische Universität Dresden and Friedrich-Alexander-Universität
Erlangen-Nürnberg, Germany; supported by German Research Council; see also
www.comquad.org

of individual components. Moreover, we have to consider that each
component needs resources to work properly. To actually guarantee
non-functional properties this resource demand has to be specified.
In order to express these properties we need a precise specification
language for non-functional properties in addition to the functional
specification of a component based system. Since this specification
language is used at design time and is therefore to be used by hu-
man beings, the language must have properties like readability, un-
derstandability and traceability.

To process components with specified non-functional properties
a special runtime system is needed. Such a runtime system has to
include services such as negotiation, resource allocation, monitoring
of actual QoS and adaptation to changes in resources or required
properties of communicating components. For all these services the
runtime system uses the information included in a runtime represen-
tation translated from the design-specific non-functional specifica-
tion. In contrast to the specification language the runtime represen-
tation is only used by the machine. Therefore the needed properties
are effectiveness, processability for machines and the concentration
on aspects needed by the target system and the used machine.

Because the specification language is a formal language, a de-
sign time toolkit can be built, encompassing various tools which
allow to perform different kinds of analysis and evaluation on a QoS
specification. At the heart of the toolkit is a parser which performs
checking of syntax and static semantics, and translates the textual
representation into an in-memory form, which can be accessed by
all other tools. Furthermore, specifications of individual components
can be composed to derive specifications of (sub-)systems. This can
be supported by tools, which select pre-produced components from
a component repository, based on their QoS-specification and the
needs of the application under development. It may also be possible
to determine the resource needs of a complete application already
at design time, based only on the specifications of its constituting
components. Additionally, various types of code can be generated
from the QoS-specification: a) From the specification of individual
QoS characteristics can be generated monitoring code that can be
inserted into the runtime enviroment to measure current values of
the characteristic, b) From the complete specification can be gen-

erated a pre-processed XML-representation that is reduced to the
information needed by the runtime system.

In this paper we want to explain the solutions of the COMQUAD-
project for these specification issues. For better understanding we
will use a simple example for explanations. Consider a component
(myController) which controls a process. Assuming the control of
this process depends on measured values, we need another compo-
nent, which manages a sensor (mySensor). Sensor and control com-
ponent use stream-based communication to exchange measurement
and control data. The control component needs sufficient CPU and
memory to prosess the data. The connection between the compo-
nents must provide for sufficient throughput.

Our work is based on CQML [1], a specification language for
components with QoS properties. CQML is the most developed spec-
ification language with an appropriate semantic for non-functional
properties. However the language is still only based on QoS-relations
between components. There is no possibility to specify the demand
on resources for components. One language exists which also uses
resource description, HQML [4]. Since HQML has a predefined set
of characteristics focused on web-applications we cannot use it for
our project, which is mainly focused on server-side component ar-
chitectures.

Our paper is focused on languages for expressing non-functional
properties in component-based systems. In a first chapter we will
introduce the basic concepts of CQML. The next chapter describes
problems we could not solve with this language and our proposed
improvements. In the last chapter we explain the reasons for having
an XML-based runtime representation.

2 CQML

In his thesis Aagedal defines the Component Quality Modeling Lan-
guage (CQML) a specification language to describe Quality of Ser-
vice (QoS) offers and requirements in component based systems [1].
Its terminology is based on the ISO QoS Framework [6].

The basic building block of a CQML specification is the quality
characteristic. It represents an entity to be constrained by the spec-
ification. Part of the definition of the characteristic is a specification

of how the current value of this characteristic could be determined
in a running system. Examples for characteristics are delay, jitter,
screen resolution, but also – in a different context – learnability. In a
next step, quality statements are used to specify constraints of qual-
ity characteristics. Because both quality characteristics and quality
statements are parameterized they allow for reuse of parts of the
specification in different contexts.

