
Using a Framework to Teach OOT to Beginners

Birgit Demuth
Heinrich Hussmann

Steffen Zschaler
Department of Computer Science
Dresden University of Technology

01062 Dresden, Germany
{demuth,hussmann,zschaler}@inf.tu-dresden.de

Lothar Schmitz
Department of Computer Science

University of the Federal Armed Forces Munich
 85577 Neubiberg, Germany

lothar@informatik.unibw-muenchen.de

ABSTRACT

We report on experience from teaching OO technology to
undergraduate students. Before they can successfully tackle
the projects we expect them to do in their second year they
have to successfully shift to the OO paradigm, pick up a
working knowledge of some OO language, learn and prac-
tice OOA and OOD, and get used to advanced ideas like
patterns and frameworks.

In order to relieve this heavy burden somewhat, we provi-
ded a framework as a common base for the projects. That
way, the students are given an architecture which they
have to adapt to their specific task instead of doing all the
design by themselves. We also believe that this policy
closely resembles the way beginners are integrated into on-
going projects in practice.

We describe the Java framework we used, the preparations
for and the organization of the project course, educators'
and students' experience and some ideas for developing
this approach further.

Keywords

Teaching, object-oriented technology, framework, Java,
software engineering course, patterns, UML

INTRODUCTION

At Dresden University of Technology, computer science
undergraduates are taught OO software engineering very
early: An introductory course in the second semester is
followed by a project course in the third, where student
teams are given individual tasks. This provides valuable

experience for later programming assignments and ad-
vanced courses.

Since OO technology is evolving rapidly the material and
organization of both courses have to be adapted frequently.
Here, we describe our current approach which we have
found very useful and which might be applied similarly by
other organizations as well.

In order to become a proficient OO software engineer, you
have to climb several rungs of a very demanding technical
ladder:

• First, learn to solve problems by building small
universes of interacting objects. Those with a strong
background in procedural programming may have to
unlearn their previous algorithm-centered approach
before they can get used to the new paradigm.

• Second, adopt the habit of reusing existing classes
instead of inventing new ones. This requires you to
know where to look for reusable components, i.e. you
must understand the scope and structure of the class
libraries you are using. Getting to know a large class
library in sufficient detail will take quite some time.

• OO technology has much more to offer than just OO
languages and libraries: While beginners have to be
taught the importance of a formal software life cycle
and of requirements analysis, in particular, more
experienced developers will immediately appreciate
the benefits of incremental development and
prototyping that are typical of OO methodology (see
e.g. [4] and [5]).

• Finally, there are patterns and frameworks (cf. [2]).
Patterns describe proven solutions: when, where and
how to apply them. Pattern names are carefully chosen
for ease of communication between developers.
Frameworks are application skeletons that can be
turned into complete applications by providing
parameters and/or subclasses of the framework's
generic classes.

 The higher you climb on this ladder, the more leverage
you will gain for developing your own applications.

 A strong motivation for our approach stems from the
following observation: In academic as well as industrial

settings beginners will often join projects which are
already well in progress. Finding out enough about the
project's structure to be able to do your job is similar to
learning how to apply an application framework. A
practical course based on one common framework
therefore offers several advantages:

• For the organizers it is easy to define a number of
similar projects and to scale the projects' complexity
from moderate to reasonably hard.

• Since they are based on the same framework, all the
different tasks are still comparable. If competition is
desirable you can assign identical tasks to different
teams.

• As pointed out above, learning your way around a
given framework corresponds to a characteristic
professional activity.

• Beginners get a chance to learn good design by
example: Frameworks by definition are designed for
change. Therefore, they typically exhibit patterns that
increase flexibility.

 The rest of this paper is organized as follows: First we
describe the domain, architecture, and the adaptation
interface of the SalesPoint framework. The next
Section relates how we prepared the students for their
project work. Then we outline the project organization and
briefly report on the results from a detailed student's ques-
tionnaire. The last section describes how our concept has
evolved over time and indicates some future extensions.

 THE FRAMEWORK

 The SalesPoint framework the students were given
supports the development of point of sale simulations
ranging from simple vending machines to big department
stores. Typical applications include an exchange office
where you can obtain foreign currency, a post office
offering stamps and a well-defined set of services, a
drugstore, or a video shop.