The specification is completed by associating the quality state-
ments with components of the system. For this, CQML offers the
concept of quality profiles. Here, the formal parameters of the qual-
ity statements are replaced by actual elements (e.g., operations,
streams) of the component for which the QoS constraint is meant
to hold. There are two ways in which a quality statement can be
associated to a component: as a QoS offer or as a QoS requirement.
To express this difference, CQML offers the two keywords provides
and uses, resp. Profiles can contain multiple sub-profiles which are
used as a means to express adaptivity. Finally, CQML specifications
can be structured using quality categories (essentially name spaces).

Although CQML appears to be a very useful language for QoS
specifications in COMQUAD we have identified a few shortcomings
for which we want to propose improvements.

3 Proposed Improvements

3.1 Computational Model

The computational model in the original specification of CQML is
rather vague. In particular, it is not very clearly stated whether
concepts like Flow and EventSequence are part of the language def-
inition or need to be defined as necessary with every use of the
language.

The computational model essentially defines what types are al-
lowable for the parameters of characteristics and qualities and what
parts of the component model can be annotated by QoS constraints.
It is important to notice that the semantics of a QoS contract changes
immensely when we allow values from the application to be used
in the constraint. When only values from the meta-model (e.g.,
Operation, Flow) are allowed in the constraints they can be checked

statically. As soon as values from the application can be used a com-
plete check of the constraints can only be done at runtime. Notice
also that in this case, the contracts have to be rechecked potentially
at every change of an attribute’s value.

We therefore propose to make the computational model explicit
and part of the language. Only types from the computational model
should be allowed as parameter types in a CQML specification. The
only exception are basic types like Real, Boolean etc. as long as the
actual parameters are constants and do not depend on any part of
the running system.

For this purpose we have created a meta-model of the compu-
tational model using UML [8]. The meta-model is based on the in-
formal description given in Aagedal’s thesis [1] together with some
clarification especially in the area of operations and event equality,
where the informal description is ambiguous. The meta-model con-
sists of four main areas:

1. Streaming interfaces and stream-based communication
2. Operational interfaces and invocation-based communication
3. Resources and resource usage
4. Event mechanism

The main concepts for areas 1 and 2 can be seen in fig. 1. The
resource meta-model is illustrated in fig. 2. The model shows com-
ponents having provided and used interfaces, which can be either
operational or stream based. An operational interface is essentially
a collection of operations. Operation calls can be announcements
(one-way) or interrogations (where the caller expects a response).
A stream based interface is a collection of flow endpoints. Streams
and flows, which connect stream endpoints and flow endpoints resp.,
model the actual connection over which data flows. The meta-model
also defines events and event queues and defines which events can
be observed for which meta-model element (e.g., a service emittance
event gets put into the caller’s event queue when an operation call is
started), but these details cannot be included here for lack of space.

3.2 Resources Clause

For the specification of component-based systems with non-functional
properties we need a description of the non-functional offers to and

Interface
<<interface>>Component

0..n

+usedInterface

0..n

0..n
+providedInterface

0..n

OperationalInterface

OperationCall

+caller

1

+callee1

Interrogation

Announcement

FlowEndpoint Flow
+endpoints

2..n

StreamEndpoint

0..n+flows 0..n

Stream

0..n+flows 0..n

+endpoints

2..n

File: E:\Eigene Dateien\COMQUAD\COMQUAD QML\Component Model.mdl 14:07:04 Donnerstag, 20. Februar 2003 Class Diagram:

0..n0..n

Fig. 1. Meta-model of main concepts of the computational model.

requirements on other components of the application additionally
to the functional interface specification. It is also important to de-
scribe the requirements on the underlying system, in most cases the
operating system and hardware platform [11]. The description of
needed resources – e.g. the demand on CPU or memory – is a basic
requirement in order to be able to guarantee non-functional prop-
erties. Notice, that there is a difference between the requirements
on communicating components and on resources. Components can
be fully managed by the container. In contrast, the container can
request resources, but only the underlying system is able to actu-
ally manage (negotiate, reserve, allocate, monitor) resources. That
means, the dependencies between component and component on the
one hand and between component and resource on the other hand
are differently processed by the system — therefore, the specification
of resource demands must be separated from requirements on used
components and as we will see later also needs a different syntax.

CQML provides one construct for describing non-functional prop-
erties provided by a component (provides) and one for properties
needed from other components (uses). For specifying resource re-
quirements we introduce a new meta-model for resources (fig. 2).

Resource_CPU Resource_Memory Resource_Network

Interessant bei Resource_Network:
Die Anforderunge n an diese Resource
werden auf einer höheren Ebene
möglicherweise als Anforderungen an
Eingangsströme bzw. Zusicherungen
über Ausgangsströme beschrieben.
Erst auf einer implementationsnahen
Ebene, auf der Binding-Objekte

Resourcen werden von der Komponente intern benutzt, um
die Funktionalität zu gewährleisten.

Im Ggs. dazu beschreibt die uses-Klausel, wie andere
Komponenten arbeiten müssen, damit diese Komponente
ihre versprochenen QoS anbieten kann.

Im Unterschied zu Komponenten haben Ressourcen eine
Kapazität, mit jeder Benutzung (Reservierung) der Ressource
durch eine Komponente sinkt die für andere verfügbare
Kapazität.

Constraint

Component QoSCharacteristic

Resource

1..n
+meaningful_characteristics

ResourceUsage

<<instantiates>>

File: E:\Eigene Dateien\COMQUAD\COMQUAD QML\Component Model.mdl 13:51:31 Freitag, 14. Februar 2003 Class Diagram: Logical View / Resources Page 1 (1, 1)

Fig. 2. Meta-model for resources and resource usage

Here resources are explicitly modeled as elements represented in the
model as a type. In our view resources are models of real world re-
sources such as CPU, memory or network. A resource has a name and
a list of characteristics describing non-functional properties meaning-
ful for this resource. However, the precise semantics of these charac-
teristics is determined by the resource managers of the underlying
system and the quality characteristic definitions therefore con-
tain no values clause.

Examples for such resources are Resource CPU, Resource Memory

and Resource Network, each of which describes a type of resource
(e.g., CPU) rather than an actual instance (e.g., the first CPU of
a two-processor-system). At runtime the container allocates specific
resource instances according to the specified resource requirements
of each component. Similar concepts and terminology can also be
found in [9].

In our example we need to express memory requirements. To
do so, we first define a resource memory, using the new keyword
resource. The description of memory consists of two characteristics,
one characteristic describes the required memory size and the other

one the (maximum) time needed for accessing the memory. Specific
resource requirements are expressed in quality statements.

resource memory {

quality_characteristic size (r: Resource) {

domain: numeric kilobytes;

}

quality_characteristic access_delay (r: Resource) {

domain: numeric milliseconds;

}

}

quality memory_high (r: Resource) {

size (r).minimum > 200;

}

These resource requirements can be associated with a component
using the newly defined resources statement in the component’s
profile:

profile good for myController {

...

resources memory_high (memory);

}

Another example is the specification of required throughput on a
communication channel (e.g., network connection). For this we could
define a resource network with a characteristic throughput. It be-
comes clear immediately, however, that in a meaningful specification
we need to be able to say which of the potentially many connections
between one component and other components needs to be able to
provide the specified throughput. Our concept of resource as a type
of resource is not sufficient here. Instead, we need to be able to reify
resource instances in the specification.

To this end, we further enhance the resource clause which de-
clares a resource. We add a with instances clause listing those
elements of the meta-model, instances of which can be viewed as
modeling instances of the resource. For the network example this
includes Flow, Stream and possibly also Association. We write:

resource network with instances Flow, Stream, Association {

quality_characteristic throughput (ri: ResourceInstance) {

domain: numeric real [0..) bytes/second;

}

}

The parameter type also changes from Resource to ResourceInstance.
This declaration would now allow us to specify ressource demands
as follows:

quality good_throughput (ri: ResourceInstance) {

throughput (ri) >= 10000;

}

profile good_communication for mySensor {

resources good_throughput (channelToMyComponent);

}

Where channelToMyComponent identifies a Flow that transports
measurement data between the sensor and the component.