 All applications from this domain share the following
characteristics:

• A point of sale offers articles from some fixed
catalogue. For each article, the catalogue has an entry
giving its name, price, and other relevant properties.
A stock is a bag of articles from the catalogue.
Examples of stocks are: the goods on an order form,
the articles contained in a vending machine, in the
shelves of a store, or in a customer's shopping basket.

• Money fits into this terminology as a special case: Here
the catalogue is called a currency. It describes the set of
valid bank notes and coins and their values. The
contents of your purse or those of a cash register are
money stocks.

• The main purpose of a point of sale is to sell, buy, or
trade articles. Such transactions are considered atomic,
i.e. they are performed completely or have no effect.

• In a point of sale there are background activities not
visible to customers: Goods have to be ordered from
wholesalers; revisions are due in regular intervals; the
catalogue has to be adapted to customers' demands by
removing slow-moving articles and adding new ones
instead.

 Accordingly, the SalesPoint framework supports the
development of point of sale simulations by providing:

• base classes for catalogues, stocks, currencies, and
money stocks;

• generic form and menu classes for user interaction
(two separate layers: the logical layer which is part of
the framework's adaptation interface, and which is
based on the underlying hidden physical layer);

• transaction support including roll-back and logging
mechanisms;

• different algorithms for the standard problem of
building a stock for a given value (needed e.g. for
returning change money or at a post office for
assembling a collection of stamps with a given total
value).

 The figure below contains the UML static class structure of
the SalesPoint framework: it shows most of the
classes, their associations, and the methods that are
relevant to the framework's users.

 Like other frameworks, SalesPoint is adapted to its
users' needs in several ways:

• by supplying specialized subclasses; e.g. menu sheets
are easily adapted using Java's inner classes;

• by providing hook methods; e.g. the roll-back mecha-
nism is adapted with three hook methods: one for
saving the state before the transaction is started, one for
restoring that state, and one for releasing files and
other resources;

• by providing parameters; e.g. when creating a new
stock object one of the constructor's parameters
describes which catalogue to use, another chooses one
of the algorithms for building stocks with a given
value.

 As indicated above, the SalesPoint framework is
implemented in Java (see e.g. [1]). In order to make it
flexible, some of the patterns from the [2] collection of
design patterns were applied: e.g. the Abstract Factory
pattern for creating catalogues, the Bridge pattern for
choosing between different implementations of stocks and
catalogues, and the Strategy pattern for varying among the
different stock-building algorithms.

 The students were given the framework's Java class files
with a javadoc-generated documentation and a tutorial
describing in detail how the framework can be used for
building a simple ticket vending machine. The tutorial
covers all aspects of the framework's application interface
for use as a black box, and also explains its structure for
white box use.

 CLIMBING THE LADDER

 For qualifying students in OO technology, several
approaches are in use ranging from leaving it all to the

CountingStockStoringStock

StockItem

0..*0..*

MoneyBag

Currency
11

CurrencyItem

0..*0..*

CatalogItem

Catalog

addItem()
deleteItem()
findKey()
containsItem()
containsKey()

0..*0..*

DisplayManager

createFormSheet()
createMenuSheet()
fillFormSheet()

Transaction

executeTransaction()
getLogData() 10..1 10..1

Stock

addItem()
deleteItem()

SalesPoint

getDefaultMenuSheet()
createDisplayManager()
runTransaction()
getStock()
getCatalog()
log()

0..*0..*

1
1

1
1

11

0..*0..*

Log
11

students themselves (relying on and supporting their self-
government) to teaching all the details in a bottom-up
fashion. Dealing with beginners, we opted for the second
alternative. We aimed to provide them with:

 a thorough understanding of OO notions and
terminology including familiarity with the basics of UML
notation;

• an appreciation of OOA/OOD methodology and of
requirements analysis, in particular;

• sufficient practical experience with the Java
programming language as required for the intended
projects along with a working knowledge of core parts
of the Java class library;

• a good idea of patterns, frameworks, and what they are
good for.

 We decided to switch from C++ to Java for well-known
reasons: Java is a more pure OO language than the hybrid
C++. It has useful new concepts like interfaces, includes
automatic garbage collection and it avoids some of the
error-prone features of C++ such as pointer arithmetic and
multiple inheritance. Therefore, it seemed (and has
proven) better suited as a first OO language.