Note that the two ways of declaring resources can be used in
parallel. Which kind of declaration is most appropriate depends only
on the kind of resource to be specified.

3.3 Structured Characteristics

In some cases a description of a composition of characteristics is
useful. For example, we can describe CPU-demand by specifying a
period and an execution time. Using CQML we can define a charac-
teristic for period and for execution time. But we have no means of
saying that only both together describe CPU-demand in a reasonable
way and how they depend on each other.

CQML provides only three basic domain types. These are numeric,
enumeration and set. To solve the discussed problem we introduce
tupel as a new type. This construct allows us to structure charac-
teristics. In the example, we can now define the CPU-demand as a
structured characteristic consisting of the characteristics period and
execution time.

resource cpu {

quality_characteristic cpu_demand (r: Resource) {

domain: tupel {

period (r),

execution_time (r)

};

invariant: execution_time < period;

}

quality_characteristic execution_time (r: Resource) {

domain: numeric real [0..) milliseconds;

}

quality_characteristic period (r: Resource) {

domain: numeric real [0..) milliseconds;

}

}

We can then use this characteristic in the following statement.

quality lots_of_cpu (r: Resource) {

cpu_demand (r).period = 1000 and

cpu_demand (r).execution_time = 999;

}

Notice how the parameter r is automatically handed down to the
elementary characteristics. Also, because the two have been com-
bined into one structured characteristic cpu demand, the given in-
variant can now be meaningfully checked.

3.4 Explicit Dependencies

At present, CQML only allows to describe regions of acceptable QoS
for a component. This is done by specifying a profile for each
region. Such a profile contains a uses clause which specifies the re-
quired QoS and a provides clause which specifies the QoS the com-
ponent offers. These regions are effectively examples that specify the
component’s behaviour in certain, but usually not all, situations and
in a rather vague manner, by giving intervals in which required and
offered QoS are located.

In some cases it may be more efficient to specify the relation
between offered and used QoS directly by giving an equation or in-
equity that relates the two. In a separate paper ([13]) we explore
the issues around this idea in more detail. There we propose to in-
troduce a new clause qos dependency which allows to write down
such relations. We describe three different approaches for specifying
the relation: explicit term, interval computational term, or using two
functions to bound the relation. However, these concepts are not yet
completely examined and need further research.

4 XML Representation

CQML has originally been developed as a specification language for
use by human specifiers. Its syntax is therefore constructed with
readability and reusability in mind. This has led to the introduc-
tion of some concepts that make life easy for human developers, but
conversely make matters unneccessarily complex for the QoS man-
agement system, e.g.:

1. The use of names and namespaces (called quality categories) to
identify entities of the specification. This is very suitable for hu-
man readers, but it introduces effects such as name hiding and
overloading of the same name through the use of different param-
eter types. For a computer system globally unique identifiers are
much easier to handle.

2. CQML allows for separation of concerns by allowing multiple pro-
files to be defined for one component. The implicit assumption
is that they will need to be merged by the runtime system. This
work could be done once, at design time, thus freeing the run-
time system from the work load. There is also no reason why the
runtime system should have to distinguish between simple and
compound profiles (a distinction very helpful to the human de-
signer). Simple profiles can be viewed, without loss of correctness,
as compound profiles with just one child profile and no transi-
tions.

3. CQML was built to enable reuse of parts of the specification.
To this end, a specification is heavily structured into building
blocks like quality characteristic, quality and profiles.
Once a specification is complete and deployed on the running
system, there is no need for such extensive structuring. Especially
removing the quality-layer may improve the efficiency of the
QoS management system.

These points illustrate that a translation of the specification from
the CQML representation into a different form for the runtime sys-
tem is indeed useful. In the COMQUAD-project we are currently
working to integrate QoS support into an Enterprise Java Beans
(EJB, [7]) based runtime environment. In this environment all meta-
information is stored in so-called deployment descriptors, which are

written in XML. So we decided to translate the CQML specification
into an XML representation as well. We have already designed an
XML Schema [3] file defining the syntax of the XML representation.

5 Conclusion

In this position paper we made suggestions for handling all aspects
of non-functional properties in a specification language together with
the component paradigm. With the presented improvements we are
able to actually describe the demand on resources of a component.
Moreover, we are able to compose characteristics and specify con-
straints on a structured characteristic and describe dependencies be-
tween parts of it. Since we only allow types from the computational
model as part of the specification it is possible to make semantic
checks at design time. By providing an XML representation we make
specification processing less complex for the QoS management sys-
tem.

This work was carried out as part of the COMQUAD project.
This project aims at a development methodology as well as a runtime
support system for component-based applications with guaranteed
Quality of Service properties and adaptation. Based on the Dresden
Realtime Operating System (DROPS, cf. e.g. [5]) an Enterprise Java
Beans based runtime enviroment is currently being developed. So
far, we have defined an XML representation of the QoS specification
and a resource management component in the operating system.
Currently we are working to build both a compiler that translates
our CQML specification into the XML representation and the actual
runtime system that uses these XML documents.

References

1. Jan Øyvind Aagedal. Quality of Service Support in Development of Distributed
Systems. PhD thesis, University of Oslo, 2001.

2. David Chappell. Understanding ActiveX and OLE. Microsoft Press, 1996.
3. XML Schema Working Group. XML Schema w3c recommendation – parts 0–

2. http://www.w3.org/TR/xmlschema-0/, http://www.w3.org/TR/xmlschema-
1/, http://www.w3.org/TR/xmlschema-2/, May 2001.

4. Gu, Nahrstedt, Yuan, Wichadakul, and XuA. An xml-based quality of service
enabling language for the web. Technical Report UIUCDCS-R-2001-2212, Depart-
ment of Computer Science University of Illinois at Urbana-Champaign,Urbana,
2001.

5. H. Härtig, R. Baumgartl, M. Borriss, Cl.-J. Hamann, M. Hohmuth, F. Mehnert,
L. Reuther, S. Schönberg, and J. Wolter. DROPS: OS support for distributed
multimedia applications. In Proc. 8th ACM SIGOPS European Workshop: Sup-
port for Composing Distributed Applications (Sintra, Portugal, Sept. 1998), Sintra,
Portugal, September 1998.

6. Information technology – quality of service: Framework. ISO/IEC 13236:1998,
ITU-T X.641, 1998.

7. Sun Microsystems. Enterprise JavaBeans Specification, version 2.0. Final Release,
August 2001.

8. Object Management Group. Unified Modelling Language Specification Version
1.4. OMG Document, September 2001.

9. Object Management Group. UML profile for schedulability, performance, and time
specification. OMG Document, March 2002. URL http:// www.omg.org/ cgi-bin/
doc?ptc/02-03-02.

10. Dale Rogerson. Inside COM: Microsoft’s Component Object Model. Microsoft
Press, 1997.

11. Simone Röttger and Ronald Aigner. Modeling of non-functional contracts in
component-based systems using a layered architecture. In Component Based Soft-
ware Engineering and Modeling Non-functional Aspects (SIVOES-MONA), Work-
shop at UML 2002, October 2002.

12. Sun Microsystems. JavaBeans API Spezification, Version 1.01, July 1997.
13. Steffen Zschaler and Marcus Mayerhöfer. Explicit modelling of qos-dependencies.

to be published in Proceedings of QoS in CBSE workshop, June 2003. Dresden
University of Technology and Friedrich-Alexander-University Erlangen-Nürnberg.