 Lectures were supplied with lab exercises and homework
for hands-on experience. Our aims and the bottom-up
approach resulted in the following course outline
(examples, exercises and homework in italics):

 Unit A

 Problems addressed by software engineering.
OOT currently most popular approach to solving
them. Introductory Java programming: String
handling.

 Unit B

 Basic OO notions: objects, classes, inheritance,
polymorphism, etc. Small subset of UML static
diagram notation. Modeling geometric objects in
Java.

 Unit C

 Learning from the Java library developers by
looking at the Vector and Hashtable Container
classes and their Enumerations. Telephone
dictionary example; AVL trees as an alternative
to Hashtables.

 Unit D

 Solving problems by evenly distributing
intelligence over a set of cooperating classes:
Grammar example. Using exceptions to make
programs robust: File handling example from [1]

 Unit E

 Introduction to OO analysis using CRC cards [4],
responsibility-driven design for design, Use Cases

and UML sequence diagrams. Dresden ticket
vending machine..

 Unit F

 Architectural, design and programming patterns
with examples from the Container classes.

 Unit G

 Parallel threads in Java. Applets and AWT as
examples of frameworks. Programming a graphi-
cal user interface for a file browser

 Unit H

 Putting it all together: The Dashboard example.

 While successful on the whole, one result of this course
remained unsatisfactory: students with previous hacking
experience tend to overestimate their abilities and to
underestimate the problems of systematic software deve-
lopment. As a consequence, their motivation to engage
themselves actively is poor.

 A notable exception were the CRC card sessions we
organized for student teams of about five persons each.
Most students overcame their inhibitions and began to
discuss their analysis and design problems freely and
vividly. In future we shall, therefore, replace the pure
bottom-up approach by a mixed strategy where CRC cards
and the basics of OO analysis and design are presented
before the rest of the material.

 USING THE FRAMEWORK

 Because of the large number (116) of students that
participated in the project course, a rather formal mode of
organization was needed. All information was distributed
via WWW: the framework, its description, the tutorial, and
the project specifications. The students were encouraged to
present their solutions on HTML pages in the same way.

 In the beginning, a lecture on teamwork organization and
related problems was supplied. Then the students were
asked to form teams of about five persons and to adopt a
chief programmer team organization, i.e. to assign chief,
assistant, secretary and developers' roles to the team
members. Most of the resulting 22 teams were coached by
two senior students who in turn were supervised by one
assistant (first author of this paper). Technical questions
and requests for framework correction or extension were
handled by the student (fourth author) who had developed
the framework and the tutorial according to the
specifications of the third author.

 A rather rigid time table was prescribed for project work.
At the end of each phase, results (documents, programs)
had to be presented to the tutors. Final delivery included a
formal oral presentation of about half an hour per team
where the main results including the working program had

to be shown and questions to be answered. The time table
was as follows:

 Requirements definition ... 1 week

 OO Analysis ... 2 weeks

 OO Design ... 2 weeks

 Implementation and Test ... 4 weeks

 Maintenance ... 4 weeks

 Alternatively, incremental development with several
development cycles was allowed. This approach was
adopted by most teams. The average number of design
cycles was three. During the requirements definition and
OO analysis phases the students also had to study the
framework and its tutorial. Maintenance included removal
of bugs and satisfying some minor client's wishes.

 The overall results of the project course were very
encouraging: 103 of 116 students (21 teams of 22) finished
successfully (there were a number of drop-outs from
successful teams).

 During the whole process we had a lot of feedback: from
the tutors, some students' questions, intermediate
documents, final presentations and a detailed
questionnaire we requested from the students. We learned
that:

• studying the framework took more time than we had
expected (about 25 \% of the whole effort); in
retrospect we feel this justified since it covers a good
deal of what would otherwise have been part of the
design phase;

• students rated the tutorial and the on-line support
rather high;

• the time table was realistic, given the students'
tendency to postpone work towards the end;

• on an average, the students spent about 8 hours per
week on their projects; there also seemed to be some
backlog in the form of missing OO and Java
knowledge from the introductory course;

• students liked the tasks they were given; some teams
even tried to find out real clients' requirements by
doing field studies;

• students rated their own achievements rather high;
for them, team work experience was novel and
important;

• in the tutors' opinion, most students performed rather
well, but there still seemed to be some who had hacked
their way without a true appreciation of OO
technology; on the positive side, the framework proved
practicable and accommodated all kinds of students'
approaches: everyone felt they had learnt a lot.

 At [6] all the material for the project course is assembled,
most of it in English. If you can read German, you can also

have a look at the long version of the tutorial and at the
students' results.

 AN EVOLVING PROCESS

 Before arriving at the current course organization, we had
tried out different approaches at different places as des-
cribed below. Some hints on how to further evolve it are
given in the end.

 Learning a new programming paradigm without some
practical experience seems impossible. Therefore, the third
author in his Munich courses on OO technology replaced
conventional written exams by individual homework
projects: students were allowed to work in teams. After two
weeks they had to present their design, after two more
weeks to demonstrate a working (Smalltalk) prototype in
class. In those courses, the primary focus was on OO
programming techniques and on reuse, in particular.
Students enjoyed the projects and, therefore, worked hard
to achieve these goals.

 While at first many different and unrelated tasks were
given to the students, a few years later a more ambitious
approach was chosen: Different tasks from one common
domain were handed out to the students. After some teams
had completed their prototypes, other teams tried to distill
their experiences and solutions into a framework. Then a
third group of teams were to do reimplementations of the
original prototypes using this framework.

 Both times we followed this new approach we were only
partially successful: Still, the students with much
enthusiasm finished their prototypes. But the task of
abstracting the common parts into a framework and
proving its usefulness by doing reimplementations turned
out to be too hard. Within the short time available and
with their limited experience, students produced
frameworks that were too immature to be applied
successfully. Another problem with the new approach was
that projects had to be started before all the relevant
techniques had been taught.

 In the current organization, the above problems are
avoided: the latter one by decoupling the introduction to
OO technology and the project course, the former one by
providing the students with a well-prepared framework in
advance. Remaining minor problems appear to be
organizational ones that we shall try to remedy as
indicated.

 At Dresden, previous courses had been based on OMT, the
Booch method, and C++ programming language. In the
lectures, emphasis was on OO analysis and design. An
elementary introduction to C++ was given during lab
exercises. Beyond that, students were on their own to find
out about the C++ constructs and libraries they needed to
do their projects. By switching to UML and Java we not

only modernized our curriculum but also had the chance to
teach OO programming in sufficient detail.

 The existing framework can (and will) be improved in
many ways. Possible major extensions include:

• using the Java JDBC interface to make catalogues and
stocks persistent by storing them in a relational data
base;

• using the Java RMI or CORBA interface to obtain
families of cooperating SalesPoint applications
distributed over the net; e.g. competing shops might
buy their goods from different wholesalers who in turn
obtain them from different factories; here, shops,
wholesalers and factories all share the SalesPoint
characteristics.

Also, our approach should carry over easily to frameworks
in other domains and there provide the same advantages
for beginners: realistic professional activity is simulated
and guidance in the form of a framework is offered.

ACKNOWLEDGMENTS

We thank our students Axel Grossmann and Jens Stuendel
working as tutors, who, through their efforts and

contributions, made the organization and execution of the
described software engineering course successful.

REFERENCES

1. Flanagan, D. Java in a Nutshell. O'Reilly &
Associates, Sebastopol, 1996. Also extended second
edition 1997.

2. Gamma, E., Helm, R., Johnson, R., and Vlissides, J.
Design Patterns - Microarchitectures for Reusable
Object-Oriented Software. Addison-Wesley, Reading,
1994.

3. Rumbaugh, J., Jacobson, I., and Booch, G. The Unified
Modeling Language, Documentation Set 1.0. Rational
Software Corporation, Santa Clara, 1997.

4. Wilkinson, N. Using CRC Cards. An Informal
Approach to Object-Oriented Development. SIGS
Publications, New York, 1995.

5. Wirfs-Brock, R., Wilkerson, B., and Wiener, L.
Designing Object-Oriented Software. Prentice-Hall,
Englewood Cliffs, 1990.

6. Zschaler, St. The SalesPoint Framework Homepage.
http://www.inf.tu-dresden.de/~sz9/SWTProject/ver05

